[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <20221221222418.3307832-4-bgardon@google.com>
Date: Wed, 21 Dec 2022 22:24:07 +0000
From: Ben Gardon <bgardon@...gle.com>
To: linux-kernel@...r.kernel.org, kvm@...r.kernel.org
Cc: Paolo Bonzini <pbonzini@...hat.com>, Peter Xu <peterx@...hat.com>,
Sean Christopherson <seanjc@...gle.com>,
David Matlack <dmatlack@...gle.com>,
Vipin Sharma <vipinsh@...gle.com>,
Nagareddy Reddy <nspreddy@...gle.com>,
Ben Gardon <bgardon@...gle.com>
Subject: [RFC 03/14] KVM: x86/MMU: Move the Shadow MMU implementation to shadow_mmu.c
Cut and paste the implementation of the Shadow MMU to shadow_mmu.(c|h).
This is a monsterously large commit, moving ~3500 lines. With such a
large move, there's no way to make it easy. Do the move in one massive
step to simplify dealing with merge conflicts and to make the git
history a little easier to dig through. Several cleanup commits follow
this one rather than preceed it so that their git history will remain
easy to see.
No functional change intended.
Signed-off-by: Ben Gardon <bgardon@...gle.com>
---
arch/x86/kvm/debugfs.c | 1 +
arch/x86/kvm/mmu/mmu.c | 4526 ++++---------------------------
arch/x86/kvm/mmu/mmu_internal.h | 4 +-
arch/x86/kvm/mmu/shadow_mmu.c | 3408 +++++++++++++++++++++++
arch/x86/kvm/mmu/shadow_mmu.h | 145 +
5 files changed, 4086 insertions(+), 3998 deletions(-)
diff --git a/arch/x86/kvm/debugfs.c b/arch/x86/kvm/debugfs.c
index c1390357126a..e304243d2041 100644
--- a/arch/x86/kvm/debugfs.c
+++ b/arch/x86/kvm/debugfs.c
@@ -9,6 +9,7 @@
#include "lapic.h"
#include "mmu.h"
#include "mmu/mmu_internal.h"
+#include "mmu/shadow_mmu.h"
static int vcpu_get_timer_advance_ns(void *data, u64 *val)
{
diff --git a/arch/x86/kvm/mmu/mmu.c b/arch/x86/kvm/mmu/mmu.c
index 729a2799d4d7..bf14e181eb12 100644
--- a/arch/x86/kvm/mmu/mmu.c
+++ b/arch/x86/kvm/mmu/mmu.c
@@ -109,59 +109,12 @@ bool dbg = 0;
module_param(dbg, bool, 0644);
#endif
-#define PTE_PREFETCH_NUM 8
-
#include <trace/events/kvm.h>
-/* make pte_list_desc fit well in cache lines */
-#define PTE_LIST_EXT 14
-
-/*
- * Slight optimization of cacheline layout, by putting `more' and `spte_count'
- * at the start; then accessing it will only use one single cacheline for
- * either full (entries==PTE_LIST_EXT) case or entries<=6.
- */
-struct pte_list_desc {
- struct pte_list_desc *more;
- /*
- * Stores number of entries stored in the pte_list_desc. No need to be
- * u64 but just for easier alignment. When PTE_LIST_EXT, means full.
- */
- u64 spte_count;
- u64 *sptes[PTE_LIST_EXT];
-};
-
-struct kvm_shadow_walk_iterator {
- u64 addr;
- hpa_t shadow_addr;
- u64 *sptep;
- int level;
- unsigned index;
-};
-
-#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \
- for (shadow_walk_init_using_root(&(_walker), (_vcpu), \
- (_root), (_addr)); \
- shadow_walk_okay(&(_walker)); \
- shadow_walk_next(&(_walker)))
-
-#define for_each_shadow_entry(_vcpu, _addr, _walker) \
- for (shadow_walk_init(&(_walker), _vcpu, _addr); \
- shadow_walk_okay(&(_walker)); \
- shadow_walk_next(&(_walker)))
-
-#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
- for (shadow_walk_init(&(_walker), _vcpu, _addr); \
- shadow_walk_okay(&(_walker)) && \
- ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
- __shadow_walk_next(&(_walker), spte))
-
struct kmem_cache *pte_list_desc_cache;
struct kmem_cache *mmu_page_header_cache;
struct percpu_counter kvm_total_used_mmu_pages;
-static void mmu_spte_set(u64 *sptep, u64 spte);
-
struct kvm_mmu_role_regs {
const unsigned long cr0;
const unsigned long cr4;
@@ -257,15 +210,6 @@ void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
kvm_flush_remote_tlbs_with_range(kvm, &range);
}
-void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
- unsigned int access)
-{
- u64 spte = make_mmio_spte(vcpu, gfn, access);
-
- trace_mark_mmio_spte(sptep, gfn, spte);
- mmu_spte_set(sptep, spte);
-}
-
static gfn_t get_mmio_spte_gfn(u64 spte)
{
u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
@@ -301,310 +245,6 @@ static int is_cpuid_PSE36(void)
return 1;
}
-#ifdef CONFIG_X86_64
-static void __set_spte(u64 *sptep, u64 spte)
-{
- WRITE_ONCE(*sptep, spte);
-}
-
-static void __update_clear_spte_fast(u64 *sptep, u64 spte)
-{
- WRITE_ONCE(*sptep, spte);
-}
-
-static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
-{
- return xchg(sptep, spte);
-}
-
-static u64 __get_spte_lockless(u64 *sptep)
-{
- return READ_ONCE(*sptep);
-}
-#else
-union split_spte {
- struct {
- u32 spte_low;
- u32 spte_high;
- };
- u64 spte;
-};
-
-static void count_spte_clear(u64 *sptep, u64 spte)
-{
- struct kvm_mmu_page *sp = sptep_to_sp(sptep);
-
- if (is_shadow_present_pte(spte))
- return;
-
- /* Ensure the spte is completely set before we increase the count */
- smp_wmb();
- sp->clear_spte_count++;
-}
-
-static void __set_spte(u64 *sptep, u64 spte)
-{
- union split_spte *ssptep, sspte;
-
- ssptep = (union split_spte *)sptep;
- sspte = (union split_spte)spte;
-
- ssptep->spte_high = sspte.spte_high;
-
- /*
- * If we map the spte from nonpresent to present, We should store
- * the high bits firstly, then set present bit, so cpu can not
- * fetch this spte while we are setting the spte.
- */
- smp_wmb();
-
- WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
-}
-
-static void __update_clear_spte_fast(u64 *sptep, u64 spte)
-{
- union split_spte *ssptep, sspte;
-
- ssptep = (union split_spte *)sptep;
- sspte = (union split_spte)spte;
-
- WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
-
- /*
- * If we map the spte from present to nonpresent, we should clear
- * present bit firstly to avoid vcpu fetch the old high bits.
- */
- smp_wmb();
-
- ssptep->spte_high = sspte.spte_high;
- count_spte_clear(sptep, spte);
-}
-
-static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
-{
- union split_spte *ssptep, sspte, orig;
-
- ssptep = (union split_spte *)sptep;
- sspte = (union split_spte)spte;
-
- /* xchg acts as a barrier before the setting of the high bits */
- orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
- orig.spte_high = ssptep->spte_high;
- ssptep->spte_high = sspte.spte_high;
- count_spte_clear(sptep, spte);
-
- return orig.spte;
-}
-
-/*
- * The idea using the light way get the spte on x86_32 guest is from
- * gup_get_pte (mm/gup.c).
- *
- * An spte tlb flush may be pending, because kvm_set_pte_rmap
- * coalesces them and we are running out of the MMU lock. Therefore
- * we need to protect against in-progress updates of the spte.
- *
- * Reading the spte while an update is in progress may get the old value
- * for the high part of the spte. The race is fine for a present->non-present
- * change (because the high part of the spte is ignored for non-present spte),
- * but for a present->present change we must reread the spte.
- *
- * All such changes are done in two steps (present->non-present and
- * non-present->present), hence it is enough to count the number of
- * present->non-present updates: if it changed while reading the spte,
- * we might have hit the race. This is done using clear_spte_count.
- */
-static u64 __get_spte_lockless(u64 *sptep)
-{
- struct kvm_mmu_page *sp = sptep_to_sp(sptep);
- union split_spte spte, *orig = (union split_spte *)sptep;
- int count;
-
-retry:
- count = sp->clear_spte_count;
- smp_rmb();
-
- spte.spte_low = orig->spte_low;
- smp_rmb();
-
- spte.spte_high = orig->spte_high;
- smp_rmb();
-
- if (unlikely(spte.spte_low != orig->spte_low ||
- count != sp->clear_spte_count))
- goto retry;
-
- return spte.spte;
-}
-#endif
-
-/* Rules for using mmu_spte_set:
- * Set the sptep from nonpresent to present.
- * Note: the sptep being assigned *must* be either not present
- * or in a state where the hardware will not attempt to update
- * the spte.
- */
-static void mmu_spte_set(u64 *sptep, u64 new_spte)
-{
- WARN_ON(is_shadow_present_pte(*sptep));
- __set_spte(sptep, new_spte);
-}
-
-/*
- * Update the SPTE (excluding the PFN), but do not track changes in its
- * accessed/dirty status.
- */
-static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
-{
- u64 old_spte = *sptep;
-
- WARN_ON(!is_shadow_present_pte(new_spte));
- check_spte_writable_invariants(new_spte);
-
- if (!is_shadow_present_pte(old_spte)) {
- mmu_spte_set(sptep, new_spte);
- return old_spte;
- }
-
- if (!spte_has_volatile_bits(old_spte))
- __update_clear_spte_fast(sptep, new_spte);
- else
- old_spte = __update_clear_spte_slow(sptep, new_spte);
-
- WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
-
- return old_spte;
-}
-
-/* Rules for using mmu_spte_update:
- * Update the state bits, it means the mapped pfn is not changed.
- *
- * Whenever an MMU-writable SPTE is overwritten with a read-only SPTE, remote
- * TLBs must be flushed. Otherwise rmap_write_protect will find a read-only
- * spte, even though the writable spte might be cached on a CPU's TLB.
- *
- * Returns true if the TLB needs to be flushed
- */
-static bool mmu_spte_update(u64 *sptep, u64 new_spte)
-{
- bool flush = false;
- u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
-
- if (!is_shadow_present_pte(old_spte))
- return false;
-
- /*
- * For the spte updated out of mmu-lock is safe, since
- * we always atomically update it, see the comments in
- * spte_has_volatile_bits().
