lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <166929936440.4906.2223890805423305572.tip-bot2@tip-bot2>
Date:   Thu, 24 Nov 2022 14:16:04 -0000
From:   "tip-bot2 for Thomas Gleixner" <tip-bot2@...utronix.de>
To:     linux-tip-commits@...r.kernel.org
Cc:     Steven Rostedt <rostedt@...dmis.org>,
        Thomas Gleixner <tglx@...utronix.de>,
        Guenter Roeck <linux@...ck-us.net>,
        Jacob Keller <jacob.e.keller@...el.com>,
        "Anna-Maria Behnsen" <anna-maria@...utronix.de>, x86@...nel.org,
        linux-kernel@...r.kernel.org
Subject: [tip: timers/core] timers: Split [try_to_]del_timer[_sync]() to
 prepare for shutdown mode

The following commit has been merged into the timers/core branch of tip:

Commit-ID:     8553b5f2774a66b1f293b7d783934210afb8f23c
Gitweb:        https://git.kernel.org/tip/8553b5f2774a66b1f293b7d783934210afb8f23c
Author:        Thomas Gleixner <tglx@...utronix.de>
AuthorDate:    Wed, 23 Nov 2022 21:18:50 +01:00
Committer:     Thomas Gleixner <tglx@...utronix.de>
CommitterDate: Thu, 24 Nov 2022 15:09:12 +01:00

timers: Split [try_to_]del_timer[_sync]() to prepare for shutdown mode

Tearing down timers which have circular dependencies to other
functionality, e.g. workqueues, where the timer can schedule work and work
can arm timers, is not trivial.

In those cases it is desired to shutdown the timer in a way which prevents
rearming of the timer. The mechanism to do so is to set timer->function to
NULL and use this as an indicator for the timer arming functions to ignore
the (re)arm request.

Split the inner workings of try_do_del_timer_sync(), del_timer_sync() and
del_timer() into helper functions to prepare for implementing the shutdown
functionality.

No functional change.

Co-developed-by: Steven Rostedt <rostedt@...dmis.org>
Signed-off-by: Steven Rostedt <rostedt@...dmis.org>
Signed-off-by: Thomas Gleixner <tglx@...utronix.de>
Tested-by: Guenter Roeck <linux@...ck-us.net>
Reviewed-by: Jacob Keller <jacob.e.keller@...el.com>
Reviewed-by: Anna-Maria Behnsen <anna-maria@...utronix.de>
Link: https://lore.kernel.org/all/20220407161745.7d6754b3@gandalf.local.home
Link: https://lore.kernel.org/all/20221110064101.429013735@goodmis.org
Link: https://lore.kernel.org/r/20221123201625.195147423@linutronix.de

---
 kernel/time/timer.c | 143 +++++++++++++++++++++++++++----------------
 1 file changed, 92 insertions(+), 51 deletions(-)

diff --git a/kernel/time/timer.c b/kernel/time/timer.c
index e4fcf56..e635bb5 100644
--- a/kernel/time/timer.c
+++ b/kernel/time/timer.c
@@ -1298,20 +1298,14 @@ out_unlock:
 EXPORT_SYMBOL_GPL(add_timer_on);
 
 /**
- * timer_delete - Deactivate a timer
+ * __timer_delete - Internal function: Deactivate a timer
  * @timer:	The timer to be deactivated
  *
- * The function only deactivates a pending timer, but contrary to
- * timer_delete_sync() it does not take into account whether the timer's
- * callback function is concurrently executed on a different CPU or not.
- * It neither prevents rearming of the timer. If @timer can be rearmed
- * concurrently then the return value of this function is meaningless.
- *
  * Return:
  * * %0 - The timer was not pending
  * * %1 - The timer was pending and deactivated
  */
-int timer_delete(struct timer_list *timer)
+static int __timer_delete(struct timer_list *timer)
 {
 	struct timer_base *base;
 	unsigned long flags;
@@ -1327,25 +1321,37 @@ int timer_delete(struct timer_list *timer)
 
 	return ret;
 }
-EXPORT_SYMBOL(timer_delete);
 
 /**
- * try_to_del_timer_sync - Try to deactivate a timer
- * @timer:	Timer to deactivate
+ * timer_delete - Deactivate a timer
+ * @timer:	The timer to be deactivated
  *
- * This function tries to deactivate a timer. On success the timer is not
- * queued and the timer callback function is not running on any CPU.
+ * The function only deactivates a pending timer, but contrary to
+ * timer_delete_sync() it does not take into account whether the timer's
+ * callback function is concurrently executed on a different CPU or not.
+ * It neither prevents rearming of the timer.  If @timer can be rearmed
+ * concurrently then the return value of this function is meaningless.
  *
- * This function does not guarantee that the timer cannot be rearmed right
- * after dropping the base lock. That needs to be prevented by the calling
- * code if necessary.
+ * Return:
+ * * %0 - The timer was not pending
+ * * %1 - The timer was pending and deactivated
+ */
+int timer_delete(struct timer_list *timer)
+{
+	return __timer_delete(timer);
+}
+EXPORT_SYMBOL(timer_delete);
+
+/**
+ * __try_to_del_timer_sync - Internal function: Try to deactivate a timer
+ * @timer:	Timer to deactivate
  *
  * Return:
  * * %0  - The timer was not pending
  * * %1  - The timer was pending and deactivated
  * * %-1 - The timer callback function is running on a different CPU
  */
-int try_to_del_timer_sync(struct timer_list *timer)
+static int __try_to_del_timer_sync(struct timer_list *timer)
 {
 	struct timer_base *base;
 	unsigned long flags;
@@ -1362,6 +1368,27 @@ int try_to_del_timer_sync(struct timer_list *timer)
 
