lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <alpine.DEB.2.22.394.2112301840360.15550@hadrien>
Date:   Thu, 30 Dec 2021 18:54:01 +0100 (CET)
From:   Julia Lawall <julia.lawall@...ia.fr>
To:     "Rafael J. Wysocki" <rafael@...nel.org>
cc:     Francisco Jerez <currojerez@...eup.net>,
        Srinivas Pandruvada <srinivas.pandruvada@...ux.intel.com>,
        Len Brown <lenb@...nel.org>,
        Viresh Kumar <viresh.kumar@...aro.org>,
        Linux PM <linux-pm@...r.kernel.org>,
        Linux Kernel Mailing List <linux-kernel@...r.kernel.org>,
        Ingo Molnar <mingo@...hat.com>,
        Peter Zijlstra <peterz@...radead.org>,
        Juri Lelli <juri.lelli@...hat.com>,
        Vincent Guittot <vincent.guittot@...aro.org>
Subject: Re: cpufreq: intel_pstate: map utilization into the pstate range

> > The effect is the same.  But that approach is indeed simpler than patching
> > the kernel.
>
> It is also applicable when intel_pstate runs in the active mode.
>
> As for the results that you have reported, it looks like the package
> power on these systems is dominated by package voltage and going from
> P-state 20 to P-state 21 causes that voltage to increase significantly
> (the observed RAM energy usage pattern is consistent with that).  This
> means that running at P-states above 20 is only really justified if
> there is a strict performance requirement that can't be met otherwise.
>
> Can you please check what value is there in the base_frequency sysfs
> attribute under cpuX/cpufreq/?

2100000, which should be pstate 21

>
> I'm guessing that the package voltage level for P-states 10 and 20 is
> the same, so the power difference between them is not significant
> relative to the difference between P-state 20 and 21 and if increasing
> the P-state causes some extra idle time to appear in the workload
> (even though there is not enough of it to prevent to overall
> utilization from increasing), then the overall power draw when running
> at P-state 10 may be greater that for P-state 20.

My impression is that the package voltage level for P-states 10 to 20 is
high enough that increasing the frequency has little impact.  But the code
runs twice as fast, which reduces the execution time a lot, saving energy.

My first experiment had only one running thread.  I also tried running 32
spinning threads for 10 seconds, ie using up one package and leaving the
other idle.  In this case, instead of staying around 600J for pstates
10-20, the pstate rises from 743 to 946.  But there is still a gap between
20 and 21, with 21 being 1392J.

> You can check if there is any C-state residency difference between
> these two cases by running the workload under turbostat in each of
> them.

The C1 and C6 cases (CPU%c1 and CPU%c6) are about the same between 20 and
21, whether with 1 thread or with 32 thread.

> Anyway, this is a configuration in which the HWP scaling algorithm
> used when intel_pstate runs in the active mode is likely to work
> better, because it should take the processor design into account.
> That's why it is the default configuration of intel_pstate on systems
> with HWP.  There are cases in which schedutil helps, but that's mostly
> when HWP without it tends to run the workload too fast, because it
> lacks the utilization history provided by PELT.

OK, I'll look into that case a bit more.

thanks,
julia

Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