lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <50F3F13D-705C-4213-89C3-043B0DA2C5AF@oracle.com>
Date:   Mon, 11 Apr 2022 17:09:53 +0000
From:   Alex Kogan <alex.kogan@...cle.com>
To:     LKML <linux-kernel@...r.kernel.org>
CC:     "linux@...linux.org.uk" <linux@...linux.org.uk>,
        Peter Zijlstra <peterz@...radead.org>,
        Ingo Molnar <mingo@...hat.com>,
        Will Deacon <will.deacon@....com>,
        Arnd Bergmann <arnd@...db.de>,
        Waiman Long <longman@...hat.com>,
        "linux-arch@...r.kernel.org" <linux-arch@...r.kernel.org>,
        linux-arm-kernel <linux-arm-kernel@...ts.infradead.org>,
        Thomas Gleixner <tglx@...utronix.de>,
        Borislav Petkov <bp@...en8.de>,
        "hpa@...or.com" <hpa@...or.com>, "x86@...nel.org" <x86@...nel.org>,
        Hanjun Guo <guohanjun@...wei.com>,
        Jan Glauber <jglauber@...vell.com>,
        Steven Sistare <steven.sistare@...cle.com>,
        Daniel Jordan <daniel.m.jordan@...cle.com>,
        Dave Dice <dave.dice@...cle.com>
Subject: Re: [PATCH v15 0/6] Add NUMA-awareness to qspinlock

Hi, all.

I’ve got around to collect more performance data with macro-benchmarks
from the LKP suite[1]. Specifically, I measured more than 2.5x improvement
with fsmark and up to nearly 2x improvement with AIM7. Note that similar 
improvements have been previously reported by the kernel test robot [2,3],
but it is nice to see that they are reproducible on our system as well. 
The details appear below.

Our performance team also evaluated the performance of TPC-C with 
Oracle DB on the patched kernel with CNA. The evaluation, carried on a
system equipped with two AMD EPYC 7551 processors, showed
no sensitivity to CNA -- no improvements, no regressions.

=============

The following results are from an Oracle X5-8 server (eight Intel Xeon
E7-8895 v3 @ 2.60GHz sockets with 18 hyperthreaded cores each). Each
number represents average throughput over 25 runs. The standard deviation
is also reported in (), and it was pretty large in some experiments. 

The following results are from the fsmark benchmark (based on the 
`fsmark-generic-1brd-1BRD_48G-4M-btrfs-1x-*t-NoSync-24G` config).
The reported numbers represent `files-per-sec`.

num-threads  stock      CNA          / speedup
  1  400.216 (7.399) 403.212 (7.169) / 1.007
  2  784.484 (13.809) 778.196 (22.699) / 0.992
  4  1153.792 (54.699) 1130.140 (53.823) / 0.980
  8  1240.424 (160.453) 1287.532 (169.659) / 1.038
 16  1440.720 (182.555) 1489.288 (148.604) / 1.034
 32  1600.432 (59.944) 1860.652 (212.971) / 1.163
 64  1169.740 (40.815) 3027.680 (142.349) / 2.588
 72  1174.240 (39.261) 2682.560 (543.690) / 2.285
144  1164.296 (42.441) 2842.684 (400.664) / 2.442
216  1174.312 (38.392) 2445.168 (575.668) / 2.082
286  1174.732 (52.430) 2598.444 (468.615) / 2.212

We also experimented with another config 
(`fsmark-generic-1brd-1BRD_48G-4M-btrfs-1x-*t-fsyncBeforeClose-24G`)
and measured more modest, yet robust improvement:

num-threads  stock      CNA          / speedup
  1  177.304 (3.659) 178.596 (3.299) / 1.007
  2  345.260 (8.398) 349.384 (5.706) / 1.012
  4  647.292 (14.982) 648.164 (11.286) / 1.001
  8  1008.304 (46.342) 1007.108 (37.765) / 0.999
 16  1116.652 (57.816) 1150.752 (49.005) / 1.031
 32  1229.760 (84.932) 1346.132 (80.935) / 1.095
 64  981.564 (59.533) 1313.992 (74.971) / 1.339
 72  995.180 (59.228) 1266.660 (63.287) / 1.273
144  978.448 (69.581) 1290.336 (43.065) / 1.319
216  1011.880 (60.154) 1310.524 (61.631) / 1.295
286  985.164 (67.016) 1305.244 (63.735) / 1.325

