[<prev] [next>] [thread-next>] [day] [month] [year] [list]
Message-Id: <20220129022448.37483-1-michael@michaelkloos.com>
Date: Fri, 28 Jan 2022 21:24:48 -0500
From: "Michael T. Kloos" <michael@...haelkloos.com>
To: David Laight <David.Laight@...LAB.COM>,
Palmer Dabbelt <palmer@...belt.com>,
Paul Walmsley <paul.walmsley@...ive.com>,
Albert Ou <aou@...s.berkeley.edu>
Cc: linux-riscv@...ts.infradead.org, linux-kernel@...r.kernel.org,
"Michael T. Kloos" <michael@...haelkloos.com>
Subject: [PATCH v4] riscv: Fixed misaligned memory access. Fixed pointer comparison.
Rewrote the RISC-V memmove() assembly implementation. The
previous implementation did not check memory alignment and it
compared 2 pointers with a signed comparison. The misaligned
memory access would cause the kernel to crash on systems that
did not emulate it in firmware and did not support it in hardware.
Firmware emulation is slow and may not exist. The RISC-V spec
does not guarantee that support for misaligned memory accesses
will exist. It should not be depended on.
This patch now checks for XLEN granularity of co-alignment between
the pointers. Failing that, copying is done by loading from the 2
contiguous and naturally aligned XLEN memory locations containing
the overlapping XLEN sized data to be copied. Only one load from
memory is needed per loop iteration as the value loaded is passed
by cpu register into the next iteration to minimize the memory
accesses required. The data is shifted into the correct place and
binary or'ed together on each iteration. The result is then
stored into the corresponding naturally aligned XLEN sized
location in the destination. For unaligned data at the
terminations of the regions to be copied or for copies less than
XLEN in size, byte copy is used.
This patch also now uses unsigned comparison for the pointers and
migrates to the newer assembler annotations from the now deprecated
ones.
[v3]
Fixed the build issue reported by the test robot. Changed the
copy implementation based on the suggestion by David Laight.
One change that could potentially still be made is to roll one
of the values loaded in the copy loop into the next iteration
of the fixup loop, rather than reloading both values from memory
on each iteration. It would require some more logic and I'm
really not sure that it is worth it. It could be added in a
later patch. For now, this fixes the issues I set out to fix.
[v4]
I could not resist implementing the optimization I mentioned in
my v3 notes. I have implemented the roll over of data by cpu
register in the misaligned fixup copy loops. Now, only one load
from memory is required per iteration of the loop.
Signed-off-by: Michael T. Kloos <michael@...haelkloos.com>
---
arch/riscv/lib/memmove.S | 327 ++++++++++++++++++++++++++++++++-------
1 file changed, 267 insertions(+), 60 deletions(-)
diff --git a/arch/riscv/lib/memmove.S b/arch/riscv/lib/memmove.S
index 07d1d2152ba5..13f17affe115 100644
--- a/arch/riscv/lib/memmove.S
+++ b/arch/riscv/lib/memmove.S
@@ -1,64 +1,271 @@
-/* SPDX-License-Identifier: GPL-2.0 */
+/* SPDX-License-Identifier: GPL-2.0-only */
+/*
+ * Copyright (C) 2022 Michael T. Kloos <michael@...haelkloos.com>
+ */
#include <linux/linkage.h>
#include <asm/asm.h>
-ENTRY(__memmove)
-WEAK(memmove)
- move t0, a0
- move t1, a1
-
- beq a0, a1, exit_memcpy
- beqz a2, exit_memcpy
- srli t2, a2, 0x2
-
- slt t3, a0, a1
- beqz t3, do_reverse
-
- andi a2, a2, 0x3
- li t4, 1
- beqz t2, byte_copy
-
-word_copy:
- lw t3, 0(a1)
- addi t2, t2, -1
- addi a1, a1, 4
- sw t3, 0(a0)
- addi a0, a0, 4
- bnez t2, word_copy
- beqz a2, exit_memcpy
- j byte_copy
-
-do_reverse:
- add a0, a0, a2
- add a1, a1, a2
- andi a2, a2, 0x3
- li t4, -1
- beqz t2, reverse_byte_copy
-
-reverse_word_copy:
- addi a1, a1, -4
- addi t2, t2, -1
- lw t3, 0(a1)
- addi a0, a0, -4
- sw t3, 0(a0)
- bnez t2, reverse_word_copy
- beqz a2, exit_memcpy
-
-reverse_byte_copy:
- addi a0, a0, -1
- addi a1, a1, -1
-
-byte_copy:
- lb t3, 0(a1)
- addi a2, a2, -1
- sb t3, 0(a0)
- add a1, a1, t4
- add a0, a0, t4
- bnez a2, byte_copy
-
-exit_memcpy:
- move a0, t0
- move a1, t1
- ret
-END(__memmove)
+SYM_FUNC_START(__memmove)
+SYM_FUNC_START_WEAK(memmove)
+ /*
+ * Returns
+ * a0 - dest
+ *
+ * Parameters
+ * a0 - Inclusive first byte of dest
+ * a1 - Inclusive first byte of src
+ * a2 - Length of copy n
+ *
+ * Because the return matches the parameter register a0,
+ * we will not clobber or modify that register.