 	return ret;
 }
+
+/**
+ * try_to_del_timer_sync - Try to deactivate a timer
+ * @timer:	Timer to deactivate
+ *
+ * This function tries to deactivate a timer. On success the timer is not
+ * queued and the timer callback function is not running on any CPU.
+ *
+ * This function does not guarantee that the timer cannot be rearmed right
+ * after dropping the base lock. That needs to be prevented by the calling
+ * code if necessary.
+ *
+ * Return:
+ * * %0  - The timer was not pending
+ * * %1  - The timer was pending and deactivated
+ * * %-1 - The timer callback function is running on a different CPU
+ */
+int try_to_del_timer_sync(struct timer_list *timer)
+{
+	return __try_to_del_timer_sync(timer);
+}
 EXPORT_SYMBOL(try_to_del_timer_sync);
 
 #ifdef CONFIG_PREEMPT_RT
@@ -1438,45 +1465,15 @@ static inline void del_timer_wait_running(struct timer_list *timer) { }
 #endif
 
 /**
- * timer_delete_sync - Deactivate a timer and wait for the handler to finish.
+ * __timer_delete_sync - Internal function: Deactivate a timer and wait
+ *			 for the handler to finish.
  * @timer:	The timer to be deactivated
  *
- * Synchronization rules: Callers must prevent restarting of the timer,
- * otherwise this function is meaningless. It must not be called from
- * interrupt contexts unless the timer is an irqsafe one. The caller must
- * not hold locks which would prevent completion of the timer's callback
- * function. The timer's handler must not call add_timer_on(). Upon exit
- * the timer is not queued and the handler is not running on any CPU.
- *
- * For !irqsafe timers, the caller must not hold locks that are held in
- * interrupt context. Even if the lock has nothing to do with the timer in
- * question.  Here's why::
- *
- *    CPU0                             CPU1
- *    ----                             ----
- *                                     <SOFTIRQ>
- *                                       call_timer_fn();
- *                                       base->running_timer = mytimer;
- *    spin_lock_irq(somelock);
- *                                     <IRQ>
- *                                        spin_lock(somelock);
- *    timer_delete_sync(mytimer);
- *    while (base->running_timer == mytimer);
- *
- * Now timer_delete_sync() will never return and never release somelock.
- * The interrupt on the other CPU is waiting to grab somelock but it has
- * interrupted the softirq that CPU0 is waiting to finish.
- *
- * This function cannot guarantee that the timer is not rearmed again by
- * some concurrent or preempting code, right after it dropped the base
- * lock. If there is the possibility of a concurrent rearm then the return
- * value of the function is meaningless.
- *
  * Return:
  * * %0	- The timer was not pending
  * * %1	- The timer was pending and deactivated
  */
-int timer_delete_sync(struct timer_list *timer)
+static int __timer_delete_sync(struct timer_list *timer)
 {
 	int ret;
 
@@ -1506,7 +1503,7 @@ int timer_delete_sync(struct timer_list *timer)
 		lockdep_assert_preemption_enabled();
 
 	do {
-		ret = try_to_del_timer_sync(timer);
+		ret = __try_to_del_timer_sync(timer);
 
 		if (unlikely(ret < 0)) {
 			del_timer_wait_running(timer);
@@ -1516,6 +1513,50 @@ int timer_delete_sync(struct timer_list *timer)
 
 	return ret;
 }
+
+/**
+ * timer_delete_sync - Deactivate a timer and wait for the handler to finish.
+ * @timer:	The timer to be deactivated
+ *
+ * Synchronization rules: Callers must prevent restarting of the timer,
+ * otherwise this function is meaningless. It must not be called from
+ * interrupt contexts unless the timer is an irqsafe one. The caller must
+ * not hold locks which would prevent completion of the timer's callback
+ * function. The timer's handler must not call add_timer_on(). Upon exit
+ * the timer is not queued and the handler is not running on any CPU.
+ *
+ * For !irqsafe timers, the caller must not hold locks that are held in
+ * interrupt context. Even if the lock has nothing to do with the timer in
+ * question.  Here's why::
+ *
+ *    CPU0                             CPU1
+ *    ----                             ----
+ *                                     <SOFTIRQ>
+ *                                       call_timer_fn();
+ *                                       base->running_timer = mytimer;
+ *    spin_lock_irq(somelock);
+ *                                     <IRQ>
+ *                                        spin_lock(somelock);
+ *    timer_delete_sync(mytimer);
+ *    while (base->running_timer == mytimer);
+ *
+ * Now timer_delete_sync() will never return and never release somelock.
+ * The interrupt on the other CPU is waiting to grab somelock but it has
+ * interrupted the softirq that CPU0 is waiting to finish.
+ *
+ * This function cannot guarantee that the timer is not rearmed again by
+ * some concurrent or preempting code, right after it dropped the base
+ * lock. If there is the possibility of a concurrent rearm then the return
+ * value of the function is meaningless.
+ *
+ * Return:
+ * * %0	- The timer was not pending
+ * * %1	- The timer was pending and deactivated
+ */
+int timer_delete_sync(struct timer_list *timer)
+{
+	return __timer_delete_sync(timer);
+}
 EXPORT_SYMBOL(timer_delete_sync);
 
 static void call_timer_fn(struct timer_list *timer,

Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