[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <c7d290bcca7bf5f78aee523c43df11b506eada89.camel@intel.com>
Date: Thu, 30 Jun 2022 23:45:29 +1200
From: Kai Huang <kai.huang@...el.com>
To: isaku.yamahata@...el.com, kvm@...r.kernel.org,
linux-kernel@...r.kernel.org
Cc: isaku.yamahata@...il.com, Paolo Bonzini <pbonzini@...hat.com>,
Sean Christopherson <sean.j.christopherson@...el.com>
Subject: Re: [PATCH v7 037/102] KVM: x86/mmu: Track shadow MMIO value/mask
on a per-VM basis
On Mon, 2022-06-27 at 14:53 -0700, isaku.yamahata@...el.com wrote:
> From: Sean Christopherson <sean.j.christopherson@...el.com>
>
> TDX will use a different shadow PTE entry value for MMIO from VMX. Add
> members to kvm_arch and track value for MMIO per-VM instead of global
> variables. By using the per-VM EPT entry value for MMIO, the existing VMX
> logic is kept working.
>
> In the case of VMX VM case, the EPT entry for MMIO is non-present PTE
> (present bit cleared) without backing guest physical address (on EPT
> violation, KVM searches backing guest memory and it finds there is no
> backing guest page.) or the value to trigger EPT misconfiguration. Once
> MMIO is triggered on the EPT entry, the EPT entry is updated to trigger EPT
> misconfiguration for the future MMIO on the same GPA. It allows KVM to
> understand the memory access is for MMIO without searching backing guest
> pages.). And then KVM parses guest instruction to figure out
> address/value/width for MMIO.
>
> In the case of the guest TD, the guest memory is protected so that VMM
> can't parse guest instruction to understand the value and access width for
> MMIO. Instead, VMM sets up (Shared) EPT to trigger #VE by clearing
> the VE-suppress bit. When the guest TD issues MMIO, #VE is injected. Guest VE
> handler converts MMIO access into MMIO hypercall to pass
> address/value/width for MMIO to VMM. (or directly paravirtualize MMIO into
> hypercall.) Then VMM can handle the MMIO hypercall without parsing guest
> instructions.
This is an infrastructural patch which enables per-VM MMIO caching. Why not
putting this patch first so you don't need to do below changes (which are
introduced by your previous patches)?
[...]
>
> - if (!is_shadow_present_pte(spte) || is_mmio_spte(spte))
> + if (!is_shadow_present_pte(spte) ||
> + is_mmio_spte(vcpu->kvm, spte))
> break;
>
>
[...]
> @@ -1032,7 +1032,7 @@ static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
> gfn_t gfn;
>
> if (!is_shadow_present_pte(sp->spt[i]) &&
> - !is_mmio_spte(sp->spt[i]))
> + !is_mmio_spte(vcpu->kvm, sp->spt[i]))
> continue;
Powered by blists - more mailing lists