+ *
+ * Note: This currently only works on little-endian.
+ * To port to big-endian, reverse the direction of shifts
+ * in the 2 misaligned fixup copy loops.
+ */
+
+ /* Return if nothing to do */
+ beq a0, a1, 20f /* Return from memmove */
+ beqz a2, 20f /* Return from memmove */
+
+ /*
+ * Register Uses
+ * Forward Copy: a3 - Index counter of src
+ * Reverse Copy: a4 - Index counter of src
+ * Forward Copy: t3 - Index counter of dest
+ * Reverse Copy: t4 - Index counter of dest
+ * Both Copy Modes: t5 - Inclusive first multibyte/aligned of dest
+ * Both Copy Modes: t6 - Non-Inclusive last multibyte/aligned of dest
+ * Both Copy Modes: t0 - Link / Temporary for load-store
+ * Both Copy Modes: t1 - Temporary for load-store
+ * Both Copy Modes: t2 - Temporary for load-store
+ * Both Copy Modes: a5 - dest to src alignment offset
+ * Both Copy Modes: a6 - Shift ammount
+ * Both Copy Modes: a7 - Inverse Shift ammount
+ */
+
+ /*
+ * Solve for some register values now.
+ * Byte copy does not need t5 or t6.
+ */
+ add t3, a0, zero
+ add t4, a0, a2
+ add a3, a1, zero
+ add a4, a1, a2
+
+ /*
+ * Byte copy if copying less than SZREG bytes.
+ * This can cause problems with the bulk copy
+ * implementation and is small enough not
+ * to bother.
+ */
+ andi t0, a2, -SZREG
+ beqz t0, 21f
+
+ /*
+ * Now solve for t5 and t6.
+ */
+ andi t5, t3, -SZREG
+ andi t6, t4, -SZREG
+ /*
+ * If dest(Register t3) rounded down to the nearest naturally
+ * aligned SZREG address, does not equal dest, then add SZREG
+ * to find the low-bound of SZREG alignment in the dest memory
+ * region. Note that this could overshoot the dest memory
+ * region if n is less than SZREG. This is one reason why
+ * we always byte copy if n is less than SZREG.
+ * Otherwise, dest is already naturally aligned to SZREG.
+ */
+ beq t5, t3, 1f
+ addi t5, t5, SZREG
+ 1:
+
+ /*
+ * If the dest and src are co-aligned to SZREG, then there is
+ * no need for the full rigmarole of a full misaligned fixup copy.
+ * Instead, do a simpler co-aligned copy.
+ */
+ xor t0, a0, a1
+ andi t1, t0, (SZREG - 1)
+ beqz t1, 26f
+ /* Fall through to misaligned fixup copy */
+
+1: /* Misaligned fixup copy */
+ bltu a1, a0, 4f /* Misaligned fixup copy: Reverse */
+
+3: /* Misaligned fixup copy: Forward */
+ jal t0, 24f /* Byte copy until aligned: Forward */
+
+ andi a5, a3, (SZREG - 1) /* Find the alignment offset of src (a3) */
+ slli a6, a5, 3 /* Multiply by 8 to convert that to bits to shift */
+
+ sub a3, a3, a5 /* Align the src pointer */
+
+ /*
+ * Compute The Inverse Shift
+ * a7 = XLEN - a6 = XLEN + -a6
+ * 2s complement negation to find the negative: -a6 = ~a6 + 1
+ * Add that to XLEN. XLEN = SZREG * 8.
+ */
+ not a7, a6
+ addi a7, a7, (SZREG * 8 + 1)
+
+ /*
+ * Fix Misalignment Copy Loop.
+ * load_val1 = load_ptr[0];
+ * while (store_ptr != store_ptr_end) {
+ * load_val0 = load_val1;
+ * load_val1 = load_ptr[1];
+ * *store_ptr = (load_val0 >> {a6}) | (load_val1 << {a7});
+ * load_ptr++;
+ * store_ptr++;
+ * }
+ */
+ REG_L t0, 0x000(a3)
+ 1:
+ beq t3, t6, 2f
+ mv t1, t0
+ REG_L t0, SZREG(a3)
+ srl t1, t1, a6
+ sll t2, t0, a7
+ or t1, t1, t2
+ REG_S t1, 0x000(t3)
+ addi a3, a3, SZREG
+ addi t3, t3, SZREG
+ j 1b
+ 2:
+
+ add a3, a3, a5 /* Restore the src pointer */
+ j 22f /* Byte copy: Forward */ /* Copy any remaining bytes */
+
+4: /* Misaligned fixup copy: Reverse */
+ jal t0, 25f /* Byte copy until aligned: Reverse */
+
+ andi a5, a4, (SZREG - 1) /* Find the alignment offset of src (a4) */
+ slli a6, a5, 3 /* Multiply by 8 to convert that to bits to shift */
+
+ sub a4, a4, a5 /* Align the src pointer */
+
+ /*
+ * Compute The Inverse Shift
+ * a7 = XLEN - a6 = XLEN + -a6
+ * 2s complement negation to find the negative: -a6 = ~a6 + 1
+ * Add that to XLEN. XLEN = SZREG * 8.
