lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Date:   Sat, 3 Sep 2022 07:03:21 -0700
From:   "Paul E. McKenney" <paulmck@...nel.org>
To:     "Joel Fernandes (Google)" <joel@...lfernandes.org>
Cc:     rcu@...r.kernel.org, linux-kernel@...r.kernel.org,
        rushikesh.s.kadam@...el.com, urezki@...il.com,
        neeraj.iitr10@...il.com, frederic@...nel.org, rostedt@...dmis.org,
        vineeth@...byteword.org, boqun.feng@...il.com
Subject: Re: [PATCH v5 06/18] rcu: Introduce call_rcu_lazy() API
 implementation

On Thu, Sep 01, 2022 at 10:17:08PM +0000, Joel Fernandes (Google) wrote:
> Implement timer-based RCU lazy callback batching. The batch is flushed
> whenever a certain amount of time has passed, or the batch on a
> particular CPU grows too big. Also memory pressure will flush it in a
> future patch.
> 
> To handle several corner cases automagically (such as rcu_barrier() and
> hotplug), we re-use bypass lists to handle lazy CBs. The bypass list
> length has the lazy CB length included in it. A separate lazy CB length
> counter is also introduced to keep track of the number of lazy CBs.
> 
> Suggested-by: Paul McKenney <paulmck@...nel.org>
> Signed-off-by: Joel Fernandes (Google) <joel@...lfernandes.org>

I got this from TREE01 and TREE04:

kernel/rcu/tree_nocb.h:439:46: error: ‘struct rcu_data’ has no member named ‘lazy_len’

So I moved the lazy_len field out from under CONFIG_RCU_LAZY.

							Thanx, Paul

> ---
>  include/linux/rcupdate.h   |   6 ++
>  kernel/rcu/Kconfig         |   8 ++
>  kernel/rcu/rcu.h           |  11 +++
>  kernel/rcu/rcu_segcblist.c |   2 +-
>  kernel/rcu/tree.c          | 130 +++++++++++++++---------
>  kernel/rcu/tree.h          |  13 ++-
>  kernel/rcu/tree_nocb.h     | 198 ++++++++++++++++++++++++++++++-------
>  7 files changed, 280 insertions(+), 88 deletions(-)
> 
> diff --git a/include/linux/rcupdate.h b/include/linux/rcupdate.h
> index 08605ce7379d..82e8a07e0856 100644
> --- a/include/linux/rcupdate.h
> +++ b/include/linux/rcupdate.h
> @@ -108,6 +108,12 @@ static inline int rcu_preempt_depth(void)
>  
>  #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
>  
> +#ifdef CONFIG_RCU_LAZY
> +void call_rcu_lazy(struct rcu_head *head, rcu_callback_t func);
> +#else
> +#define call_rcu_lazy(head, func) call_rcu(head, func)
> +#endif
> +
>  /* Internal to kernel */
>  void rcu_init(void);
>  extern int rcu_scheduler_active;
> diff --git a/kernel/rcu/Kconfig b/kernel/rcu/Kconfig
> index d471d22a5e21..3128d01427cb 100644
> --- a/kernel/rcu/Kconfig
> +++ b/kernel/rcu/Kconfig
> @@ -311,4 +311,12 @@ config TASKS_TRACE_RCU_READ_MB
>  	  Say N here if you hate read-side memory barriers.
>  	  Take the default if you are unsure.
>  
> +config RCU_LAZY
> +	bool "RCU callback lazy invocation functionality"
> +	depends on RCU_NOCB_CPU
> +	default n
> +	help
> +	  To save power, batch RCU callbacks and flush after delay, memory
> +	  pressure or callback list growing too big.
