lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <YqbyBFdoo/G4EflI@localhost.localdomain>
Date:   Mon, 13 Jun 2022 10:15:00 +0200
From:   Oscar Salvador <osalvador@...e.de>
To:     Muchun Song <songmuchun@...edance.com>
Cc:     mike.kravetz@...cle.com, david@...hat.com,
        akpm@...ux-foundation.org, corbet@....net, linux-mm@...ck.org,
        linux-kernel@...r.kernel.org, linux-doc@...r.kernel.org
Subject: Re: [PATCH 4/6] mm: hugetlb_vmemmap: move vmemmap code related to
 HugeTLB to hugetlb_vmemmap.c

On Mon, Jun 13, 2022 at 02:35:10PM +0800, Muchun Song wrote:
> When I first introduced vmemmap manipulation functions related to HugeTLB,
> I thought those functions may be reused by other modules (e.g. using
> similar approach to optimize vmemmap pages, unfortunately, the DAX used the
> same approach but does not use those functions).  After two years, we didn't
> see any other users.  So move those functions to hugetlb_vmemmap.c.
> 
> Signed-off-by: Muchun Song <songmuchun@...edance.com>

Reviewed-by: Oscar Salvador <osalvador@...e.de>

> ---
>  include/linux/mm.h   |   7 -
>  mm/hugetlb_vmemmap.c | 391 ++++++++++++++++++++++++++++++++++++++++++++++++++-
>  mm/sparse-vmemmap.c  | 391 ---------------------------------------------------
>  3 files changed, 390 insertions(+), 399 deletions(-)
> 
> diff --git a/include/linux/mm.h b/include/linux/mm.h
> index 623c2ee8330a..152d0eefe5aa 100644
> --- a/include/linux/mm.h
> +++ b/include/linux/mm.h
> @@ -3208,13 +3208,6 @@ static inline void print_vma_addr(char *prefix, unsigned long rip)
>  }
>  #endif
>  
> -#ifdef CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP
> -int vmemmap_remap_free(unsigned long start, unsigned long end,
> -		       unsigned long reuse);
> -int vmemmap_remap_alloc(unsigned long start, unsigned long end,
> -			unsigned long reuse, gfp_t gfp_mask);
> -#endif
> -
>  void *sparse_buffer_alloc(unsigned long size);
>  struct page * __populate_section_memmap(unsigned long pfn,
>  		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
> diff --git a/mm/hugetlb_vmemmap.c b/mm/hugetlb_vmemmap.c
> index c10540993577..abdf441215bb 100644
> --- a/mm/hugetlb_vmemmap.c
> +++ b/mm/hugetlb_vmemmap.c
> @@ -10,9 +10,31 @@
>   */
>  #define pr_fmt(fmt)	"HugeTLB: " fmt
>  
> -#include <linux/memory_hotplug.h>
> +#include <linux/pgtable.h>
> +#include <linux/bootmem_info.h>
> +#include <asm/pgalloc.h>
> +#include <asm/tlbflush.h>
>  #include "hugetlb_vmemmap.h"
>  
> +/**
> + * struct vmemmap_remap_walk - walk vmemmap page table
> + *
> + * @remap_pte:		called for each lowest-level entry (PTE).
> + * @nr_walked:		the number of walked pte.
> + * @reuse_page:		the page which is reused for the tail vmemmap pages.
> + * @reuse_addr:		the virtual address of the @reuse_page page.
> + * @vmemmap_pages:	the list head of the vmemmap pages that can be freed
> + *			or is mapped from.
> + */
> +struct vmemmap_remap_walk {
> +	void			(*remap_pte)(pte_t *pte, unsigned long addr,
> +					     struct vmemmap_remap_walk *walk);
> +	unsigned long		nr_walked;
> +	struct page		*reuse_page;
> +	unsigned long		reuse_addr;
> +	struct list_head	*vmemmap_pages;
> +};
> +
>  /*
>   * There are a lot of struct page structures associated with each HugeTLB page.