- */
- if (is_mmu_writable_spte(old_spte) &&
- !is_writable_pte(new_spte))
- flush = true;
-
- /*
- * Flush TLB when accessed/dirty states are changed in the page tables,
- * to guarantee consistency between TLB and page tables.
- */
-
- if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
- flush = true;
- kvm_set_pfn_accessed(spte_to_pfn(old_spte));
- }
-
- if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
- flush = true;
- kvm_set_pfn_dirty(spte_to_pfn(old_spte));
- }
-
- return flush;
-}
-
-/*
- * Rules for using mmu_spte_clear_track_bits:
- * It sets the sptep from present to nonpresent, and track the
- * state bits, it is used to clear the last level sptep.
- * Returns the old PTE.
- */
-static u64 mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep)
-{
- kvm_pfn_t pfn;
- u64 old_spte = *sptep;
- int level = sptep_to_sp(sptep)->role.level;
- struct page *page;
-
- if (!is_shadow_present_pte(old_spte) ||
- !spte_has_volatile_bits(old_spte))
- __update_clear_spte_fast(sptep, 0ull);
- else
- old_spte = __update_clear_spte_slow(sptep, 0ull);
-
- if (!is_shadow_present_pte(old_spte))
- return old_spte;
-
- kvm_update_page_stats(kvm, level, -1);
-
- pfn = spte_to_pfn(old_spte);
-
- /*
- * KVM doesn't hold a reference to any pages mapped into the guest, and
- * instead uses the mmu_notifier to ensure that KVM unmaps any pages
- * before they are reclaimed. Sanity check that, if the pfn is backed
- * by a refcounted page, the refcount is elevated.
- */
- page = kvm_pfn_to_refcounted_page(pfn);
- WARN_ON(page && !page_count(page));
-
- if (is_accessed_spte(old_spte))
- kvm_set_pfn_accessed(pfn);
-
- if (is_dirty_spte(old_spte))
- kvm_set_pfn_dirty(pfn);
-
- return old_spte;
-}
-
-/*
- * Rules for using mmu_spte_clear_no_track:
- * Directly clear spte without caring the state bits of sptep,
- * it is used to set the upper level spte.
- */
-static void mmu_spte_clear_no_track(u64 *sptep)
-{
- __update_clear_spte_fast(sptep, 0ull);
-}
-
-static u64 mmu_spte_get_lockless(u64 *sptep)
-{
- return __get_spte_lockless(sptep);
-}
-
-/* Returns the Accessed status of the PTE and resets it at the same time. */
-static bool mmu_spte_age(u64 *sptep)
-{
- u64 spte = mmu_spte_get_lockless(sptep);
-
- if (!is_accessed_spte(spte))
- return false;
-
- if (spte_ad_enabled(spte)) {
- clear_bit((ffs(shadow_accessed_mask) - 1),
- (unsigned long *)sptep);
- } else {
- /*
- * Capture the dirty status of the page, so that it doesn't get
- * lost when the SPTE is marked for access tracking.
- */
- if (is_writable_pte(spte))
- kvm_set_pfn_dirty(spte_to_pfn(spte));
-
- spte = mark_spte_for_access_track(spte);
- mmu_spte_update_no_track(sptep, spte);
- }
-
- return true;
-}
-
void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
{
if (is_tdp_mmu(vcpu->arch.mmu)) {
@@ -670,77 +310,6 @@ static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
}
-static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
-{
- kmem_cache_free(pte_list_desc_cache, pte_list_desc);
-}
-
-static bool sp_has_gptes(struct kvm_mmu_page *sp);
-
-static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
-{
- if (sp->role.passthrough)
- return sp->gfn;
-
- if (!sp->role.direct)
- return sp->shadowed_translation[index] >> PAGE_SHIFT;
-
- return sp->gfn + (index << ((sp->role.level - 1) * SPTE_LEVEL_BITS));
-}
-
-/*
- * For leaf SPTEs, fetch the *guest* access permissions being shadowed. Note
- * that the SPTE itself may have a more constrained access permissions that
- * what the guest enforces. For example, a guest may create an executable
- * huge PTE but KVM may disallow execution to mitigate iTLB multihit.
- */
-static u32 kvm_mmu_page_get_access(struct kvm_mmu_page *sp, int index)
-{
- if (sp_has_gptes(sp))
- return sp->shadowed_translation[index] & ACC_ALL;
-
- /*
- * For direct MMUs (e.g. TDP or non-paging guests) or passthrough SPs,
- * KVM is not shadowing any guest page tables, so the "guest access
- * permissions" are just ACC_ALL.
- *
- * For direct SPs in indirect MMUs (shadow paging), i.e. when KVM
- * is shadowing a guest huge page with small pages, the guest access
- * permissions being shadowed are the access permissions of the huge
- * page.
- *
- * In both cases, sp->role.access contains the correct access bits.
- */
- return sp->role.access;
-}
-
-static void kvm_mmu_page_set_translation(struct kvm_mmu_page *sp, int index,
- gfn_t gfn, unsigned int access)
-{
- if (sp_has_gptes(sp)) {
- sp->shadowed_translation[index] = (gfn << PAGE_SHIFT) | access;
- return;
- }
-
- WARN_ONCE(access != kvm_mmu_page_get_access(sp, index),
- "access mismatch under %s page %llx (expected %u, got %u)\n",
- sp->role.passthrough ? "passthrough" : "direct",
- sp->gfn, kvm_mmu_page_get_access(sp, index), access);
-
- WARN_ONCE(gfn != kvm_mmu_page_get_gfn(sp, index),
- "gfn mismatch under %s page %llx (expected %llx, got %llx)\n",
- sp->role.passthrough ? "passthrough" : "direct",
- sp->gfn, kvm_mmu_page_get_gfn(sp, index), gfn);
-}
-
-static void kvm_mmu_page_set_access(struct kvm_mmu_page *sp, int index,
- unsigned int access)
-{
- gfn_t gfn = kvm_mmu_page_get_gfn(sp, index);
-
- kvm_mmu_page_set_translation(sp, index, gfn, access);
-}
-
/*
* Return the pointer to the large page information for a given gfn,
* handling slots that are not large page aligned.
@@ -777,28 +346,6 @@ void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
update_gfn_disallow_lpage_count(slot, gfn, -1);
}
-static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
-{
- struct kvm_memslots *slots;
- struct kvm_memory_slot *slot;
- gfn_t gfn;
-
- kvm->arch.indirect_shadow_pages++;
- gfn = sp->gfn;
- slots = kvm_memslots_for_spte_role(kvm, sp->role);
- slot = __gfn_to_memslot(slots, gfn);
-
- /* the non-leaf shadow pages are keeping readonly. */
- if (sp->role.level > PG_LEVEL_4K)
- return kvm_slot_page_track_add_page(kvm, slot, gfn,
- KVM_PAGE_TRACK_WRITE);
-
- kvm_mmu_gfn_disallow_lpage(slot, gfn);
-
- if (kvm_mmu_slot_gfn_write_protect(kvm, slot, gfn, PG_LEVEL_4K))
- kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
-}
-
void track_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
/*
@@ -826,23 +373,6 @@ void account_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp,
track_possible_nx_huge_page(kvm, sp);
}
-static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
-{
- struct kvm_memslots *slots;
- struct kvm_memory_slot *slot;
- gfn_t gfn;
-
- kvm->arch.indirect_shadow_pages--;
- gfn = sp->gfn;
- slots = kvm_memslots_for_spte_role(kvm, sp->role);
- slot = __gfn_to_memslot(slots, gfn);
- if (sp->role.level > PG_LEVEL_4K)
- return kvm_slot_page_track_remove_page(kvm, slot, gfn,
- KVM_PAGE_TRACK_WRITE);
-
- kvm_mmu_gfn_allow_lpage(slot, gfn);
-}
-
void untrack_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
if (list_empty(&sp->possible_nx_huge_page_link))
@@ -873,437 +403,51 @@ struct kvm_memory_slot *gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu,
return slot;
}
-/*
- * About rmap_head encoding:
+/**
+ * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
+ * @kvm: kvm instance
+ * @slot: slot to protect
+ * @gfn_offset: start of the BITS_PER_LONG pages we care about
+ * @mask: indicates which pages we should protect
*
- * If the bit zero of rmap_head->val is clear, then it points to the only spte
- * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
- * pte_list_desc containing more mappings.
- */
-
-/*
- * Returns the number of pointers in the rmap chain, not counting the new one.
+ * Used when we do not need to care about huge page mappings.