> +
>  endmenu # "RCU Subsystem"
> diff --git a/kernel/rcu/rcu.h b/kernel/rcu/rcu.h
> index be5979da07f5..94675f14efe8 100644
> --- a/kernel/rcu/rcu.h
> +++ b/kernel/rcu/rcu.h
> @@ -474,6 +474,14 @@ enum rcutorture_type {
>  	INVALID_RCU_FLAVOR
>  };
>  
> +#if defined(CONFIG_RCU_LAZY)
> +unsigned long rcu_lazy_get_jiffies_till_flush(void);
> +void rcu_lazy_set_jiffies_till_flush(unsigned long j);
> +#else
> +static inline unsigned long rcu_lazy_get_jiffies_till_flush(void) { return 0; }
> +static inline void rcu_lazy_set_jiffies_till_flush(unsigned long j) { }
> +#endif
> +
>  #if defined(CONFIG_TREE_RCU)
>  void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
>  			    unsigned long *gp_seq);
> @@ -483,6 +491,8 @@ void do_trace_rcu_torture_read(const char *rcutorturename,
>  			       unsigned long c_old,
>  			       unsigned long c);
>  void rcu_gp_set_torture_wait(int duration);
> +void rcu_force_call_rcu_to_lazy(bool force);
> +
>  #else
>  static inline void rcutorture_get_gp_data(enum rcutorture_type test_type,
>  					  int *flags, unsigned long *gp_seq)
> @@ -501,6 +511,7 @@ void do_trace_rcu_torture_read(const char *rcutorturename,
>  	do { } while (0)
>  #endif
>  static inline void rcu_gp_set_torture_wait(int duration) { }
> +static inline void rcu_force_call_rcu_to_lazy(bool force) { }
>  #endif
>  
>  #if IS_ENABLED(CONFIG_RCU_TORTURE_TEST) || IS_MODULE(CONFIG_RCU_TORTURE_TEST)
> diff --git a/kernel/rcu/rcu_segcblist.c b/kernel/rcu/rcu_segcblist.c
> index c54ea2b6a36b..55b50e592986 100644
> --- a/kernel/rcu/rcu_segcblist.c
> +++ b/kernel/rcu/rcu_segcblist.c
> @@ -38,7 +38,7 @@ void rcu_cblist_enqueue(struct rcu_cblist *rclp, struct rcu_head *rhp)
>   * element of the second rcu_cblist structure, but ensuring that the second
>   * rcu_cblist structure, if initially non-empty, always appears non-empty
>   * throughout the process.  If rdp is NULL, the second rcu_cblist structure
> - * is instead initialized to empty.
> + * is instead initialized to empty. Also account for lazy_len for lazy CBs.
>   */
>  void rcu_cblist_flush_enqueue(struct rcu_cblist *drclp,
>  			      struct rcu_cblist *srclp,
> diff --git a/kernel/rcu/tree.c b/kernel/rcu/tree.c
> index 9fe581be8696..aaced29a0a71 100644
> --- a/kernel/rcu/tree.c
> +++ b/kernel/rcu/tree.c
> @@ -2728,47 +2728,8 @@ static void check_cb_ovld(struct rcu_data *rdp)
>  	raw_spin_unlock_rcu_node(rnp);
>  }
>  
> -/**
> - * call_rcu() - Queue an RCU callback for invocation after a grace period.
> - * @head: structure to be used for queueing the RCU updates.
> - * @func: actual callback function to be invoked after the grace period
> - *
> - * The callback function will be invoked some time after a full grace
> - * period elapses, in other words after all pre-existing RCU read-side
> - * critical sections have completed.  However, the callback function
> - * might well execute concurrently with RCU read-side critical sections
> - * that started after call_rcu() was invoked.
> - *
> - * RCU read-side critical sections are delimited by rcu_read_lock()
> - * and rcu_read_unlock(), and may be nested.  In addition, but only in
> - * v5.0 and later, regions of code across which interrupts, preemption,
> - * or softirqs have been disabled also serve as RCU read-side critical
> - * sections.  This includes hardware interrupt handlers, softirq handlers,
> - * and NMI handlers.
> - *
> - * Note that all CPUs must agree that the grace period extended beyond
> - * all pre-existing RCU read-side critical section.  On systems with more
> - * than one CPU, this means that when "func()" is invoked, each CPU is
> - * guaranteed to have executed a full memory barrier since the end of its
> - * last RCU read-side critical section whose beginning preceded the call
> - * to call_rcu().  It also means that each CPU executing an RCU read-side
> - * critical section that continues beyond the start of "func()" must have
> - * executed a memory barrier after the call_rcu() but before the beginning
> - * of that RCU read-side critical section.  Note that these guarantees
> - * include CPUs that are offline, idle, or executing in user mode, as
> - * well as CPUs that are executing in the kernel.