>   * For tail pages, the value of compound_head is the same. So we can reuse first
> @@ -23,6 +45,373 @@
>  #define RESERVE_VMEMMAP_NR		1U
>  #define RESERVE_VMEMMAP_SIZE		(RESERVE_VMEMMAP_NR << PAGE_SHIFT)
>  
> +static int __split_vmemmap_huge_pmd(pmd_t *pmd, unsigned long start)
> +{
> +	pmd_t __pmd;
> +	int i;
> +	unsigned long addr = start;
> +	struct page *page = pmd_page(*pmd);
> +	pte_t *pgtable = pte_alloc_one_kernel(&init_mm);
> +
> +	if (!pgtable)
> +		return -ENOMEM;
> +
> +	pmd_populate_kernel(&init_mm, &__pmd, pgtable);
> +
> +	for (i = 0; i < PMD_SIZE / PAGE_SIZE; i++, addr += PAGE_SIZE) {
> +		pte_t entry, *pte;
> +		pgprot_t pgprot = PAGE_KERNEL;
> +
> +		entry = mk_pte(page + i, pgprot);
> +		pte = pte_offset_kernel(&__pmd, addr);
> +		set_pte_at(&init_mm, addr, pte, entry);
> +	}
> +
> +	spin_lock(&init_mm.page_table_lock);
> +	if (likely(pmd_leaf(*pmd))) {
> +		/* Make pte visible before pmd. See comment in pmd_install(). */
> +		smp_wmb();
> +		pmd_populate_kernel(&init_mm, pmd, pgtable);
> +		flush_tlb_kernel_range(start, start + PMD_SIZE);
> +	} else {
> +		pte_free_kernel(&init_mm, pgtable);
> +	}
> +	spin_unlock(&init_mm.page_table_lock);
> +
> +	return 0;
> +}
> +
> +static int split_vmemmap_huge_pmd(pmd_t *pmd, unsigned long start)
> +{
> +	int leaf;
> +
> +	spin_lock(&init_mm.page_table_lock);
> +	leaf = pmd_leaf(*pmd);
> +	spin_unlock(&init_mm.page_table_lock);
> +
> +	if (!leaf)
> +		return 0;
> +
> +	return __split_vmemmap_huge_pmd(pmd, start);
> +}
> +
> +static void vmemmap_pte_range(pmd_t *pmd, unsigned long addr,
> +			      unsigned long end,
> +			      struct vmemmap_remap_walk *walk)
> +{
> +	pte_t *pte = pte_offset_kernel(pmd, addr);
> +
> +	/*
> +	 * The reuse_page is found 'first' in table walk before we start
> +	 * remapping (which is calling @walk->remap_pte).
> +	 */
> +	if (!walk->reuse_page) {
> +		walk->reuse_page = pte_page(*pte);
> +		/*
> +		 * Because the reuse address is part of the range that we are
> +		 * walking, skip the reuse address range.
> +		 */
> +		addr += PAGE_SIZE;
> +		pte++;
> +		walk->nr_walked++;
> +	}
> +
> +	for (; addr != end; addr += PAGE_SIZE, pte++) {
> +		walk->remap_pte(pte, addr, walk);
> +		walk->nr_walked++;
> +	}
> +}
> +
> +static int vmemmap_pmd_range(pud_t *pud, unsigned long addr,
> +			     unsigned long end,
> +			     struct vmemmap_remap_walk *walk)
> +{
> +	pmd_t *pmd;
> +	unsigned long next;
> +
> +	pmd = pmd_offset(pud, addr);
> +	do {
> +		int ret;
> +
> +		ret = split_vmemmap_huge_pmd(pmd, addr & PMD_MASK);
> +		if (ret)
> +			return ret;
> +
> +		next = pmd_addr_end(addr, end);
> +		vmemmap_pte_range(pmd, addr, next, walk);
> +	} while (pmd++, addr = next, addr != end);
> +
> +	return 0;
> +}
> +
> +static int vmemmap_pud_range(p4d_t *p4d, unsigned long addr,
> +			     unsigned long end,
> +			     struct vmemmap_remap_walk *walk)
> +{
> +	pud_t *pud;
> +	unsigned long next;
> +
> +	pud = pud_offset(p4d, addr);
> +	do {
> +		int ret;
> +
> +		next = pud_addr_end(addr, end);