*/
-static int pte_list_add(struct kvm_mmu_memory_cache *cache, u64 *spte,
- struct kvm_rmap_head *rmap_head)
-{
- struct pte_list_desc *desc;
- int count = 0;
-
- if (!rmap_head->val) {
- rmap_printk("%p %llx 0->1\n", spte, *spte);
- rmap_head->val = (unsigned long)spte;
- } else if (!(rmap_head->val & 1)) {
- rmap_printk("%p %llx 1->many\n", spte, *spte);
- desc = kvm_mmu_memory_cache_alloc(cache);
- desc->sptes[0] = (u64 *)rmap_head->val;
- desc->sptes[1] = spte;
- desc->spte_count = 2;
- rmap_head->val = (unsigned long)desc | 1;
- ++count;
- } else {
- rmap_printk("%p %llx many->many\n", spte, *spte);
- desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
- while (desc->spte_count == PTE_LIST_EXT) {
- count += PTE_LIST_EXT;
- if (!desc->more) {
- desc->more = kvm_mmu_memory_cache_alloc(cache);
- desc = desc->more;
- desc->spte_count = 0;
- break;
- }
- desc = desc->more;
- }
- count += desc->spte_count;
- desc->sptes[desc->spte_count++] = spte;
- }
- return count;
-}
-
-static void
-pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
- struct pte_list_desc *desc, int i,
- struct pte_list_desc *prev_desc)
+static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
+ struct kvm_memory_slot *slot,
+ gfn_t gfn_offset, unsigned long mask)
{
- int j = desc->spte_count - 1;
+ struct kvm_rmap_head *rmap_head;
+
+ if (is_tdp_mmu_enabled(kvm))
+ kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
+ slot->base_gfn + gfn_offset, mask, true);
- desc->sptes[i] = desc->sptes[j];
- desc->sptes[j] = NULL;
- desc->spte_count--;
- if (desc->spte_count)
+ if (!kvm_memslots_have_rmaps(kvm))
return;
- if (!prev_desc && !desc->more)
- rmap_head->val = 0;
- else
- if (prev_desc)
- prev_desc->more = desc->more;
- else
- rmap_head->val = (unsigned long)desc->more | 1;
- mmu_free_pte_list_desc(desc);
-}
-static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
-{
- struct pte_list_desc *desc;
- struct pte_list_desc *prev_desc;
- int i;
+ while (mask) {
+ rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
+ PG_LEVEL_4K, slot);
+ rmap_write_protect(rmap_head, false);
- if (!rmap_head->val) {
- pr_err("%s: %p 0->BUG\n", __func__, spte);
- BUG();
- } else if (!(rmap_head->val & 1)) {
- rmap_printk("%p 1->0\n", spte);
- if ((u64 *)rmap_head->val != spte) {
- pr_err("%s: %p 1->BUG\n", __func__, spte);
- BUG();
- }
- rmap_head->val = 0;
- } else {
- rmap_printk("%p many->many\n", spte);
- desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
- prev_desc = NULL;
- while (desc) {
- for (i = 0; i < desc->spte_count; ++i) {
- if (desc->sptes[i] == spte) {
- pte_list_desc_remove_entry(rmap_head,
- desc, i, prev_desc);
- return;
- }
- }
- prev_desc = desc;
- desc = desc->more;
- }
- pr_err("%s: %p many->many\n", __func__, spte);
- BUG();
+ /* clear the first set bit */
+ mask &= mask - 1;
}
}
-static void kvm_zap_one_rmap_spte(struct kvm *kvm,
- struct kvm_rmap_head *rmap_head, u64 *sptep)
-{
- mmu_spte_clear_track_bits(kvm, sptep);
- pte_list_remove(sptep, rmap_head);
-}
-
-/* Return true if at least one SPTE was zapped, false otherwise */
-static bool kvm_zap_all_rmap_sptes(struct kvm *kvm,
- struct kvm_rmap_head *rmap_head)
-{
- struct pte_list_desc *desc, *next;
- int i;
-
- if (!rmap_head->val)
- return false;
-
- if (!(rmap_head->val & 1)) {
- mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val);
- goto out;
- }
-
- desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
-
- for (; desc; desc = next) {
- for (i = 0; i < desc->spte_count; i++)
- mmu_spte_clear_track_bits(kvm, desc->sptes[i]);
- next = desc->more;
- mmu_free_pte_list_desc(desc);
- }
-out:
- /* rmap_head is meaningless now, remember to reset it */
- rmap_head->val = 0;
- return true;
-}
-
-unsigned int pte_list_count(struct kvm_rmap_head *rmap_head)
-{
- struct pte_list_desc *desc;
- unsigned int count = 0;
-
- if (!rmap_head->val)
- return 0;
- else if (!(rmap_head->val & 1))
- return 1;
-
- desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
-
- while (desc) {
- count += desc->spte_count;
- desc = desc->more;
- }
-
- return count;
-}
-
-static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level,
- const struct kvm_memory_slot *slot)
-{
- unsigned long idx;
-
- idx = gfn_to_index(gfn, slot->base_gfn, level);
- return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
-}
-
-static bool rmap_can_add(struct kvm_vcpu *vcpu)
-{
- struct kvm_mmu_memory_cache *mc;
-
- mc = &vcpu->arch.mmu_pte_list_desc_cache;
- return kvm_mmu_memory_cache_nr_free_objects(mc);
-}
-
-static void rmap_remove(struct kvm *kvm, u64 *spte)
-{
- struct kvm_memslots *slots;
- struct kvm_memory_slot *slot;
- struct kvm_mmu_page *sp;
- gfn_t gfn;
- struct kvm_rmap_head *rmap_head;
-
- sp = sptep_to_sp(spte);
- gfn = kvm_mmu_page_get_gfn(sp, spte_index(spte));
-
- /*
- * Unlike rmap_add, rmap_remove does not run in the context of a vCPU
- * so we have to determine which memslots to use based on context
- * information in sp->role.
- */
- slots = kvm_memslots_for_spte_role(kvm, sp->role);
-
- slot = __gfn_to_memslot(slots, gfn);
- rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
-
- pte_list_remove(spte, rmap_head);
-}
-
-/*
- * Used by the following functions to iterate through the sptes linked by a
- * rmap. All fields are private and not assumed to be used outside.
- */
-struct rmap_iterator {
- /* private fields */
- struct pte_list_desc *desc; /* holds the sptep if not NULL */
- int pos; /* index of the sptep */
-};
-
-/*
- * Iteration must be started by this function. This should also be used after
- * removing/dropping sptes from the rmap link because in such cases the
- * information in the iterator may not be valid.
- *
- * Returns sptep if found, NULL otherwise.
- */
-static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
- struct rmap_iterator *iter)
-{
- u64 *sptep;
-
- if (!rmap_head->val)
- return NULL;
-
- if (!(rmap_head->val & 1)) {
- iter->desc = NULL;
- sptep = (u64 *)rmap_head->val;
- goto out;
- }
-
- iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
- iter->pos = 0;
- sptep = iter->desc->sptes[iter->pos];
-out:
- BUG_ON(!is_shadow_present_pte(*sptep));
- return sptep;
-}
-
-/*
- * Must be used with a valid iterator: e.g. after rmap_get_first().
- *
- * Returns sptep if found, NULL otherwise.
- */
-static u64 *rmap_get_next(struct rmap_iterator *iter)
-{
- u64 *sptep;
-
- if (iter->desc) {
- if (iter->pos < PTE_LIST_EXT - 1) {
- ++iter->pos;
- sptep = iter->desc->sptes[iter->pos];
- if (sptep)
- goto out;
- }
-
- iter->desc = iter->desc->more;
-
- if (iter->desc) {
- iter->pos = 0;
- /* desc->sptes[0] cannot be NULL */
- sptep = iter->desc->sptes[iter->pos];
- goto out;
- }
- }
-
- return NULL;
-out:
- BUG_ON(!is_shadow_present_pte(*sptep));
- return sptep;
-}
-
-#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
- for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
- _spte_; _spte_ = rmap_get_next(_iter_))
-
-static void drop_spte(struct kvm *kvm, u64 *sptep)
-{
- u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep);
-
- if (is_shadow_present_pte(old_spte))
- rmap_remove(kvm, sptep);
-}
-
-static void drop_large_spte(struct kvm *kvm, u64 *sptep, bool flush)
-{
- struct kvm_mmu_page *sp;
-
- sp = sptep_to_sp(sptep);
- WARN_ON(sp->role.level == PG_LEVEL_4K);
-
- drop_spte(kvm, sptep);
-
- if (flush)
- kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
- KVM_PAGES_PER_HPAGE(sp->role.level));
-}
-
-/*
- * Write-protect on the specified @sptep, @pt_protect indicates whether
- * spte write-protection is caused by protecting shadow page table.
- *
- * Note: write protection is difference between dirty logging and spte
- * protection:
- * - for dirty logging, the spte can be set to writable at anytime if
- * its dirty bitmap is properly set.
- * - for spte protection, the spte can be writable only after unsync-ing
- * shadow page.
- *
- * Return true if tlb need be flushed.
- */
-static bool spte_write_protect(u64 *sptep, bool pt_protect)
-{
- u64 spte = *sptep;
-
- if (!is_writable_pte(spte) &&
- !(pt_protect && is_mmu_writable_spte(spte)))
- return false;
-
- rmap_printk("spte %p %llx\n", sptep, *sptep);
-
- if (pt_protect)
- spte &= ~shadow_mmu_writable_mask;
- spte = spte & ~PT_WRITABLE_MASK;
-
- return mmu_spte_update(sptep, spte);
-}
-
-static bool rmap_write_protect(struct kvm_rmap_head *rmap_head,
- bool pt_protect)
-{
- u64 *sptep;
- struct rmap_iterator iter;
- bool flush = false;
-
- for_each_rmap_spte(rmap_head, &iter, sptep)
- flush |= spte_write_protect(sptep, pt_protect);
-
- return flush;
-}
-
-static bool spte_clear_dirty(u64 *sptep)
-{
- u64 spte = *sptep;
-
- rmap_printk("spte %p %llx\n", sptep, *sptep);
-
- MMU_WARN_ON(!spte_ad_enabled(spte));
- spte &= ~shadow_dirty_mask;
- return mmu_spte_update(sptep, spte);
-}
-
-static bool spte_wrprot_for_clear_dirty(u64 *sptep)
-{
- bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
- (unsigned long *)sptep);
- if (was_writable && !spte_ad_enabled(*sptep))
- kvm_set_pfn_dirty(spte_to_pfn(*sptep));
-
- return was_writable;
-}
-
-/*
- * Gets the GFN ready for another round of dirty logging by clearing the
- * - D bit on ad-enabled SPTEs, and
- * - W bit on ad-disabled SPTEs.
- * Returns true iff any D or W bits were cleared.
- */
-static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
- const struct kvm_memory_slot *slot)
-{
- u64 *sptep;
- struct rmap_iterator iter;
- bool flush = false;
-
- for_each_rmap_spte(rmap_head, &iter, sptep)
- if (spte_ad_need_write_protect(*sptep))
- flush |= spte_wrprot_for_clear_dirty(sptep);
- else
- flush |= spte_clear_dirty(sptep);
-
- return flush;
-}
-
-/**
- * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
- * @kvm: kvm instance
- * @slot: slot to protect
- * @gfn_offset: start of the BITS_PER_LONG pages we care about
- * @mask: indicates which pages we should protect
- *
- * Used when we do not need to care about huge page mappings.
- */
-static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
- struct kvm_memory_slot *slot,
- gfn_t gfn_offset, unsigned long mask)
-{
- struct kvm_rmap_head *rmap_head;
-
- if (is_tdp_mmu_enabled(kvm))
- kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
- slot->base_gfn + gfn_offset, mask, true);
-
- if (!kvm_memslots_have_rmaps(kvm))
- return;
-
- while (mask) {
- rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
- PG_LEVEL_4K, slot);
- rmap_write_protect(rmap_head, false);
-
- /* clear the first set bit */
- mask &= mask - 1;
- }
-}
-
-/**
- * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
- * protect the page if the D-bit isn't supported.
- * @kvm: kvm instance
- * @slot: slot to clear D-bit
- * @gfn_offset: start of the BITS_PER_LONG pages we care about
- * @mask: indicates which pages we should clear D-bit
- *
- * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
- */
-static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
- struct kvm_memory_slot *slot,
- gfn_t gfn_offset, unsigned long mask)
+/**
+ * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
+ * protect the page if the D-bit isn't supported.