> - *
> - * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
> - * resulting RCU callback function "func()", then both CPU A and CPU B are
> - * guaranteed to execute a full memory barrier during the time interval
> - * between the call to call_rcu() and the invocation of "func()" -- even
> - * if CPU A and CPU B are the same CPU (but again only if the system has
> - * more than one CPU).
> - *
> - * Implementation of these memory-ordering guarantees is described here:
> - * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
> - */
> -void call_rcu(struct rcu_head *head, rcu_callback_t func)
> +static void
> +__call_rcu_common(struct rcu_head *head, rcu_callback_t func, bool lazy)
>  {
>  	static atomic_t doublefrees;
>  	unsigned long flags;
> @@ -2818,7 +2779,7 @@ void call_rcu(struct rcu_head *head, rcu_callback_t func)
>  		trace_rcu_callback(rcu_state.name, head,
>  				   rcu_segcblist_n_cbs(&rdp->cblist));
>  
> -	if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags))
> +	if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags, lazy))
>  		return; // Enqueued onto ->nocb_bypass, so just leave.
>  	// If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock.
>  	rcu_segcblist_enqueue(&rdp->cblist, head);
> @@ -2833,8 +2794,86 @@ void call_rcu(struct rcu_head *head, rcu_callback_t func)
>  		local_irq_restore(flags);
>  	}
>  }
> -EXPORT_SYMBOL_GPL(call_rcu);
>  
> +#ifdef CONFIG_RCU_LAZY
> +/**
> + * call_rcu_lazy() - Lazily queue RCU callback for invocation after grace period.
> + * @head: structure to be used for queueing the RCU updates.
> + * @func: actual callback function to be invoked after the grace period
> + *
> + * The callback function will be invoked some time after a full grace
> + * period elapses, in other words after all pre-existing RCU read-side
> + * critical sections have completed.
> + *
> + * Use this API instead of call_rcu() if you don't mind the callback being
> + * invoked after very long periods of time on systems without memory pressure
> + * and on systems which are lightly loaded or mostly idle.
> + *
> + * Other than the extra delay in callbacks being invoked, this function is
> + * identical to, and reuses call_rcu()'s logic. Refer to call_rcu() for more
> + * details about memory ordering and other functionality.
> + */
> +void call_rcu_lazy(struct rcu_head *head, rcu_callback_t func)
> +{
> +	return __call_rcu_common(head, func, true);
> +}
> +EXPORT_SYMBOL_GPL(call_rcu_lazy);
> +#endif
> +
> +static bool force_call_rcu_to_lazy;
> +
> +void rcu_force_call_rcu_to_lazy(bool force)
> +{
> +	if (IS_ENABLED(CONFIG_RCU_SCALE_TEST))
> +		WRITE_ONCE(force_call_rcu_to_lazy, force);
> +}
> +EXPORT_SYMBOL_GPL(rcu_force_call_rcu_to_lazy);
> +
> +/**
> + * call_rcu() - Queue an RCU callback for invocation after a grace period.
> + * @head: structure to be used for queueing the RCU updates.
> + * @func: actual callback function to be invoked after the grace period
> + *
> + * The callback function will be invoked some time after a full grace
> + * period elapses, in other words after all pre-existing RCU read-side
> + * critical sections have completed.  However, the callback function
> + * might well execute concurrently with RCU read-side critical sections
> + * that started after call_rcu() was invoked.
> + *
> + * RCU read-side critical sections are delimited by rcu_read_lock()
> + * and rcu_read_unlock(), and may be nested.  In addition, but only in
> + * v5.0 and later, regions of code across which interrupts, preemption,
> + * or softirqs have been disabled also serve as RCU read-side critical
> + * sections.  This includes hardware interrupt handlers, softirq handlers,
> + * and NMI handlers.