> +		ret = vmemmap_pmd_range(pud, addr, next, walk);
> +		if (ret)
> +			return ret;
> +	} while (pud++, addr = next, addr != end);
> +
> +	return 0;
> +}
> +
> +static int vmemmap_p4d_range(pgd_t *pgd, unsigned long addr,
> +			     unsigned long end,
> +			     struct vmemmap_remap_walk *walk)
> +{
> +	p4d_t *p4d;
> +	unsigned long next;
> +
> +	p4d = p4d_offset(pgd, addr);
> +	do {
> +		int ret;
> +
> +		next = p4d_addr_end(addr, end);
> +		ret = vmemmap_pud_range(p4d, addr, next, walk);
> +		if (ret)
> +			return ret;
> +	} while (p4d++, addr = next, addr != end);
> +
> +	return 0;
> +}
> +
> +static int vmemmap_remap_range(unsigned long start, unsigned long end,
> +			       struct vmemmap_remap_walk *walk)
> +{
> +	unsigned long addr = start;
> +	unsigned long next;
> +	pgd_t *pgd;
> +
> +	VM_BUG_ON(!PAGE_ALIGNED(start));
> +	VM_BUG_ON(!PAGE_ALIGNED(end));
> +
> +	pgd = pgd_offset_k(addr);
> +	do {
> +		int ret;
> +
> +		next = pgd_addr_end(addr, end);
> +		ret = vmemmap_p4d_range(pgd, addr, next, walk);
> +		if (ret)
> +			return ret;
> +	} while (pgd++, addr = next, addr != end);
> +
> +	/*
> +	 * We only change the mapping of the vmemmap virtual address range
> +	 * [@start + PAGE_SIZE, end), so we only need to flush the TLB which
> +	 * belongs to the range.
> +	 */
> +	flush_tlb_kernel_range(start + PAGE_SIZE, end);
> +
> +	return 0;
> +}
> +
> +/*
> + * Free a vmemmap page. A vmemmap page can be allocated from the memblock
> + * allocator or buddy allocator. If the PG_reserved flag is set, it means
> + * that it allocated from the memblock allocator, just free it via the
> + * free_bootmem_page(). Otherwise, use __free_page().
> + */
> +static inline void free_vmemmap_page(struct page *page)
> +{
> +	if (PageReserved(page))
> +		free_bootmem_page(page);
> +	else
> +		__free_page(page);
> +}
> +
> +/* Free a list of the vmemmap pages */
> +static void free_vmemmap_page_list(struct list_head *list)
> +{
> +	struct page *page, *next;
> +
> +	list_for_each_entry_safe(page, next, list, lru) {
> +		list_del(&page->lru);
> +		free_vmemmap_page(page);
> +	}
> +}
> +
> +static void vmemmap_remap_pte(pte_t *pte, unsigned long addr,
> +			      struct vmemmap_remap_walk *walk)
> +{
> +	/*
> +	 * Remap the tail pages as read-only to catch illegal write operation
> +	 * to the tail pages.
> +	 */
> +	pgprot_t pgprot = PAGE_KERNEL_RO;
> +	pte_t entry = mk_pte(walk->reuse_page, pgprot);
> +	struct page *page = pte_page(*pte);
> +
> +	list_add_tail(&page->lru, walk->vmemmap_pages);
> +	set_pte_at(&init_mm, addr, pte, entry);
> +}
> +
> +/*
> + * How many struct page structs need to be reset. When we reuse the head
> + * struct page, the special metadata (e.g. page->flags or page->mapping)
> + * cannot copy to the tail struct page structs. The invalid value will be
> + * checked in the free_tail_pages_check(). In order to avoid the message
> + * of "corrupted mapping in tail page". We need to reset at least 3 (one
> + * head struct page struct and two tail struct page structs) struct page
> + * structs.
