lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [thread-next>] [day] [month] [year] [list]
Date:   Tue, 29 Nov 2022 15:16:55 +0000
From:   Mel Gorman <mgorman@...hsingularity.net>
To:     Linux-MM <linux-mm@...ck.org>
Cc:     Andrew Morton <akpm@...ux-foundation.org>,
        Michal Hocko <mhocko@...e.com>, NeilBrown <neilb@...e.de>,
        Thierry Reding <thierry.reding@...il.com>,
        Matthew Wilcox <willy@...radead.org>,
        Vlastimil Babka <vbabka@...e.cz>,
        LKML <linux-kernel@...r.kernel.org>,
        Mel Gorman <mgorman@...hsingularity.net>
Subject: [RFC PATCH 0/6] Discard __GFP_ATOMIC

Neil's patch has been residing in mm-unstable as commit 2fafb4fe8f7a
("mm: discard __GFP_ATOMIC") for a long time and recently brought up
again. Most recently, I was worried that __GFP_HIGH allocations could
use high-order atomic reserves which is unintentional but there was no
response so lets revisit -- this series reworks how min reserves are used,
protects highorder reserves and then finishes with Neil's patch with very
minor modifications so it fits on top.

There was a review discussion on renaming __GFP_DIRECT_RECLAIM to
__GFP_ALLOW_BLOCKING but I didn't think it was that big an issue and is
ortogonal to the removal of __GFP_ATOMIC.

There were some concerns about how the gfp flags affect the min reserves
but it never reached a solid conclusion so I made my own attempt.

The series tries to iron out some of the details on how reserves are
used.  ALLOC_HIGH becomes ALLOC_MIN_RESERVE and ALLOC_HARDER becomes
ALLOC_NON_BLOCK and documents how the reserves are affected. For example,
ALLOC_NON_BLOCK (no direct reclaim) on its own allows 25% of the min reserve.
ALLOC_MIN_RESERVE (__GFP_HIGH) allows 50% and both combined allows deeper
access again. ALLOC_OOM allows access to 75%.

High-order atomic allocations are explicitly handled with the caveat that
no __GFP_ATOMIC flag means that any high-order allocation that specifies
GFP_HIGH and cannot enter direct reclaim will be treated as if it was
GFP_ATOMIC.

-- 
2.35.3

Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