The following results are from the AIM7 benchmark (based on the 
`aim7-fs-raid-4BRD_12G-btrfs-*-RAID0-disk_rr` config). Here we vary 
the load, and measure performance in `jobs-per-minute` units. Due to time
limitations, each experiment was repeated only 7 times.

load  stock      CNA          / speedup
  2  965.631 (1.696) 963.969 (0.965) / 0.998
 20  7901.647 (116.671) 8256.576 (93.362) / 1.045
100  16409.144 (280.828) 23380.819 (279.365) / 1.425
500  20355.541 (353.862) 34281.836 (873.357) / 1.684
1000  20733.947 (507.388) 36546.829 (695.273) / 1.763
1500  21570.639 (499.205) 37078.249 (806.669) / 1.719
3000  22068.761 (415.813) 36649.144 (1219.638) / 1.661
9000  19551.681 (337.232) 37998.464 (687.059) / 1.943

Best regards,
— Alex

[1] https://github.com/intel/lkp-tests.git
[2] https://lists.01.org/hyperkitty/list/lkp@lists.01.org/thread/HGVOCYDEE5KTLYPTAFBD2RXDQOCDPFUJ/
[3] https://lists.01.org/hyperkitty/list/lkp@lists.01.org/thread/DNMEQPXJRQY2IKHZ3ERGRY6TUPWDTFUN/