> + */
> +#define NR_RESET_STRUCT_PAGE		3
> +
> +static inline void reset_struct_pages(struct page *start)
> +{
> +	int i;
> +	struct page *from = start + NR_RESET_STRUCT_PAGE;
> +
> +	for (i = 0; i < NR_RESET_STRUCT_PAGE; i++)
> +		memcpy(start + i, from, sizeof(*from));
> +}
> +
> +static void vmemmap_restore_pte(pte_t *pte, unsigned long addr,
> +				struct vmemmap_remap_walk *walk)
> +{
> +	pgprot_t pgprot = PAGE_KERNEL;
> +	struct page *page;
> +	void *to;
> +
> +	BUG_ON(pte_page(*pte) != walk->reuse_page);
> +
> +	page = list_first_entry(walk->vmemmap_pages, struct page, lru);
> +	list_del(&page->lru);
> +	to = page_to_virt(page);
> +	copy_page(to, (void *)walk->reuse_addr);
> +	reset_struct_pages(to);
> +
> +	set_pte_at(&init_mm, addr, pte, mk_pte(page, pgprot));
> +}
> +
> +/**
> + * vmemmap_remap_free - remap the vmemmap virtual address range [@start, @end)
> + *			to the page which @reuse is mapped to, then free vmemmap
> + *			which the range are mapped to.
> + * @start:	start address of the vmemmap virtual address range that we want
> + *		to remap.
> + * @end:	end address of the vmemmap virtual address range that we want to
> + *		remap.
> + * @reuse:	reuse address.
> + *
> + * Return: %0 on success, negative error code otherwise.
> + */
> +static int vmemmap_remap_free(unsigned long start, unsigned long end,
> +			      unsigned long reuse)
> +{
> +	int ret;
> +	LIST_HEAD(vmemmap_pages);
> +	struct vmemmap_remap_walk walk = {
> +		.remap_pte	= vmemmap_remap_pte,
> +		.reuse_addr	= reuse,
> +		.vmemmap_pages	= &vmemmap_pages,
> +	};
> +
> +	/*
> +	 * In order to make remapping routine most efficient for the huge pages,
> +	 * the routine of vmemmap page table walking has the following rules
> +	 * (see more details from the vmemmap_pte_range()):
> +	 *
> +	 * - The range [@start, @end) and the range [@reuse, @reuse + PAGE_SIZE)
> +	 *   should be continuous.
> +	 * - The @reuse address is part of the range [@reuse, @end) that we are
> +	 *   walking which is passed to vmemmap_remap_range().
> +	 * - The @reuse address is the first in the complete range.
> +	 *
> +	 * So we need to make sure that @start and @reuse meet the above rules.
> +	 */
> +	BUG_ON(start - reuse != PAGE_SIZE);
> +
> +	mmap_read_lock(&init_mm);
> +	ret = vmemmap_remap_range(reuse, end, &walk);
> +	if (ret && walk.nr_walked) {
> +		end = reuse + walk.nr_walked * PAGE_SIZE;
> +		/*
> +		 * vmemmap_pages contains pages from the previous
> +		 * vmemmap_remap_range call which failed.  These
> +		 * are pages which were removed from the vmemmap.
> +		 * They will be restored in the following call.
> +		 */
> +		walk = (struct vmemmap_remap_walk) {
> +			.remap_pte	= vmemmap_restore_pte,
> +			.reuse_addr	= reuse,
> +			.vmemmap_pages	= &vmemmap_pages,
> +		};
> +
> +		vmemmap_remap_range(reuse, end, &walk);
> +	}
> +	mmap_read_unlock(&init_mm);
> +
> +	free_vmemmap_page_list(&vmemmap_pages);
> +
> +	return ret;
> +}
> +
> +static int alloc_vmemmap_page_list(unsigned long start, unsigned long end,
> +				   gfp_t gfp_mask, struct list_head *list)
> +{
> +	unsigned long nr_pages = (end - start) >> PAGE_SHIFT;
> +	int nid = page_to_nid((struct page *)start);
> +	struct page *page, *next;
> +
> +	while (nr_pages--) {
> +		page = alloc_pages_node(nid, gfp_mask, 0);
> +		if (!page)
> +			goto out;
> +		list_add_tail(&page->lru, list);
> +	}
> +
> +	return 0;
> +out:
> +	list_for_each_entry_safe(page, next, list, lru)
> +		__free_pages(page, 0);
> +	return -ENOMEM;
> +}
> +
> +/**
> + * vmemmap_remap_alloc - remap the vmemmap virtual address range [@start, end)
> + *			 to the page which is from the @vmemmap_pages
> + *			 respectively.
> + * @start:	start address of the vmemmap virtual address range that we want
> + *		to remap.