+ * @kvm: kvm instance
+ * @slot: slot to clear D-bit
+ * @gfn_offset: start of the BITS_PER_LONG pages we care about
+ * @mask: indicates which pages we should clear D-bit
+ *
+ * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
+ */
+static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
+ struct kvm_memory_slot *slot,
+ gfn_t gfn_offset, unsigned long mask)
{
struct kvm_rmap_head *rmap_head;
@@ -1405,147 +549,6 @@ bool kvm_vcpu_write_protect_gfn(struct kvm_vcpu *vcpu, u64 gfn)
return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K);
}
-static bool __kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
- const struct kvm_memory_slot *slot)
-{
- return kvm_zap_all_rmap_sptes(kvm, rmap_head);
-}
-
-static bool kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
- struct kvm_memory_slot *slot, gfn_t gfn, int level,
- pte_t unused)
-{
- return __kvm_zap_rmap(kvm, rmap_head, slot);
-}
-
-static bool kvm_set_pte_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
- struct kvm_memory_slot *slot, gfn_t gfn, int level,
- pte_t pte)
-{
- u64 *sptep;
- struct rmap_iterator iter;
- bool need_flush = false;
- u64 new_spte;
- kvm_pfn_t new_pfn;
-
- WARN_ON(pte_huge(pte));
- new_pfn = pte_pfn(pte);
-
-restart:
- for_each_rmap_spte(rmap_head, &iter, sptep) {
- rmap_printk("spte %p %llx gfn %llx (%d)\n",
- sptep, *sptep, gfn, level);
-
- need_flush = true;
-
- if (pte_write(pte)) {
- kvm_zap_one_rmap_spte(kvm, rmap_head, sptep);
- goto restart;
- } else {
- new_spte = kvm_mmu_changed_pte_notifier_make_spte(
- *sptep, new_pfn);
-
- mmu_spte_clear_track_bits(kvm, sptep);
- mmu_spte_set(sptep, new_spte);
- }
- }
-
- if (need_flush && kvm_available_flush_tlb_with_range()) {
- kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
- return false;
- }
-
- return need_flush;
-}
-
-struct slot_rmap_walk_iterator {
- /* input fields. */
- const struct kvm_memory_slot *slot;
- gfn_t start_gfn;
- gfn_t end_gfn;
- int start_level;
- int end_level;
-
- /* output fields. */
- gfn_t gfn;
- struct kvm_rmap_head *rmap;
- int level;
-
- /* private field. */
- struct kvm_rmap_head *end_rmap;
-};
-
-static void
-rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
-{
- iterator->level = level;
- iterator->gfn = iterator->start_gfn;
- iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot);
- iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot);
-}
-
-static void
-slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
- const struct kvm_memory_slot *slot, int start_level,
- int end_level, gfn_t start_gfn, gfn_t end_gfn)
-{
- iterator->slot = slot;
- iterator->start_level = start_level;
- iterator->end_level = end_level;
- iterator->start_gfn = start_gfn;
- iterator->end_gfn = end_gfn;
-
- rmap_walk_init_level(iterator, iterator->start_level);
-}
-
-static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
-{
- return !!iterator->rmap;
-}
-
-static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
-{
- while (++iterator->rmap <= iterator->end_rmap) {
- iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
-
- if (iterator->rmap->val)
- return;
- }
-
- if (++iterator->level > iterator->end_level) {
- iterator->rmap = NULL;
- return;
- }
-
- rmap_walk_init_level(iterator, iterator->level);
-}
-
-#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
- _start_gfn, _end_gfn, _iter_) \
- for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
- _end_level_, _start_gfn, _end_gfn); \
- slot_rmap_walk_okay(_iter_); \
- slot_rmap_walk_next(_iter_))
-
-typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
- struct kvm_memory_slot *slot, gfn_t gfn,
- int level, pte_t pte);
-
-static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm,
- struct kvm_gfn_range *range,
- rmap_handler_t handler)
-{
- struct slot_rmap_walk_iterator iterator;
- bool ret = false;
-
- for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
- range->start, range->end - 1, &iterator)
- ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn,
- iterator.level, range->pte);
-
- return ret;
-}
-
bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
{
bool flush = false;
@@ -1572,2392 +575,596 @@ bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
return flush;
}
-static bool kvm_age_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
- struct kvm_memory_slot *slot, gfn_t gfn, int level,
- pte_t unused)
+bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
{
- u64 *sptep;
- struct rmap_iterator iter;
- int young = 0;
-
- for_each_rmap_spte(rmap_head, &iter, sptep)
- young |= mmu_spte_age(sptep);
+ bool young = false;
- return young;
-}
+ if (kvm_memslots_have_rmaps(kvm))
+ young = kvm_handle_gfn_range(kvm, range, kvm_age_rmap);
-static bool kvm_test_age_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
- struct kvm_memory_slot *slot, gfn_t gfn,
- int level, pte_t unused)
-{
- u64 *sptep;
- struct rmap_iterator iter;
+ if (is_tdp_mmu_enabled(kvm))
+ young |= kvm_tdp_mmu_age_gfn_range(kvm, range);
- for_each_rmap_spte(rmap_head, &iter, sptep)
- if (is_accessed_spte(*sptep))
- return true;
- return false;
+ return young;
}
-#define RMAP_RECYCLE_THRESHOLD 1000
-
-static void __rmap_add(struct kvm *kvm,
- struct kvm_mmu_memory_cache *cache,
- const struct kvm_memory_slot *slot,
- u64 *spte, gfn_t gfn, unsigned int access)
+bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
{
- struct kvm_mmu_page *sp;
- struct kvm_rmap_head *rmap_head;
- int rmap_count;
+ bool young = false;
- sp = sptep_to_sp(spte);
- kvm_mmu_page_set_translation(sp, spte_index(spte), gfn, access);
- kvm_update_page_stats(kvm, sp->role.level, 1);
+ if (kvm_memslots_have_rmaps(kvm))
+ young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmap);
- rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
- rmap_count = pte_list_add(cache, spte, rmap_head);
+ if (is_tdp_mmu_enabled(kvm))
+ young |= kvm_tdp_mmu_test_age_gfn(kvm, range);
- if (rmap_count > kvm->stat.max_mmu_rmap_size)
- kvm->stat.max_mmu_rmap_size = rmap_count;
- if (rmap_count > RMAP_RECYCLE_THRESHOLD) {
- kvm_zap_all_rmap_sptes(kvm, rmap_head);
- kvm_flush_remote_tlbs_with_address(
- kvm, sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level));
- }
+ return young;
}
-static void rmap_add(struct kvm_vcpu *vcpu, const struct kvm_memory_slot *slot,
- u64 *spte, gfn_t gfn, unsigned int access)
+bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm, struct list_head *invalid_list,
+ bool remote_flush)
{
- struct kvm_mmu_memory_cache *cache = &vcpu->arch.mmu_pte_list_desc_cache;
+ if (!remote_flush && list_empty(invalid_list))
+ return false;
- __rmap_add(vcpu->kvm, cache, slot, spte, gfn, access);
+ if (!list_empty(invalid_list))
+ kvm_mmu_commit_zap_page(kvm, invalid_list);
+ else
+ kvm_flush_remote_tlbs(kvm);
+ return true;
}
-bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
+bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
{
- bool young = false;
-
- if (kvm_memslots_have_rmaps(kvm))
- young = kvm_handle_gfn_range(kvm, range, kvm_age_rmap);
-
- if (is_tdp_mmu_enabled(kvm))
- young |= kvm_tdp_mmu_age_gfn_range(kvm, range);
+ if (sp->role.invalid)
+ return true;
- return young;
+ /* TDP MMU pages do not use the MMU generation. */
+ return !sp->tdp_mmu_page &&
+ unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
}
-bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
+/*
+ * Lookup the mapping level for @gfn in the current mm.
+ *
+ * WARNING! Use of host_pfn_mapping_level() requires the caller and the end
+ * consumer to be tied into KVM's handlers for MMU notifier events!
+ *
+ * There are several ways to safely use this helper:
+ *
+ * - Check mmu_invalidate_retry_hva() after grabbing the mapping level, before
+ * consuming it. In this case, mmu_lock doesn't need to be held during the
+ * lookup, but it does need to be held while checking the MMU notifier.
+ *
+ * - Hold mmu_lock AND ensure there is no in-progress MMU notifier invalidation
+ * event for the hva. This can be done by explicit checking the MMU notifier
+ * or by ensuring that KVM already has a valid mapping that covers the hva.
+ *
+ * - Do not use the result to install new mappings, e.g. use the host mapping
+ * level only to decide whether or not to zap an entry. In this case, it's
+ * not required to hold mmu_lock (though it's highly likely the caller will
+ * want to hold mmu_lock anyways, e.g. to modify SPTEs).
+ *
+ * Note! The lookup can still race with modifications to host page tables, but
+ * the above "rules" ensure KVM will not _consume_ the result of the walk if a
+ * race with the primary MMU occurs.
+ */
+static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn,
+ const struct kvm_memory_slot *slot)
{
- bool young = false;
+ int level = PG_LEVEL_4K;
+ unsigned long hva;
+ unsigned long flags;
+ pgd_t pgd;
+ p4d_t p4d;
+ pud_t pud;
+ pmd_t pmd;
- if (kvm_memslots_have_rmaps(kvm))
- young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmap);
+ /*
+ * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
+ * is not solely for performance, it's also necessary to avoid the
+ * "writable" check in __gfn_to_hva_many(), which will always fail on
+ * read-only memslots due to gfn_to_hva() assuming writes. Earlier
+ * page fault steps have already verified the guest isn't writing a
+ * read-only memslot.
+ */
+ hva = __gfn_to_hva_memslot(slot, gfn);
- if (is_tdp_mmu_enabled(kvm))
- young |= kvm_tdp_mmu_test_age_gfn(kvm, range);
+ /*
+ * Disable IRQs to prevent concurrent tear down of host page tables,
+ * e.g. if the primary MMU promotes a P*D to a huge page and then frees
+ * the original page table.
+ */
+ local_irq_save(flags);
- return young;
-}
+ /*
+ * Read each entry once. As above, a non-leaf entry can be promoted to
+ * a huge page _during_ this walk. Re-reading the entry could send the
+ * walk into the weeks, e.g. p*d_large() returns false (sees the old
+ * value) and then p*d_offset() walks into the target huge page instead
+ * of the old page table (sees the new value).