+ */
+ not a7, a6
+ addi a7, a7, (SZREG * 8 + 1)
+
+ /*
+ * Fix Misalignment Copy Loop.
+ * load_val0 = load_ptr[0];
+ * while (store_ptr != store_ptr_end) {
+ * load_ptr--;
+ * store_ptr--;
+ * load_val1 = load_val0;
+ * load_val0 = load_ptr[0];
+ * *store_ptr = (load_val0 >> {a6}) | (load_val1 << {a7});
+ * }
+ */
+ REG_L t0, 0x000(a4)
+ 1:
+ beq t4, t5, 2f
+ addi a4, a4, -SZREG
+ addi t4, t4, -SZREG
+ mv t2, t0
+ REG_L t0, 0x000(a4)
+ srl t1, t0, a6
+ sll t2, t2, a7
+ or t1, t1, t2
+ REG_S t1, 0x000(t4)
+ j 1b
+ 2:
+
+ add a4, a4, a5 /* Restore the src pointer */
+ j 23f /* Byte copy: Reverse */ /* Copy any remaining bytes */
+
+/*
+ * Simple copy loops for SZREG co-aligned memory locations.
+ * These also make calls to do byte copies for any unaligned
+ * data at their terminations.
+ */
+26: /* Co-Aligned copy */
+ bltu a1, a0, 3f /* Co-Aligned copy: Reverse */
+
+2: /* Co-Aligned copy: Forward */
+ jal t0, 24f /* Byte copy until aligned: Forward */
+
+ 1:
+ beq t3, t6, 22f /* Byte copy: Forward */
+ REG_L t1, (a3)
+ REG_S t1, (t3)
+ addi a3, a3, SZREG
+ addi t3, t3, SZREG
+ j 1b
+
+3: /* Co-Aligned copy: Reverse */
+ jal t0, 25f /* Byte copy until aligned: Reverse */
+
+ 1:
+ beq t4, t5, 23f /* Byte copy: Reverse */
+ addi a4, a4, -SZREG
+ addi t4, t4, -SZREG
+ REG_L t1, (a4)
+ REG_S t1, (t4)
+ j 1b
+
+/*
+ * These are basically sub-functions within the function. They
+ * are used to byte copy until the dest pointer is in alignment.
+ * At which point, a bulk copy method can be used by the
+ * calling code. These work on the same registers as the bulk
+ * copy loops. Therefore, the register values can be picked
+ * up from where they were left and we avoid code duplication
+ * without any overhead except the call in and return jumps.
+ */
+24: /* Byte copy until aligned: Forward */
+ beq t3, t5, 1f /* Reuse the return from the other copy loop */
+ lb t1, (a3)
+ sb t1, (t3)
+ addi a3, a3, 1
+ addi t3, t3, 1
+ j 24b
+
+25: /* Byte copy until aligned: Reverse */
+ beq t4, t6, 1f
+ addi a4, a4, -1
+ addi t4, t4, -1
+ lb t1, (a4)
+ sb t1, (t4)
+ j 25b
+ 1: jalr zero, 0x0(t0) /* Return to multibyte copy loop */
+
+/*
+ * Simple byte copy loops.
+ * These will byte copy until they reach the end of data to copy.
+ * At that point, they will call to return from memmove.
+ */
+21: /* Byte copy */
+ bltu a1, a0, 23f /* Byte copy: Reverse */
+
+22: /* Byte copy: Forward */
+ beq t3, t4, 20f /* Return from memmove */
+ lb t1, (a3)
+ sb t1, (t3)
+ addi a3, a3, 1
+ addi t3, t3, 1
+ j 22b
+
+23: /* Byte copy: Reverse */
+ beq t4, t3, 20f /* Return from memmove */
+ addi a4, a4, -1
+ addi t4, t4, -1
+ lb t1, (a4)
+ sb t1, (t4)
+ j 23b
+
+20: /* Return from memmove */
+ ret
+
+SYM_FUNC_END(memmove)
+SYM_FUNC_END(__memmove)
--
2.34.1
Powered by blists - more mailing lists