> + * @end:	end address of the vmemmap virtual address range that we want to
> + *		remap.
> + * @reuse:	reuse address.
> + * @gfp_mask:	GFP flag for allocating vmemmap pages.
> + *
> + * Return: %0 on success, negative error code otherwise.
> + */
> +static int vmemmap_remap_alloc(unsigned long start, unsigned long end,
> +			       unsigned long reuse, gfp_t gfp_mask)
> +{
> +	LIST_HEAD(vmemmap_pages);
> +	struct vmemmap_remap_walk walk = {
> +		.remap_pte	= vmemmap_restore_pte,
> +		.reuse_addr	= reuse,
> +		.vmemmap_pages	= &vmemmap_pages,
> +	};
> +
> +	/* See the comment in the vmemmap_remap_free(). */
> +	BUG_ON(start - reuse != PAGE_SIZE);
> +
> +	if (alloc_vmemmap_page_list(start, end, gfp_mask, &vmemmap_pages))
> +		return -ENOMEM;
> +
> +	mmap_read_lock(&init_mm);
> +	vmemmap_remap_range(reuse, end, &walk);
> +	mmap_read_unlock(&init_mm);
> +
> +	return 0;
> +}
> +
>  DEFINE_STATIC_KEY_FALSE(hugetlb_optimize_vmemmap_key);
>  EXPORT_SYMBOL(hugetlb_optimize_vmemmap_key);
>  
> diff --git a/mm/sparse-vmemmap.c b/mm/sparse-vmemmap.c
> index 49cb15cbe590..473effcb2285 100644
> --- a/mm/sparse-vmemmap.c
> +++ b/mm/sparse-vmemmap.c
> @@ -27,400 +27,9 @@
>  #include <linux/spinlock.h>
>  #include <linux/vmalloc.h>
>  #include <linux/sched.h>
> -#include <linux/pgtable.h>
> -#include <linux/bootmem_info.h>
>  
>  #include <asm/dma.h>
>  #include <asm/pgalloc.h>
> -#include <asm/tlbflush.h>
> -
> -#ifdef CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP
> -/**
> - * struct vmemmap_remap_walk - walk vmemmap page table
> - *
> - * @remap_pte:		called for each lowest-level entry (PTE).
> - * @nr_walked:		the number of walked pte.
> - * @reuse_page:		the page which is reused for the tail vmemmap pages.
> - * @reuse_addr:		the virtual address of the @reuse_page page.
> - * @vmemmap_pages:	the list head of the vmemmap pages that can be freed
> - *			or is mapped from.
> - */
> -struct vmemmap_remap_walk {
> -	void (*remap_pte)(pte_t *pte, unsigned long addr,
> -			  struct vmemmap_remap_walk *walk);
> -	unsigned long nr_walked;
> -	struct page *reuse_page;
> -	unsigned long reuse_addr;
> -	struct list_head *vmemmap_pages;
> -};
> -
> -static int __split_vmemmap_huge_pmd(pmd_t *pmd, unsigned long start)
> -{
> -	pmd_t __pmd;
> -	int i;
> -	unsigned long addr = start;
> -	struct page *page = pmd_page(*pmd);
> -	pte_t *pgtable = pte_alloc_one_kernel(&init_mm);
> -
> -	if (!pgtable)
> -		return -ENOMEM;
> -
> -	pmd_populate_kernel(&init_mm, &__pmd, pgtable);
> -
> -	for (i = 0; i < PMD_SIZE / PAGE_SIZE; i++, addr += PAGE_SIZE) {
> -		pte_t entry, *pte;
> -		pgprot_t pgprot = PAGE_KERNEL;
> -
> -		entry = mk_pte(page + i, pgprot);
> -		pte = pte_offset_kernel(&__pmd, addr);
> -		set_pte_at(&init_mm, addr, pte, entry);
> -	}
> -
> -	spin_lock(&init_mm.page_table_lock);
> -	if (likely(pmd_leaf(*pmd))) {
> -		/* Make pte visible before pmd. See comment in pmd_install(). */
> -		smp_wmb();
> -		pmd_populate_kernel(&init_mm, pmd, pgtable);
> -		flush_tlb_kernel_range(start, start + PMD_SIZE);
> -	} else {
> -		pte_free_kernel(&init_mm, pgtable);
> -	}
> -	spin_unlock(&init_mm.page_table_lock);
> -
> -	return 0;
> -}
> -
> -static int split_vmemmap_huge_pmd(pmd_t *pmd, unsigned long start)
> -{
> -	int leaf;
> -
> -	spin_lock(&init_mm.page_table_lock);
> -	leaf = pmd_leaf(*pmd);
> -	spin_unlock(&init_mm.page_table_lock);
> -
> -	if (!leaf)
> -		return 0;
> -
> -	return __split_vmemmap_huge_pmd(pmd, start);
> -}
> -
> -static void vmemmap_pte_range(pmd_t *pmd, unsigned long addr,
> -			      unsigned long end,
> -			      struct vmemmap_remap_walk *walk)
> -{
> -	pte_t *pte = pte_offset_kernel(pmd, addr);
> -
> -	/*
> -	 * The reuse_page is found 'first' in table walk before we start
> -	 * remapping (which is calling @walk->remap_pte).