+ */
+ pgd = READ_ONCE(*pgd_offset(kvm->mm, hva));
+ if (pgd_none(pgd))
+ goto out;
-#ifdef MMU_DEBUG
-static int is_empty_shadow_page(u64 *spt)
-{
- u64 *pos;
- u64 *end;
+ p4d = READ_ONCE(*p4d_offset(&pgd, hva));
+ if (p4d_none(p4d) || !p4d_present(p4d))
+ goto out;
- for (pos = spt, end = pos + SPTE_ENT_PER_PAGE; pos != end; pos++)
- if (is_shadow_present_pte(*pos)) {
- printk(KERN_ERR "%s: %p %llx\n", __func__,
- pos, *pos);
- return 0;
- }
- return 1;
-}
-#endif
+ pud = READ_ONCE(*pud_offset(&p4d, hva));
+ if (pud_none(pud) || !pud_present(pud))
+ goto out;
-/*
- * This value is the sum of all of the kvm instances's
- * kvm->arch.n_used_mmu_pages values. We need a global,
- * aggregate version in order to make the slab shrinker
- * faster
- */
-static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr)
-{
- kvm->arch.n_used_mmu_pages += nr;
- percpu_counter_add(&kvm_total_used_mmu_pages, nr);
-}
+ if (pud_large(pud)) {
+ level = PG_LEVEL_1G;
+ goto out;
+ }
-static void kvm_account_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp)
-{
- kvm_mod_used_mmu_pages(kvm, +1);
- kvm_account_pgtable_pages((void *)sp->spt, +1);
-}
+ pmd = READ_ONCE(*pmd_offset(&pud, hva));
+ if (pmd_none(pmd) || !pmd_present(pmd))
+ goto out;
-static void kvm_unaccount_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp)
-{
- kvm_mod_used_mmu_pages(kvm, -1);
- kvm_account_pgtable_pages((void *)sp->spt, -1);
-}
+ if (pmd_large(pmd))
+ level = PG_LEVEL_2M;
-static void kvm_mmu_free_shadow_page(struct kvm_mmu_page *sp)
-{
- MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
- hlist_del(&sp->hash_link);
- list_del(&sp->link);
- free_page((unsigned long)sp->spt);
- if (!sp->role.direct)
- free_page((unsigned long)sp->shadowed_translation);
- kmem_cache_free(mmu_page_header_cache, sp);
+out:
+ local_irq_restore(flags);
+ return level;
}
-static unsigned kvm_page_table_hashfn(gfn_t gfn)
+int kvm_mmu_max_mapping_level(struct kvm *kvm,
+ const struct kvm_memory_slot *slot, gfn_t gfn,
+ int max_level)
{
- return hash_64(gfn, KVM_MMU_HASH_SHIFT);
-}
+ struct kvm_lpage_info *linfo;
+ int host_level;
-static void mmu_page_add_parent_pte(struct kvm_mmu_memory_cache *cache,
- struct kvm_mmu_page *sp, u64 *parent_pte)
-{
- if (!parent_pte)
- return;
+ max_level = min(max_level, max_huge_page_level);
+ for ( ; max_level > PG_LEVEL_4K; max_level--) {
+ linfo = lpage_info_slot(gfn, slot, max_level);
+ if (!linfo->disallow_lpage)
+ break;
+ }
- pte_list_add(cache, parent_pte, &sp->parent_ptes);
-}
+ if (max_level == PG_LEVEL_4K)
+ return PG_LEVEL_4K;
-static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
- u64 *parent_pte)
-{
- pte_list_remove(parent_pte, &sp->parent_ptes);
+ host_level = host_pfn_mapping_level(kvm, gfn, slot);
+ return min(host_level, max_level);
}
-static void drop_parent_pte(struct kvm_mmu_page *sp,
- u64 *parent_pte)
+void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
{
- mmu_page_remove_parent_pte(sp, parent_pte);
- mmu_spte_clear_no_track(parent_pte);
-}
+ struct kvm_memory_slot *slot = fault->slot;
+ kvm_pfn_t mask;
-static void mark_unsync(u64 *spte);
-static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
-{
- u64 *sptep;
- struct rmap_iterator iter;
+ fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled;
- for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
- mark_unsync(sptep);
- }
-}
+ if (unlikely(fault->max_level == PG_LEVEL_4K))
+ return;
-static void mark_unsync(u64 *spte)
-{
- struct kvm_mmu_page *sp;
+ if (is_error_noslot_pfn(fault->pfn))
+ return;
- sp = sptep_to_sp(spte);
- if (__test_and_set_bit(spte_index(spte), sp->unsync_child_bitmap))
+ if (kvm_slot_dirty_track_enabled(slot))
return;
- if (sp->unsync_children++)
+
+ /*
+ * Enforce the iTLB multihit workaround after capturing the requested
+ * level, which will be used to do precise, accurate accounting.
+ */
+ fault->req_level = kvm_mmu_max_mapping_level(vcpu->kvm, slot,
+ fault->gfn, fault->max_level);
+ if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed)
return;
- kvm_mmu_mark_parents_unsync(sp);
-}
-static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
- struct kvm_mmu_page *sp)
-{
- return -1;
+ /*
+ * mmu_invalidate_retry() was successful and mmu_lock is held, so
+ * the pmd can't be split from under us.
+ */
+ fault->goal_level = fault->req_level;
+ mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1;
+ VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask));
+ fault->pfn &= ~mask;
}
-#define KVM_PAGE_ARRAY_NR 16
-
-struct kvm_mmu_pages {
- struct mmu_page_and_offset {
- struct kvm_mmu_page *sp;
- unsigned int idx;
- } page[KVM_PAGE_ARRAY_NR];
- unsigned int nr;
-};
-
-static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
- int idx)
+void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level)
{
- int i;
-
- if (sp->unsync)
- for (i=0; i < pvec->nr; i++)
- if (pvec->page[i].sp == sp)
- return 0;
-
- pvec->page[pvec->nr].sp = sp;
- pvec->page[pvec->nr].idx = idx;
- pvec->nr++;
- return (pvec->nr == KVM_PAGE_ARRAY_NR);
+ if (cur_level > PG_LEVEL_4K &&
+ cur_level == fault->goal_level &&
+ is_shadow_present_pte(spte) &&
+ !is_large_pte(spte) &&
+ spte_to_child_sp(spte)->nx_huge_page_disallowed) {
+ /*
+ * A small SPTE exists for this pfn, but FNAME(fetch)
+ * and __direct_map would like to create a large PTE
+ * instead: just force them to go down another level,
+ * patching back for them into pfn the next 9 bits of
+ * the address.
+ */
+ u64 page_mask = KVM_PAGES_PER_HPAGE(cur_level) -
+ KVM_PAGES_PER_HPAGE(cur_level - 1);
+ fault->pfn |= fault->gfn & page_mask;
+ fault->goal_level--;
+ }
}
-static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
+static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
{
- --sp->unsync_children;
- WARN_ON((int)sp->unsync_children < 0);
- __clear_bit(idx, sp->unsync_child_bitmap);
+ send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
}
-static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
- struct kvm_mmu_pages *pvec)
+static int kvm_handle_error_pfn(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
{
- int i, ret, nr_unsync_leaf = 0;
-
- for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
- struct kvm_mmu_page *child;
- u64 ent = sp->spt[i];
+ if (is_sigpending_pfn(pfn)) {
+ kvm_handle_signal_exit(vcpu);
+ return -EINTR;
+ }
- if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
- clear_unsync_child_bit(sp, i);
- continue;
- }
+ /*
+ * Do not cache the mmio info caused by writing the readonly gfn
+ * into the spte otherwise read access on readonly gfn also can
+ * caused mmio page fault and treat it as mmio access.
+ */
+ if (pfn == KVM_PFN_ERR_RO_FAULT)
+ return RET_PF_EMULATE;
- child = spte_to_child_sp(ent);
-
- if (child->unsync_children) {
- if (mmu_pages_add(pvec, child, i))
- return -ENOSPC;
-
- ret = __mmu_unsync_walk(child, pvec);
- if (!ret) {
- clear_unsync_child_bit(sp, i);
- continue;
- } else if (ret > 0) {
- nr_unsync_leaf += ret;
- } else
- return ret;
- } else if (child->unsync) {
- nr_unsync_leaf++;
- if (mmu_pages_add(pvec, child, i))
- return -ENOSPC;
- } else
- clear_unsync_child_bit(sp, i);
+ if (pfn == KVM_PFN_ERR_HWPOISON) {
+ kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
+ return RET_PF_RETRY;
}
- return nr_unsync_leaf;
+ return -EFAULT;
}
-#define INVALID_INDEX (-1)
-
-static int mmu_unsync_walk(struct kvm_mmu_page *sp,
- struct kvm_mmu_pages *pvec)
+static int handle_abnormal_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
+ unsigned int access)
{
- pvec->nr = 0;
- if (!sp->unsync_children)
- return 0;
+ /* The pfn is invalid, report the error! */
+ if (unlikely(is_error_pfn(fault->pfn)))
+ return kvm_handle_error_pfn(vcpu, fault->gfn, fault->pfn);
- mmu_pages_add(pvec, sp, INVALID_INDEX);
- return __mmu_unsync_walk(sp, pvec);
-}
+ if (unlikely(!fault->slot)) {
+ gva_t gva = fault->is_tdp ? 0 : fault->addr;
-static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
-{
- WARN_ON(!sp->unsync);
- trace_kvm_mmu_sync_page(sp);
- sp->unsync = 0;
- --kvm->stat.mmu_unsync;
-}
+ vcpu_cache_mmio_info(vcpu, gva, fault->gfn,
+ access & shadow_mmio_access_mask);
+ /*
+ * If MMIO caching is disabled, emulate immediately without
+ * touching the shadow page tables as attempting to install an
+ * MMIO SPTE will just be an expensive nop. Do not cache MMIO
+ * whose gfn is greater than host.MAXPHYADDR, any guest that
+ * generates such gfns is running nested and is being tricked
+ * by L0 userspace (you can observe gfn > L1.MAXPHYADDR if
+ * and only if L1's MAXPHYADDR is inaccurate with respect to
+ * the hardware's).
+ */
+ if (unlikely(!enable_mmio_caching) ||
+ unlikely(fault->gfn > kvm_mmu_max_gfn()))
+ return RET_PF_EMULATE;
+ }
-static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
- struct list_head *invalid_list);
-static void kvm_mmu_commit_zap_page(struct kvm *kvm,
- struct list_head *invalid_list);
+ return RET_PF_CONTINUE;
+}
-static bool sp_has_gptes(struct kvm_mmu_page *sp)
+static bool page_fault_can_be_fast(struct kvm_page_fault *fault)
{
- if (sp->role.direct)
- return false;
-
- if (sp->role.passthrough)
+ /*
+ * Page faults with reserved bits set, i.e. faults on MMIO SPTEs, only
+ * reach the common page fault handler if the SPTE has an invalid MMIO
+ * generation number. Refreshing the MMIO generation needs to go down
+ * the slow path. Note, EPT Misconfigs do NOT set the PRESENT flag!