> + *
> + * Note that all CPUs must agree that the grace period extended beyond
> + * all pre-existing RCU read-side critical section.  On systems with more
> + * than one CPU, this means that when "func()" is invoked, each CPU is
> + * guaranteed to have executed a full memory barrier since the end of its
> + * last RCU read-side critical section whose beginning preceded the call
> + * to call_rcu().  It also means that each CPU executing an RCU read-side
> + * critical section that continues beyond the start of "func()" must have
> + * executed a memory barrier after the call_rcu() but before the beginning
> + * of that RCU read-side critical section.  Note that these guarantees
> + * include CPUs that are offline, idle, or executing in user mode, as
> + * well as CPUs that are executing in the kernel.
> + *
> + * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
> + * resulting RCU callback function "func()", then both CPU A and CPU B are
> + * guaranteed to execute a full memory barrier during the time interval
> + * between the call to call_rcu() and the invocation of "func()" -- even
> + * if CPU A and CPU B are the same CPU (but again only if the system has
> + * more than one CPU).
> + *
> + * Implementation of these memory-ordering guarantees is described here:
> + * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
> + */
> +void call_rcu(struct rcu_head *head, rcu_callback_t func)
> +{
> +	return __call_rcu_common(head, func, force_call_rcu_to_lazy);
> +}
> +EXPORT_SYMBOL_GPL(call_rcu);
>  
>  /* Maximum number of jiffies to wait before draining a batch. */
>  #define KFREE_DRAIN_JIFFIES (5 * HZ)
> @@ -3904,7 +3943,8 @@ static void rcu_barrier_entrain(struct rcu_data *rdp)
>  	rdp->barrier_head.func = rcu_barrier_callback;
>  	debug_rcu_head_queue(&rdp->barrier_head);
>  	rcu_nocb_lock(rdp);
> -	WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies));
> +	WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false,
> +		     /* wake gp thread */ true));
>  	if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) {
>  		atomic_inc(&rcu_state.barrier_cpu_count);
>  	} else {
> @@ -4325,7 +4365,7 @@ void rcutree_migrate_callbacks(int cpu)
>  	my_rdp = this_cpu_ptr(&rcu_data);
>  	my_rnp = my_rdp->mynode;
>  	rcu_nocb_lock(my_rdp); /* irqs already disabled. */
> -	WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies));
> +	WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies, false, false));
>  	raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
>  	/* Leverage recent GPs and set GP for new callbacks. */
>  	needwake = rcu_advance_cbs(my_rnp, rdp) ||
> diff --git a/kernel/rcu/tree.h b/kernel/rcu/tree.h
> index d4a97e40ea9c..946d819b23fc 100644
> --- a/kernel/rcu/tree.h
> +++ b/kernel/rcu/tree.h
> @@ -263,14 +263,18 @@ struct rcu_data {
>  	unsigned long last_fqs_resched;	/* Time of last rcu_resched(). */
>  	unsigned long last_sched_clock;	/* Jiffies of last rcu_sched_clock_irq(). */
>  
> +#ifdef CONFIG_RCU_LAZY
> +	long lazy_len;			/* Length of buffered lazy callbacks. */
> +#endif
>  	int cpu;
>  };
>  
>  /* Values for nocb_defer_wakeup field in struct rcu_data. */
>  #define RCU_NOCB_WAKE_NOT	0
>  #define RCU_NOCB_WAKE_BYPASS	1
> -#define RCU_NOCB_WAKE		2
> -#define RCU_NOCB_WAKE_FORCE	3
> +#define RCU_NOCB_WAKE_LAZY	2
> +#define RCU_NOCB_WAKE		3
> +#define RCU_NOCB_WAKE_FORCE	4
>  
>  #define RCU_JIFFIES_TILL_FORCE_QS (1 + (HZ > 250) + (HZ > 500))
>  					/* For jiffies_till_first_fqs and */
> @@ -440,9 +444,10 @@ static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp);
>  static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq);
>  static void rcu_init_one_nocb(struct rcu_node *rnp);
>  static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
> -				  unsigned long j);
> +				  unsigned long j, bool lazy, bool wakegp);
>  static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
> -				bool *was_alldone, unsigned long flags);
> +				bool *was_alldone, unsigned long flags,
> +				bool lazy);
>  static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
>  				 unsigned long flags);
>  static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level);
> diff --git a/kernel/rcu/tree_nocb.h b/kernel/rcu/tree_nocb.h
> index 31068dd31315..7e97a7b6e046 100644
> --- a/kernel/rcu/tree_nocb.h
> +++ b/kernel/rcu/tree_nocb.h
> @@ -256,6 +256,31 @@ static bool wake_nocb_gp(struct rcu_data *rdp, bool force)
>  	return __wake_nocb_gp(rdp_gp, rdp, force, flags);
>  }
>  
> +/*
> + * LAZY_FLUSH_JIFFIES decides the maximum amount of time that
> + * can elapse before lazy callbacks are flushed. Lazy callbacks
> + * could be flushed much earlier for a number of other reasons
> + * however, LAZY_FLUSH_JIFFIES will ensure no lazy callbacks are
> + * left unsubmitted to RCU after those many jiffies.