> On May 14, 2021, at 4:07 PM, Alex Kogan <alex.kogan@...cle.com> wrote:
> 
> Changes from v14:
> ----------------
> 
> - Change the way the main queue is scanned and reordered in
> cna_wait_head_or_lock(), based on Peter's suggestion.
> 
> In detail: instead of inspecting only one queue node, we now scan
> (and move nodes into the secondary queue) as long as the lock
> remains busy. This simplified the code quite a bit, as we don't need
> to call cna_order_queue() again from cna_lock_handoff(). 
> 
> - Use local_clock() instead of relying on jiffies to decide when to
> flush the secondary queue, per Andy's suggestion.
> 
> - Use module_param() for numa_spinlock_threshold_ns, so it can be tweaked
> at runtime, per Andy's suggestion.
> 
> - Reduce the default value for numa_spinlock_threshold_ns to 1ms based on
> the comments from Andy and Peter. The performance numbers below include
> results with the new default as well as with the value of 10ms, which was 
> the default threshold in previous revisions of the series.
> 
> Summary
> -------
> 
> Lock throughput can be increased by handing a lock to a waiter on the
> same NUMA node as the lock holder, provided care is taken to avoid
> starvation of waiters on other NUMA nodes. This patch introduces CNA
> (compact NUMA-aware lock) as the slow path for qspinlock. It is
> enabled through a configuration option (NUMA_AWARE_SPINLOCKS).
> 
> CNA is a NUMA-aware version of the MCS lock. Spinning threads are
> organized in two queues, a primary queue for threads running on the same
> node as the current lock holder, and a secondary queue for threads
> running on other nodes. Threads store the ID of the node on which
> they are running in their queue nodes. After acquiring the MCS lock and
> before acquiring the spinlock, the MCS lock holder checks whether the next
> waiter in the primary queue (if exists) is running on the same NUMA node.
> If it is not, that waiter is detached from the main queue and moved into
> the tail of the secondary queue. This way, we gradually filter the primary
> queue, leaving only waiters running on the same preferred NUMA node. Note
> that certain priortized waiters (e.g., in irq and nmi contexts) are
> excluded from being moved to the secondary queue. We change the NUMA node
> preference after a waiter at the head of the secondary queue spins for a
> certain amount of time. We do that by flushing the secondary queue into
> the head of the primary queue, effectively changing the preference to the
> NUMA node of the waiter at the head of the secondary queue at the time of
> the flush.
> 
> More details are available at https://arxiv.org/abs/1810.05600.
> 
> We have done some performance evaluation with the locktorture module
> as well as with several benchmarks from the will-it-scale repo.
> The following locktorture results are from an Oracle X5-4 server
> (four Intel Xeon E7-8895 v3 @ 2.60GHz sockets with 18 hyperthreaded
> cores each). Each number represents an average (over 25 runs) of the
> total number of ops (x10^7) reported at the end of each run. The 
> standard deviation is also reported in (), and in general is about 3%
> from the average. The 'stock' kernel is v5.12.0,
> commit 3cf5c8ea3a66, compiled in the default configuration. 
> 'CNA' is the modified kernel with NUMA_AWARE_SPINLOCKS set and
> the new default threshold of 1ms for flushing the secondary queue
> (numa_spinlock_threshold_ns); 'CNA-10ms' is the same as CNA, 
> but uses the threshold of 10ms. The speedup is calculated by dividing 
> the result of 'CNA' and 'CNA-10ms', respectively, by the result
> achieved with 'stock'.
> 
> #thr  	 stock      CNA          / speedup  CNA-10ms    / speedup
>  1  2.695 (0.108) 2.704 (0.099) / 1.003  2.712 (0.077) / 1.006
>  2  2.753 (0.187) 2.785 (0.171) / 1.012  2.822 (0.174) / 1.025
>  4  4.355 (0.139) 4.417 (0.179) / 1.014  4.361 (0.181) / 1.001
>  8  5.163 (0.119) 7.017 (0.195) / 1.359  7.369 (0.186) / 1.427
> 16  5.944 (0.134) 9.110 (0.242) / 1.532  9.187 (0.233) / 1.546
> 32  6.310 (0.082) 9.710 (0.156) / 1.539  9.827 (0.161) / 1.557
> 36  6.374 (0.112) 9.777 (0.141) / 1.534  9.830 (0.124) / 1.542
> 72  6.170 (0.139) 9.922 (0.190) / 1.608  9.945 (0.136) / 1.612