+ */
+ if (fault->rsvd)
return false;
- return true;
-}
-
-#define for_each_valid_sp(_kvm, _sp, _list) \
- hlist_for_each_entry(_sp, _list, hash_link) \
- if (is_obsolete_sp((_kvm), (_sp))) { \
- } else
-
-#define for_each_gfn_valid_sp_with_gptes(_kvm, _sp, _gfn) \
- for_each_valid_sp(_kvm, _sp, \
- &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \
- if ((_sp)->gfn != (_gfn) || !sp_has_gptes(_sp)) {} else
-
-static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
- struct list_head *invalid_list)
-{
- int ret = vcpu->arch.mmu->sync_page(vcpu, sp);
+ /*
+ * #PF can be fast if:
+ *
+ * 1. The shadow page table entry is not present and A/D bits are
+ * disabled _by KVM_, which could mean that the fault is potentially
+ * caused by access tracking (if enabled). If A/D bits are enabled
+ * by KVM, but disabled by L1 for L2, KVM is forced to disable A/D
+ * bits for L2 and employ access tracking, but the fast page fault
+ * mechanism only supports direct MMUs.
+ * 2. The shadow page table entry is present, the access is a write,
+ * and no reserved bits are set (MMIO SPTEs cannot be "fixed"), i.e.
+ * the fault was caused by a write-protection violation. If the
+ * SPTE is MMU-writable (determined later), the fault can be fixed
+ * by setting the Writable bit, which can be done out of mmu_lock.
+ */
+ if (!fault->present)
+ return !kvm_ad_enabled();
- if (ret < 0)
- kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
- return ret;
+ /*
+ * Note, instruction fetches and writes are mutually exclusive, ignore
+ * the "exec" flag.
+ */
+ return fault->write;
}
-bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm, struct list_head *invalid_list,
- bool remote_flush)
+/*
+ * Returns true if the SPTE was fixed successfully. Otherwise,
+ * someone else modified the SPTE from its original value.
+ */
+static bool
+fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
+ u64 *sptep, u64 old_spte, u64 new_spte)
{
- if (!remote_flush && list_empty(invalid_list))
+ /*
+ * Theoretically we could also set dirty bit (and flush TLB) here in
+ * order to eliminate unnecessary PML logging. See comments in
+ * set_spte. But fast_page_fault is very unlikely to happen with PML
+ * enabled, so we do not do this. This might result in the same GPA
+ * to be logged in PML buffer again when the write really happens, and
+ * eventually to be called by mark_page_dirty twice. But it's also no
+ * harm. This also avoids the TLB flush needed after setting dirty bit
+ * so non-PML cases won't be impacted.
+ *
+ * Compare with set_spte where instead shadow_dirty_mask is set.
+ */
+ if (!try_cmpxchg64(sptep, &old_spte, new_spte))
return false;
- if (!list_empty(invalid_list))
- kvm_mmu_commit_zap_page(kvm, invalid_list);
- else
- kvm_flush_remote_tlbs(kvm);
- return true;
-}
-
-bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
-{
- if (sp->role.invalid)
- return true;
+ if (is_writable_pte(new_spte) && !is_writable_pte(old_spte))
+ mark_page_dirty_in_slot(vcpu->kvm, fault->slot, fault->gfn);
- /* TDP MMU pages do not use the MMU generation. */
- return !sp->tdp_mmu_page &&
- unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
+ return true;
}
-struct mmu_page_path {
- struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
- unsigned int idx[PT64_ROOT_MAX_LEVEL];
-};
-
-#define for_each_sp(pvec, sp, parents, i) \
- for (i = mmu_pages_first(&pvec, &parents); \
- i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
- i = mmu_pages_next(&pvec, &parents, i))
-
-static int mmu_pages_next(struct kvm_mmu_pages *pvec,
- struct mmu_page_path *parents,
- int i)
+static bool is_access_allowed(struct kvm_page_fault *fault, u64 spte)
{
- int n;
-
- for (n = i+1; n < pvec->nr; n++) {
- struct kvm_mmu_page *sp = pvec->page[n].sp;
- unsigned idx = pvec->page[n].idx;
- int level = sp->role.level;
-
- parents->idx[level-1] = idx;
- if (level == PG_LEVEL_4K)
- break;
+ if (fault->exec)
+ return is_executable_pte(spte);
- parents->parent[level-2] = sp;
- }
+ if (fault->write)
+ return is_writable_pte(spte);
- return n;
+ /* Fault was on Read access */
+ return spte & PT_PRESENT_MASK;
}
-static int mmu_pages_first(struct kvm_mmu_pages *pvec,
- struct mmu_page_path *parents)
+/*
+ * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
+ */
+static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
{
struct kvm_mmu_page *sp;
- int level;
-
- if (pvec->nr == 0)
- return 0;
-
- WARN_ON(pvec->page[0].idx != INVALID_INDEX);
-
- sp = pvec->page[0].sp;
- level = sp->role.level;
- WARN_ON(level == PG_LEVEL_4K);
-
- parents->parent[level-2] = sp;
+ int ret = RET_PF_INVALID;
+ u64 spte = 0ull;
+ u64 *sptep = NULL;
+ uint retry_count = 0;
- /* Also set up a sentinel. Further entries in pvec are all
- * children of sp, so this element is never overwritten.
- */
- parents->parent[level-1] = NULL;
- return mmu_pages_next(pvec, parents, 0);
-}
+ if (!page_fault_can_be_fast(fault))
+ return ret;
-static void mmu_pages_clear_parents(struct mmu_page_path *parents)
-{
- struct kvm_mmu_page *sp;
- unsigned int level = 0;
+ walk_shadow_page_lockless_begin(vcpu);
do {
- unsigned int idx = parents->idx[level];
- sp = parents->parent[level];
- if (!sp)
- return;
-
- WARN_ON(idx == INVALID_INDEX);
- clear_unsync_child_bit(sp, idx);
- level++;
- } while (!sp->unsync_children);
-}
-
-static int mmu_sync_children(struct kvm_vcpu *vcpu,
- struct kvm_mmu_page *parent, bool can_yield)
-{
- int i;
- struct kvm_mmu_page *sp;
- struct mmu_page_path parents;
- struct kvm_mmu_pages pages;
- LIST_HEAD(invalid_list);
- bool flush = false;
-
- while (mmu_unsync_walk(parent, &pages)) {
- bool protected = false;
-
- for_each_sp(pages, sp, parents, i)
- protected |= kvm_vcpu_write_protect_gfn(vcpu, sp->gfn);
-
- if (protected) {
- kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true);
- flush = false;
- }
-
- for_each_sp(pages, sp, parents, i) {
- kvm_unlink_unsync_page(vcpu->kvm, sp);
- flush |= kvm_sync_page(vcpu, sp, &invalid_list) > 0;
- mmu_pages_clear_parents(&parents);
- }
- if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
- kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
- if (!can_yield) {
- kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
- return -EINTR;
- }
-
- cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
- flush = false;
- }
- }
-
- kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
- return 0;
-}
+ u64 new_spte;
-static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
-{
- atomic_set(&sp->write_flooding_count, 0);
-}
+ if (is_tdp_mmu(vcpu->arch.mmu))
+ sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->addr, &spte);
+ else
+ sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte);
-static void clear_sp_write_flooding_count(u64 *spte)
-{
- __clear_sp_write_flooding_count(sptep_to_sp(spte));
-}
+ if (!is_shadow_present_pte(spte))
+ break;
-/*
- * The vCPU is required when finding indirect shadow pages; the shadow
- * page may already exist and syncing it needs the vCPU pointer in
- * order to read guest page tables. Direct shadow pages are never
- * unsync, thus @vcpu can be NULL if @role.direct is true.
- */
-static struct kvm_mmu_page *kvm_mmu_find_shadow_page(struct kvm *kvm,
- struct kvm_vcpu *vcpu,
- gfn_t gfn,
- struct hlist_head *sp_list,
- union kvm_mmu_page_role role)
-{
- struct kvm_mmu_page *sp;
- int ret;
- int collisions = 0;
- LIST_HEAD(invalid_list);
+ sp = sptep_to_sp(sptep);
+ if (!is_last_spte(spte, sp->role.level))
+ break;
- for_each_valid_sp(kvm, sp, sp_list) {
- if (sp->gfn != gfn) {
- collisions++;
- continue;
+ /*
+ * Check whether the memory access that caused the fault would
+ * still cause it if it were to be performed right now. If not,
+ * then this is a spurious fault caused by TLB lazily flushed,
+ * or some other CPU has already fixed the PTE after the
+ * current CPU took the fault.
+ *
+ * Need not check the access of upper level table entries since
+ * they are always ACC_ALL.
+ */
+ if (is_access_allowed(fault, spte)) {
+ ret = RET_PF_SPURIOUS;
+ break;
}
- if (sp->role.word != role.word) {
- /*
- * If the guest is creating an upper-level page, zap
- * unsync pages for the same gfn. While it's possible
- * the guest is using recursive page tables, in all
- * likelihood the guest has stopped using the unsync
- * page and is installing a completely unrelated page.
- * Unsync pages must not be left as is, because the new
- * upper-level page will be write-protected.
- */
- if (role.level > PG_LEVEL_4K && sp->unsync)
- kvm_mmu_prepare_zap_page(kvm, sp,
- &invalid_list);
- continue;
- }
+ new_spte = spte;
- /* unsync and write-flooding only apply to indirect SPs. */
- if (sp->role.direct)
- goto out;
+ /*
+ * KVM only supports fixing page faults outside of MMU lock for
+ * direct MMUs, nested MMUs are always indirect, and KVM always
+ * uses A/D bits for non-nested MMUs. Thus, if A/D bits are
+ * enabled, the SPTE can't be an access-tracked SPTE.
+ */
+ if (unlikely(!kvm_ad_enabled()) && is_access_track_spte(spte))
+ new_spte = restore_acc_track_spte(new_spte);
- if (sp->unsync) {
- if (KVM_BUG_ON(!vcpu, kvm))
- break;
+ /*
+ * To keep things simple, only SPTEs that are MMU-writable can
+ * be made fully writable outside of mmu_lock, e.g. only SPTEs
+ * that were write-protected for dirty-logging or access
+ * tracking are handled here. Don't bother checking if the
+ * SPTE is writable to prioritize running with A/D bits enabled.
+ * The is_access_allowed() check above handles the common case
+ * of the fault being spurious, and the SPTE is known to be
+ * shadow-present, i.e. except for access tracking restoration
+ * making the new SPTE writable, the check is wasteful.
+ */
+ if (fault->write && is_mmu_writable_spte(spte)) {
+ new_spte |= PT_WRITABLE_MASK;
/*
- * The page is good, but is stale. kvm_sync_page does
- * get the latest guest state, but (unlike mmu_unsync_children)
- * it doesn't write-protect the page or mark it synchronized!