> + */
> +#define LAZY_FLUSH_JIFFIES (10 * HZ)
> +unsigned long jiffies_till_flush = LAZY_FLUSH_JIFFIES;
> +
> +#ifdef CONFIG_RCU_LAZY
> +// To be called only from test code.
> +void rcu_lazy_set_jiffies_till_flush(unsigned long jif)
> +{
> +	jiffies_till_flush = jif;
> +}
> +EXPORT_SYMBOL(rcu_lazy_set_jiffies_till_flush);
> +
> +unsigned long rcu_lazy_get_jiffies_till_flush(void)
> +{
> +	return jiffies_till_flush;
> +}
> +EXPORT_SYMBOL(rcu_lazy_get_jiffies_till_flush);
> +#endif
> +
>  /*
>   * Arrange to wake the GP kthread for this NOCB group at some future
>   * time when it is safe to do so.
> @@ -265,23 +290,39 @@ static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
>  {
>  	unsigned long flags;
>  	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
> +	unsigned long mod_jif = 0;
>  
>  	raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
>  
>  	/*
> -	 * Bypass wakeup overrides previous deferments. In case
> -	 * of callback storm, no need to wake up too early.
> +	 * Bypass and lazy wakeup overrides previous deferments. In case of
> +	 * callback storm, no need to wake up too early.
>  	 */
> -	if (waketype == RCU_NOCB_WAKE_BYPASS) {
> -		mod_timer(&rdp_gp->nocb_timer, jiffies + 2);
> -		WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
> -	} else {
> +	switch (waketype) {
> +	case RCU_NOCB_WAKE_LAZY:
> +		if (rdp->nocb_defer_wakeup != RCU_NOCB_WAKE_LAZY)
> +			mod_jif = jiffies_till_flush;
> +		break;
> +
> +	case RCU_NOCB_WAKE_BYPASS:
> +		mod_jif = 2;
> +		break;
> +
> +	case RCU_NOCB_WAKE:
> +	case RCU_NOCB_WAKE_FORCE:
> +		// For these, make it wake up the soonest if we
> +		// were in a bypass or lazy sleep before.
>  		if (rdp_gp->nocb_defer_wakeup < RCU_NOCB_WAKE)
> -			mod_timer(&rdp_gp->nocb_timer, jiffies + 1);
> -		if (rdp_gp->nocb_defer_wakeup < waketype)
> -			WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
> +			mod_jif = 1;
> +		break;
>  	}
>  
> +	if (mod_jif)
> +		mod_timer(&rdp_gp->nocb_timer, jiffies + mod_jif);
> +
> +	if (rdp_gp->nocb_defer_wakeup < waketype)
> +		WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
> +
>  	raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
>  
>  	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason);
> @@ -293,10 +334,13 @@ static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
>   * proves to be initially empty, just return false because the no-CB GP
>   * kthread may need to be awakened in this case.
>   *
> + * Return true if there was something to be flushed and it succeeded, otherwise
> + * false.
> + *
>   * Note that this function always returns true if rhp is NULL.