> -	 */
> -	if (!walk->reuse_page) {
> -		walk->reuse_page = pte_page(*pte);
> -		/*
> -		 * Because the reuse address is part of the range that we are
> -		 * walking, skip the reuse address range.
> -		 */
> -		addr += PAGE_SIZE;
> -		pte++;
> -		walk->nr_walked++;
> -	}
> -
> -	for (; addr != end; addr += PAGE_SIZE, pte++) {
> -		walk->remap_pte(pte, addr, walk);
> -		walk->nr_walked++;
> -	}
> -}
> -
> -static int vmemmap_pmd_range(pud_t *pud, unsigned long addr,
> -			     unsigned long end,
> -			     struct vmemmap_remap_walk *walk)
> -{
> -	pmd_t *pmd;
> -	unsigned long next;
> -
> -	pmd = pmd_offset(pud, addr);
> -	do {
> -		int ret;
> -
> -		ret = split_vmemmap_huge_pmd(pmd, addr & PMD_MASK);
> -		if (ret)
> -			return ret;
> -
> -		next = pmd_addr_end(addr, end);
> -		vmemmap_pte_range(pmd, addr, next, walk);
> -	} while (pmd++, addr = next, addr != end);
> -
> -	return 0;
> -}
> -
> -static int vmemmap_pud_range(p4d_t *p4d, unsigned long addr,
> -			     unsigned long end,
> -			     struct vmemmap_remap_walk *walk)
> -{
> -	pud_t *pud;
> -	unsigned long next;
> -
> -	pud = pud_offset(p4d, addr);
> -	do {
> -		int ret;
> -
> -		next = pud_addr_end(addr, end);
> -		ret = vmemmap_pmd_range(pud, addr, next, walk);
> -		if (ret)
> -			return ret;
> -	} while (pud++, addr = next, addr != end);
> -
> -	return 0;
> -}
> -
> -static int vmemmap_p4d_range(pgd_t *pgd, unsigned long addr,
> -			     unsigned long end,
> -			     struct vmemmap_remap_walk *walk)
> -{
> -	p4d_t *p4d;
> -	unsigned long next;
> -
> -	p4d = p4d_offset(pgd, addr);
> -	do {
> -		int ret;
> -
> -		next = p4d_addr_end(addr, end);
> -		ret = vmemmap_pud_range(p4d, addr, next, walk);
> -		if (ret)
> -			return ret;
> -	} while (p4d++, addr = next, addr != end);
> -
> -	return 0;
> -}
> -
> -static int vmemmap_remap_range(unsigned long start, unsigned long end,
> -			       struct vmemmap_remap_walk *walk)
> -{
> -	unsigned long addr = start;
> -	unsigned long next;
> -	pgd_t *pgd;
> -
> -	VM_BUG_ON(!PAGE_ALIGNED(start));
> -	VM_BUG_ON(!PAGE_ALIGNED(end));
> -
> -	pgd = pgd_offset_k(addr);
> -	do {
> -		int ret;
> -
> -		next = pgd_addr_end(addr, end);
> -		ret = vmemmap_p4d_range(pgd, addr, next, walk);
> -		if (ret)
> -			return ret;
> -	} while (pgd++, addr = next, addr != end);
> -
> -	/*
> -	 * We only change the mapping of the vmemmap virtual address range
> -	 * [@start + PAGE_SIZE, end), so we only need to flush the TLB which
> -	 * belongs to the range.
