lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite for Android: free password hash cracker in your pocket
[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <Yf4z+Rc+69siZ0/N@owl.dominikbrodowski.net>
Date:   Sat, 5 Feb 2022 09:23:21 +0100
From:   Dominik Brodowski <linux@...inikbrodowski.net>
To:     "Jason A. Donenfeld" <Jason@...c4.com>
Cc:     linux-kernel@...r.kernel.org, linux-crypto@...r.kernel.org,
        Theodore Ts'o <tytso@....edu>,
        Greg Kroah-Hartman <gregkh@...uxfoundation.org>,
        Jean-Philippe Aumasson <jeanphilippe.aumasson@...il.com>
Subject: Re: [PATCH v2 1/4] random: use computational hash for entropy
 extraction

Am Fri, Feb 04, 2022 at 02:53:22PM +0100 schrieb Jason A. Donenfeld:
> The current 4096-bit LFSR used for entropy collection had a few
> desirable attributes for the context in which it was created. For
> example, the state was huge, which meant that /dev/random would be able
> to output quite a bit of accumulated entropy before blocking. It was
> also, in its time, quite fast at accumulating entropy byte-by-byte,
> which matters given the varying contexts in which mix_pool_bytes() is
> called. And its diffusion was relatively high, which meant that changes
> would ripple across several words of state rather quickly.
> 
> However, it also suffers from a few security vulnerabilities. In
> particular, inputs learned by an attacker can be undone, but more over,
> if the state of the pool leaks, its contents can be controlled and
> entirely zeroed out. I've demonstrated this attack with this SMT2
> script, <https://xn--4db.cc/5o9xO8pb>, which Boolector/CaDiCal solves in
> a matter of seconds on a single core of my laptop, resulting in little
> proof of concept C demonstrators such as <https://xn--4db.cc/jCkvvIaH/c>.
> 
> For basically all recent formal models of RNGs, these attacks represent
> a significant cryptographic flaw. But how does this manifest
> practically? If an attacker has access to the system to such a degree
> that he can learn the internal state of the RNG, arguably there are
> other lower hanging vulnerabilities -- side-channel, infoleak, or
> otherwise -- that might have higher priority. On the other hand, seed
> files are frequently used on systems that have a hard time generating
> much entropy on their own, and these seed files, being files, often leak
> or are duplicated and distributed accidentally, or are even seeded over
> the Internet intentionally, where their contents might be recorded or
> tampered with. Seen this way, an otherwise quasi-implausible
> vulnerability is a bit more practical than initially thought.
> 
> Another aspect of the current mix_pool_bytes() function is that, while
> its performance was arguably competitive for the time in which it was
> created, it's no longer considered so. This patch improves performance
> significantly: on a high-end CPU, an i7-11850H, it improves performance
> of mix_pool_bytes() by 225%, and on a low-end CPU, a Cortex-A7, it
> improves performance by 103%.
> 
> This commit replaces the LFSR of mix_pool_bytes() with a straight-
> forward cryptographic hash function, BLAKE2s, which is already in use
> for pool extraction. Universal hashing with a secret seed was considered
> too, something along the lines of <https://eprint.iacr.org/2013/338>,
> but the requirement for a secret seed makes for a chicken & egg problem.
> Instead we go with a formally proven scheme using a computational hash
> function, described in sections 5.1, 6.4, and B.1.8 of
> <https://eprint.iacr.org/2019/198>.
> 
> BLAKE2s outputs 256 bits, which should give us an appropriate amount of
> min-entropy accumulation, and a wide enough margin of collision
> resistance against active attacks. mix_pool_bytes() becomes a simple
> call to blake2s_update(), for accumulation, while the extraction step
> becomes a blake2s_final() to generate a seed, with which we can then do
> a HKDF-like or BLAKE2X-like expansion, the first part of which we fold
> back as an init key for subsequent blake2s_update()s, and the rest we
> produce to the caller. This then is provided to our CRNG like usual. In
> that expansion step, we make opportunistic use of 32 bytes of RDRAND

Why are we only using RDRAND here, and not RDSEED?

Thanks,
	Dominik

Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