>   */
>  static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
> -				     unsigned long j)
> +				     unsigned long j, bool lazy)
>  {
>  	struct rcu_cblist rcl;
>  
> @@ -310,7 +354,18 @@ static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
>  	/* Note: ->cblist.len already accounts for ->nocb_bypass contents. */
>  	if (rhp)
>  		rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
> -	rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp);
> +
> +	/*
> +	 * If the new CB requested was a lazy one, queue it onto the main
> +	 * ->cblist so we can take advantage of a sooner grade period.
> +	 */
> +	if (lazy && rhp) {
> +		rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, NULL);
> +		rcu_cblist_enqueue(&rcl, rhp);
> +	} else {
> +		rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp);
> +	}
> +
>  	rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl);
>  	WRITE_ONCE(rdp->nocb_bypass_first, j);
>  	rcu_nocb_bypass_unlock(rdp);
> @@ -326,13 +381,20 @@ static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
>   * Note that this function always returns true if rhp is NULL.
>   */
>  static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
> -				  unsigned long j)
> +				  unsigned long j, bool lazy, bool wake_gp)
>  {
> +	bool ret;
> +
>  	if (!rcu_rdp_is_offloaded(rdp))
>  		return true;
>  	rcu_lockdep_assert_cblist_protected(rdp);
>  	rcu_nocb_bypass_lock(rdp);
> -	return rcu_nocb_do_flush_bypass(rdp, rhp, j);
> +	ret = rcu_nocb_do_flush_bypass(rdp, rhp, j, lazy);
> +
> +	if (wake_gp)
> +		wake_nocb_gp(rdp, true);
> +
> +	return ret;
>  }
>  
>  /*
> @@ -345,7 +407,7 @@ static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j)
>  	if (!rcu_rdp_is_offloaded(rdp) ||
>  	    !rcu_nocb_bypass_trylock(rdp))
>  		return;
> -	WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j));
> +	WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j, false));
>  }
>  
>  /*
> @@ -367,12 +429,14 @@ static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j)
>   * there is only one CPU in operation.
>   */
>  static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
> -				bool *was_alldone, unsigned long flags)
> +				bool *was_alldone, unsigned long flags,
> +				bool lazy)
>  {
>  	unsigned long c;
>  	unsigned long cur_gp_seq;
>  	unsigned long j = jiffies;
>  	long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
> +	bool bypass_is_lazy = (ncbs == READ_ONCE(rdp->lazy_len));
>  
>  	lockdep_assert_irqs_disabled();
>  
> @@ -417,23 +481,29 @@ static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
>  	// If there hasn't yet been all that many ->cblist enqueues
>  	// this jiffy, tell the caller to enqueue onto ->cblist.  But flush
>  	// ->nocb_bypass first.
> -	if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy) {
> +	// Lazy CBs throttle this back and do immediate bypass queuing.
> +	if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy && !lazy) {
>  		rcu_nocb_lock(rdp);
>  		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
>  		if (*was_alldone)
>  			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
>  					    TPS("FirstQ"));
> -		WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j));
> +
> +		WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j, false, false));
> +
>  		WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
>  		return false; // Caller must enqueue the callback.
>  	}
>  
>  	// If ->nocb_bypass has been used too long or is too full,
>  	// flush ->nocb_bypass to ->cblist.
> -	if ((ncbs && j != READ_ONCE(rdp->nocb_bypass_first)) ||
> +	if ((ncbs && !bypass_is_lazy && j != READ_ONCE(rdp->nocb_bypass_first)) ||
> +	    (ncbs &&  bypass_is_lazy &&
> +		(time_after(j, READ_ONCE(rdp->nocb_bypass_first) + jiffies_till_flush))) ||
>  	    ncbs >= qhimark) {
>  		rcu_nocb_lock(rdp);
> -		if (!rcu_nocb_flush_bypass(rdp, rhp, j)) {
> +
> +		if (!rcu_nocb_flush_bypass(rdp, rhp, j, lazy, false)) {
>  			*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
>  			if (*was_alldone)
>  				trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
> @@ -460,16 +530,29 @@ static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
>  	// We need to use the bypass.