> -	 */
> -	flush_tlb_kernel_range(start + PAGE_SIZE, end);
> -
> -	return 0;
> -}
> -
> -/*
> - * Free a vmemmap page. A vmemmap page can be allocated from the memblock
> - * allocator or buddy allocator. If the PG_reserved flag is set, it means
> - * that it allocated from the memblock allocator, just free it via the
> - * free_bootmem_page(). Otherwise, use __free_page().
> - */
> -static inline void free_vmemmap_page(struct page *page)
> -{
> -	if (PageReserved(page))
> -		free_bootmem_page(page);
> -	else
> -		__free_page(page);
> -}
> -
> -/* Free a list of the vmemmap pages */
> -static void free_vmemmap_page_list(struct list_head *list)
> -{
> -	struct page *page, *next;
> -
> -	list_for_each_entry_safe(page, next, list, lru) {
> -		list_del(&page->lru);
> -		free_vmemmap_page(page);
> -	}
> -}
> -
> -static void vmemmap_remap_pte(pte_t *pte, unsigned long addr,
> -			      struct vmemmap_remap_walk *walk)
> -{
> -	/*
> -	 * Remap the tail pages as read-only to catch illegal write operation
> -	 * to the tail pages.
> -	 */
> -	pgprot_t pgprot = PAGE_KERNEL_RO;
> -	pte_t entry = mk_pte(walk->reuse_page, pgprot);
> -	struct page *page = pte_page(*pte);
> -
> -	list_add_tail(&page->lru, walk->vmemmap_pages);
> -	set_pte_at(&init_mm, addr, pte, entry);
> -}
> -
> -/*
> - * How many struct page structs need to be reset. When we reuse the head
> - * struct page, the special metadata (e.g. page->flags or page->mapping)
> - * cannot copy to the tail struct page structs. The invalid value will be
> - * checked in the free_tail_pages_check(). In order to avoid the message
> - * of "corrupted mapping in tail page". We need to reset at least 3 (one
> - * head struct page struct and two tail struct page structs) struct page
> - * structs.
> - */
> -#define NR_RESET_STRUCT_PAGE		3
> -
> -static inline void reset_struct_pages(struct page *start)
> -{
> -	int i;
> -	struct page *from = start + NR_RESET_STRUCT_PAGE;
> -
> -	for (i = 0; i < NR_RESET_STRUCT_PAGE; i++)
> -		memcpy(start + i, from, sizeof(*from));
> -}
> -
> -static void vmemmap_restore_pte(pte_t *pte, unsigned long addr,
> -				struct vmemmap_remap_walk *walk)
> -{
> -	pgprot_t pgprot = PAGE_KERNEL;
> -	struct page *page;
> -	void *to;
> -
> -	BUG_ON(pte_page(*pte) != walk->reuse_page);
> -
> -	page = list_first_entry(walk->vmemmap_pages, struct page, lru);
> -	list_del(&page->lru);
> -	to = page_to_virt(page);
> -	copy_page(to, (void *)walk->reuse_addr);
> -	reset_struct_pages(to);
> -
> -	set_pte_at(&init_mm, addr, pte, mk_pte(page, pgprot));
> -}
> -
> -/**
> - * vmemmap_remap_free - remap the vmemmap virtual address range [@start, @end)
> - *			to the page which @reuse is mapped to, then free vmemmap
> - *			which the range are mapped to.
> - * @start:	start address of the vmemmap virtual address range that we want
> - *		to remap.
> - * @end:	end address of the vmemmap virtual address range that we want to
> - *		remap.
> - * @reuse:	reuse address.
> - *
> - * Return: %0 on success, negative error code otherwise.
