[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <20220708184749.GW1790663@paulmck-ThinkPad-P17-Gen-1>
Date: Fri, 8 Jul 2022 11:47:49 -0700
From: "Paul E. McKenney" <paulmck@...nel.org>
To: Alan Stern <stern@...land.harvard.edu>
Cc: Marco Elver <elver@...gle.com>,
Paul Heidekrüger <paul.heidekrueger@...tum.de>,
Andrea Parri <parri.andrea@...il.com>,
Will Deacon <will@...nel.org>,
Peter Zijlstra <peterz@...radead.org>,
Boqun Feng <boqun.feng@...il.com>,
Nicholas Piggin <npiggin@...il.com>,
David Howells <dhowells@...hat.com>,
Jade Alglave <j.alglave@....ac.uk>,
Luc Maranget <luc.maranget@...ia.fr>,
Akira Yokosawa <akiyks@...il.com>,
Daniel Lustig <dlustig@...dia.com>,
Joel Fernandes <joel@...lfernandes.org>,
linux-kernel@...r.kernel.org, linux-arch@...r.kernel.org,
Charalampos Mainas <charalampos.mainas@...il.com>,
Pramod Bhatotia <pramod.bhatotia@...tum.de>,
Soham Chakraborty <s.s.chakraborty@...elft.nl>,
Martin Fink <martin.fink@...tum.de>
Subject: Re: [PATCH v2] tools/memory-model: Clarify LKMM's limitations in
litmus-tests.txt
On Fri, Jul 08, 2022 at 10:45:06AM -0400, Alan Stern wrote:
> On Fri, Jul 08, 2022 at 01:44:06PM +0200, Marco Elver wrote:
> > On Tue, 14 Jun 2022 at 17:49, Paul Heidekrüger
> > <paul.heidekrueger@...tum.de> wrote:
> > >
> > > As discussed, clarify LKMM not recognizing certain kinds of orderings.
> > > In particular, highlight the fact that LKMM might deliberately make
> > > weaker guarantees than compilers and architectures.
> > >
> > > Link: https://lore.kernel.org/all/YpoW1deb%2FQeeszO1@ethstick13.dse.in.tum.de/T/#u
> > > Signed-off-by: Paul Heidekrüger <paul.heidekrueger@...tum.de>
> > > Co-developed-by: Alan Stern <stern@...land.harvard.edu>
> >
> > Reviewed-by: Marco Elver <elver@...gle.com>
> >
> > However with the Co-developed-by, this is missing Alan's SOB.
>
> For the record:
>
> Signed-off-by: Alan Stern <stern@...land.harvard.edu>
>
> (Note that according to Documentation/process/submitting-patches.rst,
> the submitting author's SOB is supposed to come last.)
And this is what I ended up with. Please provide additional feedback
as needed, and in the meantime, thank you all!
Thanx, Paul
------------------------------------------------------------------------
commit 3c7753e959706f39e1ee183ef8dcde3b4cfbb4c7
Author: Paul Heidekrüger <paul.heidekrueger@...tum.de>
Date: Tue Jun 14 15:48:11 2022 +0000
tools/memory-model: Clarify LKMM's limitations in litmus-tests.txt
As discussed, clarify LKMM not recognizing certain kinds of orderings.
In particular, highlight the fact that LKMM might deliberately make
weaker guarantees than compilers and architectures.
Link: https://lore.kernel.org/all/YpoW1deb%2FQeeszO1@ethstick13.dse.in.tum.de/T/#u
Co-developed-by: Alan Stern <stern@...land.harvard.edu>
Signed-off-by: Alan Stern <stern@...land.harvard.edu>
Signed-off-by: Paul Heidekrüger <paul.heidekrueger@...tum.de>
Reviewed-by: Marco Elver <elver@...gle.com>
Reviewed-by: Joel Fernandes (Google) <joel@...lfernandes.org>
Cc: Charalampos Mainas <charalampos.mainas@...il.com>
Cc: Pramod Bhatotia <pramod.bhatotia@...tum.de>
Cc: Soham Chakraborty <s.s.chakraborty@...elft.nl>
Cc: Martin Fink <martin.fink@...tum.de>
Signed-off-by: Paul E. McKenney <paulmck@...nel.org>
diff --git a/tools/memory-model/Documentation/litmus-tests.txt b/tools/memory-model/Documentation/litmus-tests.txt
index 8a9d5d2787f9e..cc355999815cb 100644
--- a/tools/memory-model/Documentation/litmus-tests.txt
+++ b/tools/memory-model/Documentation/litmus-tests.txt
@@ -946,22 +946,39 @@ Limitations of the Linux-kernel memory model (LKMM) include:
carrying a dependency, then the compiler can break that dependency
by substituting a constant of that value.
- Conversely, LKMM sometimes doesn't recognize that a particular
- optimization is not allowed, and as a result, thinks that a
- dependency is not present (because the optimization would break it).
- The memory model misses some pretty obvious control dependencies
- because of this limitation. A simple example is:
+ Conversely, LKMM will sometimes overestimate the amount of
+ reordering compilers and CPUs can carry out, leading it to miss
+ some pretty obvious cases of ordering. A simple example is:
r1 = READ_ONCE(x);
if (r1 == 0)
smp_mb();
WRITE_ONCE(y, 1);
- There is a control dependency from the READ_ONCE to the WRITE_ONCE,
- even when r1 is nonzero, but LKMM doesn't realize this and thinks
- that the write may execute before the read if r1 != 0. (Yes, that
- doesn't make sense if you think about it, but the memory model's
- intelligence is limited.)
+ The WRITE_ONCE() does not depend on the READ_ONCE(), and as a
+ result, LKMM does not claim ordering. However, even though no
+ dependency is present, the WRITE_ONCE() will not be executed before
+ the READ_ONCE(). There are two reasons for this:
+
+ The presence of the smp_mb() in one of the branches
+ prevents the compiler from moving the WRITE_ONCE()
+ up before the "if" statement, since the compiler has
+ to assume that r1 will sometimes be 0 (but see the
+ comment below);
+
+ CPUs do not execute stores before po-earlier conditional
+ branches, even in cases where the store occurs after the
+ two arms of the branch have recombined.
+
+ It is clear that it is not dangerous in the slightest for LKMM to
+ make weaker guarantees than architectures. In fact, it is
+ desirable, as it gives compilers room for making optimizations.
+ For instance, suppose that a 0 value in r1 would trigger undefined
+ behavior elsewhere. Then a clever compiler might deduce that r1
+ can never be 0 in the if condition. As a result, said clever
+ compiler might deem it safe to optimize away the smp_mb(),
+ eliminating the branch and any ordering an architecture would
+ guarantee otherwise.
2. Multiple access sizes for a single variable are not supported,
and neither are misaligned or partially overlapping accesses.
Powered by blists - more mailing lists