>  	rcu_nocb_wait_contended(rdp);
>  	rcu_nocb_bypass_lock(rdp);
> +
>  	ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
>  	rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
>  	rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
> +
> +	if (IS_ENABLED(CONFIG_RCU_LAZY) && lazy)
> +		WRITE_ONCE(rdp->lazy_len, rdp->lazy_len + 1);
> +
>  	if (!ncbs) {
>  		WRITE_ONCE(rdp->nocb_bypass_first, j);
>  		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ"));
>  	}
> +
>  	rcu_nocb_bypass_unlock(rdp);
>  	smp_mb(); /* Order enqueue before wake. */
> -	if (ncbs) {
> +
> +	// We had CBs in the bypass list before. There is nothing else to do if:
> +	// There were only non-lazy CBs before, in this case, the bypass timer
> +	// or GP-thread will handle the CBs including any new lazy ones.
> +	// Or, the new CB is lazy and the old bypass-CBs were also lazy. In this
> +	// case the old lazy timer would have been setup. When that expires,
> +	// the new lazy one will be handled.
> +	if (ncbs && (!bypass_is_lazy || lazy)) {
>  		local_irq_restore(flags);
>  	} else {
>  		// No-CBs GP kthread might be indefinitely asleep, if so, wake.
> @@ -478,6 +561,10 @@ static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
>  			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
>  					    TPS("FirstBQwake"));
>  			__call_rcu_nocb_wake(rdp, true, flags);
> +		} else if (bypass_is_lazy && !lazy) {
> +			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
> +					    TPS("FirstBQwakeLazy2Non"));
> +			__call_rcu_nocb_wake(rdp, true, flags);
>  		} else {
>  			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
>  					    TPS("FirstBQnoWake"));
> @@ -499,7 +586,7 @@ static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
>  {
>  	unsigned long cur_gp_seq;
>  	unsigned long j;
> -	long len;
> +	long len, lazy_len, bypass_len;
>  	struct task_struct *t;
>  
>  	// If we are being polled or there is no kthread, just leave.
> @@ -512,9 +599,16 @@ static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
>  	}
>  	// Need to actually to a wakeup.
>  	len = rcu_segcblist_n_cbs(&rdp->cblist);
> +	bypass_len = rcu_cblist_n_cbs(&rdp->nocb_bypass);
> +	lazy_len = READ_ONCE(rdp->lazy_len);
>  	if (was_alldone) {
>  		rdp->qlen_last_fqs_check = len;
> -		if (!irqs_disabled_flags(flags)) {
> +		// Only lazy CBs in bypass list
> +		if (lazy_len && bypass_len == lazy_len) {
> +			rcu_nocb_unlock_irqrestore(rdp, flags);
> +			wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_LAZY,
> +					   TPS("WakeLazy"));
> +		} else if (!irqs_disabled_flags(flags)) {
>  			/* ... if queue was empty ... */
>  			rcu_nocb_unlock_irqrestore(rdp, flags);
>  			wake_nocb_gp(rdp, false);
> @@ -604,8 +698,8 @@ static void nocb_gp_sleep(struct rcu_data *my_rdp, int cpu)
>   */
>  static void nocb_gp_wait(struct rcu_data *my_rdp)
>  {
> -	bool bypass = false;
> -	long bypass_ncbs;
> +	bool bypass = false, lazy = false;
> +	long bypass_ncbs, lazy_ncbs;
>  	int __maybe_unused cpu = my_rdp->cpu;
>  	unsigned long cur_gp_seq;
>  	unsigned long flags;
> @@ -640,24 +734,41 @@ static void nocb_gp_wait(struct rcu_data *my_rdp)
>  	 * won't be ignored for long.