- * This way the validity of the mapping is ensured, but the
- * overhead of write protection is not incurred until the
- * guest invalidates the TLB mapping. This allows multiple
- * SPs for a single gfn to be unsync.
+ * Do not fix write-permission on the large spte when
+ * dirty logging is enabled. Since we only dirty the
+ * first page into the dirty-bitmap in
+ * fast_pf_fix_direct_spte(), other pages are missed
+ * if its slot has dirty logging enabled.
*
- * If the sync fails, the page is zapped. If so, break
- * in order to rebuild it.
+ * Instead, we let the slow page fault path create a
+ * normal spte to fix the access.
*/
- ret = kvm_sync_page(vcpu, sp, &invalid_list);
- if (ret < 0)
+ if (sp->role.level > PG_LEVEL_4K &&
+ kvm_slot_dirty_track_enabled(fault->slot))
break;
-
- WARN_ON(!list_empty(&invalid_list));
- if (ret > 0)
- kvm_flush_remote_tlbs(kvm);
}
- __clear_sp_write_flooding_count(sp);
-
- goto out;
- }
-
- sp = NULL;
- ++kvm->stat.mmu_cache_miss;
-
-out:
- kvm_mmu_commit_zap_page(kvm, &invalid_list);
-
- if (collisions > kvm->stat.max_mmu_page_hash_collisions)
- kvm->stat.max_mmu_page_hash_collisions = collisions;
- return sp;
-}
-
-/* Caches used when allocating a new shadow page. */
-struct shadow_page_caches {
- struct kvm_mmu_memory_cache *page_header_cache;
- struct kvm_mmu_memory_cache *shadow_page_cache;
- struct kvm_mmu_memory_cache *shadowed_info_cache;
-};
-
-static struct kvm_mmu_page *kvm_mmu_alloc_shadow_page(struct kvm *kvm,
- struct shadow_page_caches *caches,
- gfn_t gfn,
- struct hlist_head *sp_list,
- union kvm_mmu_page_role role)
-{
- struct kvm_mmu_page *sp;
-
- sp = kvm_mmu_memory_cache_alloc(caches->page_header_cache);
- sp->spt = kvm_mmu_memory_cache_alloc(caches->shadow_page_cache);
- if (!role.direct)
- sp->shadowed_translation = kvm_mmu_memory_cache_alloc(caches->shadowed_info_cache);
-
- set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
-
- INIT_LIST_HEAD(&sp->possible_nx_huge_page_link);
-
- /*
- * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
- * depends on valid pages being added to the head of the list. See
- * comments in kvm_zap_obsolete_pages().
- */
- sp->mmu_valid_gen = kvm->arch.mmu_valid_gen;
- list_add(&sp->link, &kvm->arch.active_mmu_pages);
- kvm_account_mmu_page(kvm, sp);
-
- sp->gfn = gfn;
- sp->role = role;
- hlist_add_head(&sp->hash_link, sp_list);
- if (sp_has_gptes(sp))
- account_shadowed(kvm, sp);
-
- return sp;
-}
-
-/* Note, @vcpu may be NULL if @role.direct is true; see kvm_mmu_find_shadow_page. */
-static struct kvm_mmu_page *__kvm_mmu_get_shadow_page(struct kvm *kvm,
- struct kvm_vcpu *vcpu,
- struct shadow_page_caches *caches,
- gfn_t gfn,
- union kvm_mmu_page_role role)
-{
- struct hlist_head *sp_list;
- struct kvm_mmu_page *sp;
- bool created = false;
-
- sp_list = &kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
-
- sp = kvm_mmu_find_shadow_page(kvm, vcpu, gfn, sp_list, role);
- if (!sp) {
- created = true;
- sp = kvm_mmu_alloc_shadow_page(kvm, caches, gfn, sp_list, role);
- }
-
- trace_kvm_mmu_get_page(sp, created);
- return sp;
-}
-
-static struct kvm_mmu_page *kvm_mmu_get_shadow_page(struct kvm_vcpu *vcpu,
- gfn_t gfn,
- union kvm_mmu_page_role role)
-{
- struct shadow_page_caches caches = {
- .page_header_cache = &vcpu->arch.mmu_page_header_cache,
- .shadow_page_cache = &vcpu->arch.mmu_shadow_page_cache,
- .shadowed_info_cache = &vcpu->arch.mmu_shadowed_info_cache,
- };
-
- return __kvm_mmu_get_shadow_page(vcpu->kvm, vcpu, &caches, gfn, role);
-}
-
-static union kvm_mmu_page_role kvm_mmu_child_role(u64 *sptep, bool direct,
- unsigned int access)
-{
- struct kvm_mmu_page *parent_sp = sptep_to_sp(sptep);
- union kvm_mmu_page_role role;
+ /* Verify that the fault can be handled in the fast path */
+ if (new_spte == spte ||
+ !is_access_allowed(fault, new_spte))
+ break;
- role = parent_sp->role;
- role.level--;
- role.access = access;
- role.direct = direct;
- role.passthrough = 0;
+ /*
+ * Currently, fast page fault only works for direct mapping
+ * since the gfn is not stable for indirect shadow page. See
+ * Documentation/virt/kvm/locking.rst to get more detail.
+ */
+ if (fast_pf_fix_direct_spte(vcpu, fault, sptep, spte, new_spte)) {
+ ret = RET_PF_FIXED;
+ break;
+ }
- /*
- * If the guest has 4-byte PTEs then that means it's using 32-bit,
- * 2-level, non-PAE paging. KVM shadows such guests with PAE paging
- * (i.e. 8-byte PTEs). The difference in PTE size means that KVM must
- * shadow each guest page table with multiple shadow page tables, which
- * requires extra bookkeeping in the role.
- *
- * Specifically, to shadow the guest's page directory (which covers a
- * 4GiB address space), KVM uses 4 PAE page directories, each mapping
- * 1GiB of the address space. @role.quadrant encodes which quarter of
- * the address space each maps.
- *
- * To shadow the guest's page tables (which each map a 4MiB region), KVM
- * uses 2 PAE page tables, each mapping a 2MiB region. For these,
- * @role.quadrant encodes which half of the region they map.
- *
- * Concretely, a 4-byte PDE consumes bits 31:22, while an 8-byte PDE
- * consumes bits 29:21. To consume bits 31:30, KVM's uses 4 shadow
- * PDPTEs; those 4 PAE page directories are pre-allocated and their
- * quadrant is assigned in mmu_alloc_root(). A 4-byte PTE consumes
- * bits 21:12, while an 8-byte PTE consumes bits 20:12. To consume
- * bit 21 in the PTE (the child here), KVM propagates that bit to the
- * quadrant, i.e. sets quadrant to '0' or '1'. The parent 8-byte PDE
- * covers bit 21 (see above), thus the quadrant is calculated from the
- * _least_ significant bit of the PDE index.
- */
- if (role.has_4_byte_gpte) {
- WARN_ON_ONCE(role.level != PG_LEVEL_4K);
- role.quadrant = spte_index(sptep) & 1;
- }
-
- return role;
-}
-
-static struct kvm_mmu_page *kvm_mmu_get_child_sp(struct kvm_vcpu *vcpu,
- u64 *sptep, gfn_t gfn,
- bool direct, unsigned int access)
-{
- union kvm_mmu_page_role role;
-
- if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep))
- return ERR_PTR(-EEXIST);
-
- role = kvm_mmu_child_role(sptep, direct, access);
- return kvm_mmu_get_shadow_page(vcpu, gfn, role);
-}
-
-static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
- struct kvm_vcpu *vcpu, hpa_t root,
- u64 addr)
-{
- iterator->addr = addr;
- iterator->shadow_addr = root;
- iterator->level = vcpu->arch.mmu->root_role.level;
-
- if (iterator->level >= PT64_ROOT_4LEVEL &&
- vcpu->arch.mmu->cpu_role.base.level < PT64_ROOT_4LEVEL &&
- !vcpu->arch.mmu->root_role.direct)
- iterator->level = PT32E_ROOT_LEVEL;
-
- if (iterator->level == PT32E_ROOT_LEVEL) {
- /*
- * prev_root is currently only used for 64-bit hosts. So only
- * the active root_hpa is valid here.
- */
- BUG_ON(root != vcpu->arch.mmu->root.hpa);
-
- iterator->shadow_addr
- = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
- iterator->shadow_addr &= SPTE_BASE_ADDR_MASK;
- --iterator->level;
- if (!iterator->shadow_addr)
- iterator->level = 0;
- }
-}
-
-static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
- struct kvm_vcpu *vcpu, u64 addr)
-{
- shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root.hpa,
- addr);
-}
-
-static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
-{
- if (iterator->level < PG_LEVEL_4K)
- return false;
-
- iterator->index = SPTE_INDEX(iterator->addr, iterator->level);
- iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
- return true;
-}
-
-static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
- u64 spte)
-{
- if (!is_shadow_present_pte(spte) || is_last_spte(spte, iterator->level)) {
- iterator->level = 0;
- return;
- }
-
- iterator->shadow_addr = spte & SPTE_BASE_ADDR_MASK;
- --iterator->level;
-}
-
-static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
-{
- __shadow_walk_next(iterator, *iterator->sptep);
-}
-
-static void __link_shadow_page(struct kvm *kvm,
- struct kvm_mmu_memory_cache *cache, u64 *sptep,
- struct kvm_mmu_page *sp, bool flush)
-{
- u64 spte;
-
- BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
-
- /*
- * If an SPTE is present already, it must be a leaf and therefore
- * a large one. Drop it, and flush the TLB if needed, before
- * installing sp.
- */
- if (is_shadow_present_pte(*sptep))
- drop_large_spte(kvm, sptep, flush);
-
- spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
-
- mmu_spte_set(sptep, spte);
-
- mmu_page_add_parent_pte(cache, sp, sptep);
-
- if (sp->unsync_children || sp->unsync)
- mark_unsync(sptep);
-}
-
-static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
- struct kvm_mmu_page *sp)
-{
- __link_shadow_page(vcpu->kvm, &vcpu->arch.mmu_pte_list_desc_cache, sptep, sp, true);
-}
-
-static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
- unsigned direct_access)
-{
- if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
- struct kvm_mmu_page *child;
-
- /*
- * For the direct sp, if the guest pte's dirty bit
- * changed form clean to dirty, it will corrupt the
- * sp's access: allow writable in the read-only sp,
- * so we should update the spte at this point to get
- * a new sp with the correct access.
