[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-Id: <20221006081052.3862167-2-pierre.gondois@arm.com>
Date: Thu, 6 Oct 2022 10:10:52 +0200
From: Pierre Gondois <pierre.gondois@....com>
To: linux-kernel@...r.kernel.org
Cc: Pierre Gondois <pierre.gondois@....com>,
Dietmar Eggemann <dietmar.eggemann@....com>,
Ingo Molnar <mingo@...hat.com>,
Peter Zijlstra <peterz@...radead.org>,
Juri Lelli <juri.lelli@...hat.com>,
Vincent Guittot <vincent.guittot@...aro.org>,
Steven Rostedt <rostedt@...dmis.org>,
Ben Segall <bsegall@...gle.com>, Mel Gorman <mgorman@...e.de>,
Daniel Bristot de Oliveira <bristot@...hat.com>,
Valentin Schneider <vschneid@...hat.com>
Subject: [PATCH v2 1/1] sched/fair: Check if prev_cpu has highest spare cap in feec()
When evaluating the CPU candidates in the perf domain (pd) containing
the previously used CPU (prev_cpu), find_energy_efficient_cpu()
evaluates the energy of the pd:
- without the task (base_energy)
- with the task placed on prev_cpu (if the task fits)
- with the task placed on the CPU with the highest spare capacity,
prev_cpu being excluded from this set
If prev_cpu is already the CPU with the highest spare capacity,
max_spare_cap_cpu will be the CPU with the second highest spare
capacity.
On an Arm64 Juno-r2, with a workload of 10 tasks at a 10% duty cycle,
when prev_cpu and max_spare_cap_cpu are both valid candidates,
prev_spare_cap > max_spare_cap at ~82%.
Thus the energy of the pd when placing the task on max_spare_cap_cpu
is computed with no possible positive outcome 82% most of the time.
Do not consider max_spare_cap_cpu as a valid candidate if
prev_spare_cap > max_spare_cap.
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@....com>
Signed-off-by: Pierre Gondois <pierre.gondois@....com>
---
kernel/sched/fair.c | 13 +++++++------
1 file changed, 7 insertions(+), 6 deletions(-)
diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c
index 914096c5b1ae..bcae7bdd5582 100644
--- a/kernel/sched/fair.c
+++ b/kernel/sched/fair.c
@@ -6900,7 +6900,7 @@ static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
for (; pd; pd = pd->next) {
unsigned long cpu_cap, cpu_thermal_cap, util;
unsigned long cur_delta, max_spare_cap = 0;
- bool compute_prev_delta = false;
+ unsigned long prev_spare_cap = 0;
int max_spare_cap_cpu = -1;
unsigned long base_energy;
@@ -6944,18 +6944,19 @@ static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
if (cpu == prev_cpu) {
/* Always use prev_cpu as a candidate. */
- compute_prev_delta = true;
+ prev_spare_cap = cpu_cap;
} else if (cpu_cap > max_spare_cap) {
/*
* Find the CPU with the maximum spare capacity
- * in the performance domain.
+ * among the remaining CPUs in the performance
+ * domain.
*/
max_spare_cap = cpu_cap;
max_spare_cap_cpu = cpu;
}
}
- if (max_spare_cap_cpu < 0 && !compute_prev_delta)
+ if (max_spare_cap_cpu < 0 && prev_spare_cap == 0)
continue;
eenv_pd_busy_time(&eenv, cpus, p);
@@ -6963,7 +6964,7 @@ static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
base_energy = compute_energy(&eenv, pd, cpus, p, -1);
/* Evaluate the energy impact of using prev_cpu. */
- if (compute_prev_delta) {
+ if (prev_spare_cap > 0) {
prev_delta = compute_energy(&eenv, pd, cpus, p,
prev_cpu);
/* CPU utilization has changed */
@@ -6974,7 +6975,7 @@ static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
}
/* Evaluate the energy impact of using max_spare_cap_cpu. */
- if (max_spare_cap_cpu >= 0) {
+ if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) {
cur_delta = compute_energy(&eenv, pd, cpus, p,
max_spare_cap_cpu);
/* CPU utilization has changed */
--
2.25.1
Powered by blists - more mailing lists