>  	 */
>  	list_for_each_entry(rdp, &my_rdp->nocb_head_rdp, nocb_entry_rdp) {
> +		bool flush_bypass = false;
> +
>  		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check"));
>  		rcu_nocb_lock_irqsave(rdp, flags);
>  		lockdep_assert_held(&rdp->nocb_lock);
>  		bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
> -		if (bypass_ncbs &&
> +		lazy_ncbs = READ_ONCE(rdp->lazy_len);
> +
> +		if (bypass_ncbs && (lazy_ncbs == bypass_ncbs) &&
> +		    (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + jiffies_till_flush) ||
> +		     bypass_ncbs > 2 * qhimark)) {
> +			flush_bypass = true;
> +		} else if (bypass_ncbs && (lazy_ncbs != bypass_ncbs) &&
>  		    (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) ||
>  		     bypass_ncbs > 2 * qhimark)) {
> -			// Bypass full or old, so flush it.
> -			(void)rcu_nocb_try_flush_bypass(rdp, j);
> -			bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
> +			flush_bypass = true;
>  		} else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) {
>  			rcu_nocb_unlock_irqrestore(rdp, flags);
>  			continue; /* No callbacks here, try next. */
>  		}
> +
> +		if (flush_bypass) {
> +			// Bypass full or old, so flush it.
> +			(void)rcu_nocb_try_flush_bypass(rdp, j);
> +			bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
> +			lazy_ncbs = READ_ONCE(rdp->lazy_len);
> +		}
> +
>  		if (bypass_ncbs) {
>  			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
> -					    TPS("Bypass"));
> -			bypass = true;
> +				    bypass_ncbs == lazy_ncbs ? TPS("Lazy") : TPS("Bypass"));
> +			if (bypass_ncbs == lazy_ncbs)
> +				lazy = true;
> +			else
> +				bypass = true;
>  		}
>  		rnp = rdp->mynode;
>  
> @@ -705,12 +816,21 @@ static void nocb_gp_wait(struct rcu_data *my_rdp)
>  	my_rdp->nocb_gp_gp = needwait_gp;
>  	my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0;
>  
> -	if (bypass && !rcu_nocb_poll) {
> -		// At least one child with non-empty ->nocb_bypass, so set
> -		// timer in order to avoid stranding its callbacks.
> -		wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_BYPASS,
> -				   TPS("WakeBypassIsDeferred"));
> +	// At least one child with non-empty ->nocb_bypass, so set
> +	// timer in order to avoid stranding its callbacks.
> +	if (!rcu_nocb_poll) {
> +		// If bypass list only has lazy CBs. Add a deferred
> +		// lazy wake up.
> +		if (lazy && !bypass) {
> +			wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_LAZY,
> +					TPS("WakeLazyIsDeferred"));
> +		// Otherwise add a deferred bypass wake up.
> +		} else if (bypass) {
> +			wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_BYPASS,
> +					TPS("WakeBypassIsDeferred"));
> +		}
>  	}
> +
>  	if (rcu_nocb_poll) {
>  		/* Polling, so trace if first poll in the series. */
>  		if (gotcbs)
> @@ -1036,7 +1156,7 @@ static long rcu_nocb_rdp_deoffload(void *arg)
>  	 * return false, which means that future calls to rcu_nocb_try_bypass()
>  	 * will refuse to put anything into the bypass.
>  	 */
> -	WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies));
> +	WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false, false));
>  	/*
>  	 * Start with invoking rcu_core() early. This way if the current thread
>  	 * happens to preempt an ongoing call to rcu_core() in the middle,
> @@ -1290,6 +1410,7 @@ static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
>  	raw_spin_lock_init(&rdp->nocb_gp_lock);
>  	timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
>  	rcu_cblist_init(&rdp->nocb_bypass);
> +	WRITE_ONCE(rdp->lazy_len, 0);
>  	mutex_init(&rdp->nocb_gp_kthread_mutex);
>  }
>  
> @@ -1571,13 +1692,14 @@ static void rcu_init_one_nocb(struct rcu_node *rnp)
>  }
>  
>  static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
> -				  unsigned long j)
> +				  unsigned long j, bool lazy, bool wakegp)
>  {
>  	return true;
>  }
>  
>  static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
> -				bool *was_alldone, unsigned long flags)
> +				bool *was_alldone, unsigned long flags,
> +				bool lazy)
>  {
>  	return false;
>  }
> -- 
> 2.37.2.789.g6183377224-goog
> 

Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