> - */
> -int vmemmap_remap_free(unsigned long start, unsigned long end,
> -		       unsigned long reuse)
> -{
> -	int ret;
> -	LIST_HEAD(vmemmap_pages);
> -	struct vmemmap_remap_walk walk = {
> -		.remap_pte	= vmemmap_remap_pte,
> -		.reuse_addr	= reuse,
> -		.vmemmap_pages	= &vmemmap_pages,
> -	};
> -
> -	/*
> -	 * In order to make remapping routine most efficient for the huge pages,
> -	 * the routine of vmemmap page table walking has the following rules
> -	 * (see more details from the vmemmap_pte_range()):
> -	 *
> -	 * - The range [@start, @end) and the range [@reuse, @reuse + PAGE_SIZE)
> -	 *   should be continuous.
> -	 * - The @reuse address is part of the range [@reuse, @end) that we are
> -	 *   walking which is passed to vmemmap_remap_range().
> -	 * - The @reuse address is the first in the complete range.
> -	 *
> -	 * So we need to make sure that @start and @reuse meet the above rules.
> -	 */
> -	BUG_ON(start - reuse != PAGE_SIZE);
> -
> -	mmap_read_lock(&init_mm);
> -	ret = vmemmap_remap_range(reuse, end, &walk);
> -	if (ret && walk.nr_walked) {
> -		end = reuse + walk.nr_walked * PAGE_SIZE;
> -		/*
> -		 * vmemmap_pages contains pages from the previous
> -		 * vmemmap_remap_range call which failed.  These
> -		 * are pages which were removed from the vmemmap.
> -		 * They will be restored in the following call.
> -		 */
> -		walk = (struct vmemmap_remap_walk) {
> -			.remap_pte	= vmemmap_restore_pte,
> -			.reuse_addr	= reuse,
> -			.vmemmap_pages	= &vmemmap_pages,
> -		};
> -
> -		vmemmap_remap_range(reuse, end, &walk);
> -	}
> -	mmap_read_unlock(&init_mm);
> -
> -	free_vmemmap_page_list(&vmemmap_pages);
> -
> -	return ret;
> -}
> -
> -static int alloc_vmemmap_page_list(unsigned long start, unsigned long end,
> -				   gfp_t gfp_mask, struct list_head *list)
> -{
> -	unsigned long nr_pages = (end - start) >> PAGE_SHIFT;
> -	int nid = page_to_nid((struct page *)start);
> -	struct page *page, *next;
> -
> -	while (nr_pages--) {
> -		page = alloc_pages_node(nid, gfp_mask, 0);
> -		if (!page)
> -			goto out;
> -		list_add_tail(&page->lru, list);
> -	}
> -
> -	return 0;
> -out:
> -	list_for_each_entry_safe(page, next, list, lru)
> -		__free_pages(page, 0);
> -	return -ENOMEM;
> -}
> -
> -/**
> - * vmemmap_remap_alloc - remap the vmemmap virtual address range [@start, end)
> - *			 to the page which is from the @vmemmap_pages
> - *			 respectively.
> - * @start:	start address of the vmemmap virtual address range that we want
> - *		to remap.
> - * @end:	end address of the vmemmap virtual address range that we want to
> - *		remap.
> - * @reuse:	reuse address.
> - * @gfp_mask:	GFP flag for allocating vmemmap pages.
> - *
> - * Return: %0 on success, negative error code otherwise.
> - */
> -int vmemmap_remap_alloc(unsigned long start, unsigned long end,
> -			unsigned long reuse, gfp_t gfp_mask)
> -{
> -	LIST_HEAD(vmemmap_pages);
> -	struct vmemmap_remap_walk walk = {
> -		.remap_pte	= vmemmap_restore_pte,
> -		.reuse_addr	= reuse,
> -		.vmemmap_pages	= &vmemmap_pages,
> -	};
> -
> -	/* See the comment in the vmemmap_remap_free(). */
> -	BUG_ON(start - reuse != PAGE_SIZE);
> -
> -	if (alloc_vmemmap_page_list(start, end, gfp_mask, &vmemmap_pages))
> -		return -ENOMEM;
> -
> -	mmap_read_lock(&init_mm);
> -	vmemmap_remap_range(reuse, end, &walk);
> -	mmap_read_unlock(&init_mm);
> -
> -	return 0;
> -}
> -#endif /* CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP */
>  
>  /*
>   * Allocate a block of memory to be used to back the virtual memory map
> -- 
> 2.11.0
> 
> 

-- 
Oscar Salvador
SUSE Labs

Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