> 108  6.002 (0.089) 9.651 (0.176) / 1.608  9.847 (0.125) / 1.641
> 142  5.784 (0.079) 9.477 (0.089) / 1.638  9.641 (0.113) / 1.667
> 
> The following tables contain throughput results (ops/us) from the same
> setup for will-it-scale/open1_threads: 
> 
> #thr  	 stock      CNA          / speedup  CNA-10ms    / speedup
>  1  0.503 (0.004) 0.501 (0.001) / 0.996  0.503 (0.002) / 1.000
>  2  0.783 (0.014) 0.773 (0.011) / 0.988  0.774 (0.016) / 0.989
>  4  1.422 (0.025) 1.398 (0.030) / 0.983  1.403 (0.025) / 0.987
>  8  1.753 (0.104) 1.641 (0.132) / 0.936  1.675 (0.134) / 0.956
> 16  1.851 (0.097) 1.760 (0.103) / 0.951  1.774 (0.119) / 0.959
> 32  0.905 (0.081) 1.708 (0.081) / 1.888  1.738 (0.069) / 1.922
> 36  0.895 (0.058) 1.726 (0.065) / 1.928  1.735 (0.081) / 1.938
> 72  0.823 (0.033) 1.610 (0.067) / 1.957  1.647 (0.067) / 2.002
> 108  0.845 (0.035) 1.588 (0.054) / 1.878  1.740 (0.067) / 2.058
> 142  0.840 (0.030) 1.546 (0.042) / 1.839  1.740 (0.048) / 2.070
> 
> and will-it-scale/lock2_threads:
> 
> #thr  	 stock      CNA          / speedup  CNA-10ms    / speedup
>  1  1.551 (0.003) 1.558 (0.006) / 1.005  1.558 (0.003) / 1.005
>  2  2.722 (0.064) 2.704 (0.063) / 0.993  2.727 (0.058) / 1.002
>  4  5.286 (0.178) 5.360 (0.151) / 1.014  5.360 (0.135) / 1.014
>  8  4.115 (0.297) 3.906 (0.383) / 0.949  4.062 (0.366) / 0.987
> 16  4.119 (0.121) 3.950 (0.131) / 0.959  4.009 (0.132) / 0.973
> 32  2.508 (0.097) 3.805 (0.106) / 1.517  3.960 (0.091) / 1.579
> 36  2.457 (0.101) 3.810 (0.072) / 1.551  3.931 (0.106) / 1.600
> 72  1.913 (0.103) 3.530 (0.070) / 1.845  3.860 (0.078) / 2.018
> 108  1.891 (0.109) 3.410 (0.079) / 1.803  3.881 (0.097) / 2.052
> 142  1.752 (0.096) 3.236 (0.080) / 1.847  3.774 (0.078) / 2.155
> 
> Our evaluation shows that CNA also improves performance of user 
> applications that have hot pthread mutexes. Those mutexes are 
> blocking, and waiting threads park and unpark via the futex 
> mechanism in the kernel. Given that kernel futex chains, which
> are hashed by the mutex address, are each protected by a 
> chain-specific spin lock, the contention on a user-mode mutex 
> translates into contention on a kernel level spinlock. 
> 
> Here are the throughput results (ops/us) for the leveldb ‘readrandom’
> benchmark:
> 
> #thr  	 stock      CNA          / speedup  CNA-10ms    / speedup
>  1  0.533 (0.011) 0.539 (0.014) / 1.012  0.536 (0.013) / 1.006
>  2  0.854 (0.022) 0.856 (0.017) / 1.003  0.857 (0.020) / 1.004
>  4  1.236 (0.028) 1.238 (0.054) / 1.002  1.217 (0.054) / 0.985
>  8  1.207 (0.117) 1.198 (0.122) / 0.993  1.155 (0.138) / 0.957
> 16  0.758 (0.055) 1.128 (0.118) / 1.489  1.068 (0.131) / 1.409
> 32  0.743 (0.027) 1.153 (0.028) / 1.551  1.147 (0.021) / 1.543
> 36  0.708 (0.027) 1.150 (0.024) / 1.623  1.137 (0.026) / 1.605
> 72  0.629 (0.016) 1.112 (0.019) / 1.767  1.134 (0.019) / 1.802
> 108  0.610 (0.012) 1.053 (0.018) / 1.725  1.130 (0.017) / 1.853
> 142  0.606 (0.013) 1.008 (0.020) / 1.664  1.110 (0.023) / 1.833
> 
> Further comments are welcome and appreciated.
> 
> Alex Kogan (6):
>  locking/qspinlock: Rename mcs lock/unlock macros and make them more
>    generic
>  locking/qspinlock: Refactor the qspinlock slow path
>  locking/qspinlock: Introduce CNA into the slow path of qspinlock
>  locking/qspinlock: Introduce starvation avoidance into CNA
>  locking/qspinlock: Avoid moving certain threads between waiting queues
>    in CNA
>  locking/qspinlock: Introduce the shuffle reduction optimization into
>    CNA
> 
> .../admin-guide/kernel-parameters.txt         |  18 +
> arch/arm/include/asm/mcs_spinlock.h           |   6 +-
> arch/x86/Kconfig                              |  20 +
> arch/x86/include/asm/qspinlock.h              |   4 +
> arch/x86/kernel/alternative.c                 |   4 +
> include/asm-generic/mcs_spinlock.h            |   4 +-
> kernel/locking/mcs_spinlock.h                 |  20 +-
> kernel/locking/qspinlock.c                    |  82 +++-
> kernel/locking/qspinlock_cna.h                | 425 ++++++++++++++++++
> kernel/locking/qspinlock_paravirt.h           |   2 +-
> 10 files changed, 562 insertions(+), 23 deletions(-)
> create mode 100644 kernel/locking/qspinlock_cna.h
> 
> -- 
> 2.24.3 (Apple Git-128)
> 

Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