- */
- child = spte_to_child_sp(*sptep);
- if (child->role.access == direct_access)
- return;
-
- drop_parent_pte(child, sptep);
- kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
- }
-}
-
-/* Returns the number of zapped non-leaf child shadow pages. */
-static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
- u64 *spte, struct list_head *invalid_list)
-{
- u64 pte;
- struct kvm_mmu_page *child;
-
- pte = *spte;
- if (is_shadow_present_pte(pte)) {
- if (is_last_spte(pte, sp->role.level)) {
- drop_spte(kvm, spte);
- } else {
- child = spte_to_child_sp(pte);
- drop_parent_pte(child, spte);
-
- /*
- * Recursively zap nested TDP SPs, parentless SPs are
- * unlikely to be used again in the near future. This
- * avoids retaining a large number of stale nested SPs.
- */
- if (tdp_enabled && invalid_list &&
- child->role.guest_mode && !child->parent_ptes.val)
- return kvm_mmu_prepare_zap_page(kvm, child,
- invalid_list);
- }
- } else if (is_mmio_spte(pte)) {
- mmu_spte_clear_no_track(spte);
- }
- return 0;
-}
-
-static int kvm_mmu_page_unlink_children(struct kvm *kvm,
- struct kvm_mmu_page *sp,
- struct list_head *invalid_list)
-{
- int zapped = 0;
- unsigned i;
-
- for (i = 0; i < SPTE_ENT_PER_PAGE; ++i)
- zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
-
- return zapped;
-}
-
-static void kvm_mmu_unlink_parents(struct kvm_mmu_page *sp)
-{
- u64 *sptep;
- struct rmap_iterator iter;
-
- while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
- drop_parent_pte(sp, sptep);
-}
-
-static int mmu_zap_unsync_children(struct kvm *kvm,
- struct kvm_mmu_page *parent,
- struct list_head *invalid_list)
-{
- int i, zapped = 0;
- struct mmu_page_path parents;
- struct kvm_mmu_pages pages;
-
- if (parent->role.level == PG_LEVEL_4K)
- return 0;
-
- while (mmu_unsync_walk(parent, &pages)) {
- struct kvm_mmu_page *sp;
-
- for_each_sp(pages, sp, parents, i) {
- kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
- mmu_pages_clear_parents(&parents);
- zapped++;
- }
- }
-
- return zapped;
-}
-
-static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
- struct kvm_mmu_page *sp,
- struct list_head *invalid_list,
- int *nr_zapped)
-{
- bool list_unstable, zapped_root = false;
-
- trace_kvm_mmu_prepare_zap_page(sp);
- ++kvm->stat.mmu_shadow_zapped;
- *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
- *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
- kvm_mmu_unlink_parents(sp);
-
- /* Zapping children means active_mmu_pages has become unstable. */
- list_unstable = *nr_zapped;
-
- if (!sp->role.invalid && sp_has_gptes(sp))
- unaccount_shadowed(kvm, sp);
-
- if (sp->unsync)
- kvm_unlink_unsync_page(kvm, sp);
- if (!sp->root_count) {
- /* Count self */
- (*nr_zapped)++;
-
- /*
- * Already invalid pages (previously active roots) are not on
- * the active page list. See list_del() in the "else" case of
- * !sp->root_count.
- */
- if (sp->role.invalid)
- list_add(&sp->link, invalid_list);
- else
- list_move(&sp->link, invalid_list);
- kvm_unaccount_mmu_page(kvm, sp);
- } else {
- /*
- * Remove the active root from the active page list, the root
- * will be explicitly freed when the root_count hits zero.
- */
- list_del(&sp->link);
-
- /*
- * Obsolete pages cannot be used on any vCPUs, see the comment
- * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also
- * treats invalid shadow pages as being obsolete.
- */
- zapped_root = !is_obsolete_sp(kvm, sp);
- }
-
- if (sp->nx_huge_page_disallowed)
- unaccount_nx_huge_page(kvm, sp);
-
- sp->role.invalid = 1;
-
- /*
- * Make the request to free obsolete roots after marking the root
- * invalid, otherwise other vCPUs may not see it as invalid.
- */
- if (zapped_root)
- kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS);
- return list_unstable;
-}
-
-static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
- struct list_head *invalid_list)
-{
- int nr_zapped;
-
- __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
- return nr_zapped;
-}
-
-static void kvm_mmu_commit_zap_page(struct kvm *kvm,
- struct list_head *invalid_list)
-{
- struct kvm_mmu_page *sp, *nsp;
-
- if (list_empty(invalid_list))
- return;
-
- /*
- * We need to make sure everyone sees our modifications to
- * the page tables and see changes to vcpu->mode here. The barrier
- * in the kvm_flush_remote_tlbs() achieves this. This pairs
- * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
- *
- * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
- * guest mode and/or lockless shadow page table walks.
- */
- kvm_flush_remote_tlbs(kvm);
-
- list_for_each_entry_safe(sp, nsp, invalid_list, link) {
- WARN_ON(!sp->role.invalid || sp->root_count);
- kvm_mmu_free_shadow_page(sp);
- }
-}
-
-static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
- unsigned long nr_to_zap)
-{
- unsigned long total_zapped = 0;
- struct kvm_mmu_page *sp, *tmp;
- LIST_HEAD(invalid_list);
- bool unstable;
- int nr_zapped;
-
- if (list_empty(&kvm->arch.active_mmu_pages))
- return 0;
-
-restart:
- list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
- /*
- * Don't zap active root pages, the page itself can't be freed
- * and zapping it will just force vCPUs to realloc and reload.
- */
- if (sp->root_count)
- continue;
-
- unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
- &nr_zapped);
- total_zapped += nr_zapped;
- if (total_zapped >= nr_to_zap)
- break;
-
- if (unstable)
- goto restart;
- }
-
- kvm_mmu_commit_zap_page(kvm, &invalid_list);
-
- kvm->stat.mmu_recycled += total_zapped;
- return total_zapped;
-}
-
-static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
-{
- if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
- return kvm->arch.n_max_mmu_pages -
- kvm->arch.n_used_mmu_pages;
-
- return 0;
-}
-
-static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
-{
- unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
-
- if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
- return 0;
-
- kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
-
- /*
- * Note, this check is intentionally soft, it only guarantees that one
- * page is available, while the caller may end up allocating as many as
- * four pages, e.g. for PAE roots or for 5-level paging. Temporarily
- * exceeding the (arbitrary by default) limit will not harm the host,
- * being too aggressive may unnecessarily kill the guest, and getting an
- * exact count is far more trouble than it's worth, especially in the
- * page fault paths.
- */
- if (!kvm_mmu_available_pages(vcpu->kvm))
- return -ENOSPC;
- return 0;
-}
-
-/*
- * Changing the number of mmu pages allocated to the vm
- * Note: if goal_nr_mmu_pages is too small, you will get dead lock
- */
-void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
-{
- write_lock(&kvm->mmu_lock);
-
- if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
- kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
- goal_nr_mmu_pages);
-
- goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
- }
-
- kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
-
- write_unlock(&kvm->mmu_lock);
-}
-
-int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
-{
- struct kvm_mmu_page *sp;
- LIST_HEAD(invalid_list);
- int r;
-
- pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
- r = 0;
- write_lock(&kvm->mmu_lock);
- for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) {
- pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
- sp->role.word);
- r = 1;
- kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
- }
- kvm_mmu_commit_zap_page(kvm, &invalid_list);
- write_unlock(&kvm->mmu_lock);
-
- return r;
-}
-
-static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
-{
- gpa_t gpa;
- int r;
-
- if (vcpu->arch.mmu->root_role.direct)
- return 0;
-
- gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
-
- r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
-
- return r;
-}
-
-static void kvm_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
-{
- trace_kvm_mmu_unsync_page(sp);
- ++kvm->stat.mmu_unsync;
- sp->unsync = 1;
-
- kvm_mmu_mark_parents_unsync(sp);
-}
-
-/*
- * Attempt to unsync any shadow pages that can be reached by the specified gfn,
- * KVM is creating a writable mapping for said gfn. Returns 0 if all pages
- * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must
- * be write-protected.
- */
-int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot,
- gfn_t gfn, bool can_unsync, bool prefetch)
-{
- struct kvm_mmu_page *sp;
- bool locked = false;
-
- /*
- * Force write-protection if the page is being tracked. Note, the page
- * track machinery is used to write-protect upper-level shadow pages,
- * i.e. this guards the role.level == 4K assertion below!
- */
- if (kvm_slot_page_track_is_active(kvm, slot, gfn, KVM_PAGE_TRACK_WRITE))
- return -EPERM;
-
- /*
- * The page is not write-tracked, mark existing shadow pages unsync
- * unless KVM is synchronizing an unsync SP (can_unsync = false). In
- * that case, KVM must complete emulation of the guest TLB flush before
- * allowing shadow pages to become unsync (writable by the guest).
- */
- for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) {
- if (!can_unsync)
- return -EPERM;
-
- if (sp->unsync)
- continue;
-
- if (prefetch)
- return -EEXIST;
-
- /*
- * TDP MMU page faults require an additional spinlock as they
- * run with mmu_lock held for read, not write, and the unsync
- * logic is not thread safe. Take the spinklock regardless of
- * the MMU type to avoid extra conditionals/parameters, there's
- * no meaningful penalty if mmu_lock is held for write.
- */
- if (!locked) {
- locked = true;
- spin_lock(&kvm->arch.mmu_unsync_pages_lock);
-
- /*
- * Recheck after taking the spinlock, a different vCPU
- * may have since marked the page unsync. A false
- * positive on the unprotected check above is not
- * possible as clearing sp->unsync _must_ hold mmu_lock
- * for write, i.e. unsync cannot transition from 0->1
- * while this CPU holds mmu_lock for read (or write).
- */
- if (READ_ONCE(sp->unsync))
- continue;
- }
-
- WARN_ON(sp->role.level != PG_LEVEL_4K);
- kvm_unsync_page(kvm, sp);
- }
- if (locked)
- spin_unlock(&kvm->arch.mmu_unsync_pages_lock);
-
- /*
- * We need to ensure that the marking of unsync pages is visible
- * before the SPTE is updated to allow writes because
- * kvm_mmu_sync_roots() checks the unsync flags without holding
- * the MMU lock and so can race with this. If the SPTE was updated
- * before the page had been marked as unsync-ed, something like the
- * following could happen:
- *
- * CPU 1 CPU 2
- * ---------------------------------------------------------------------
- * 1.2 Host updates SPTE
- * to be writable
- * 2.1 Guest writes a GPTE for GVA X.
- * (GPTE being in the guest page table shadowed
- * by the SP from CPU 1.)
- * This reads SPTE during the page table walk.
- * Since SPTE.W is read as 1, there is no
- * fault.
- *
- * 2.2 Guest issues TLB flush.
- * That causes a VM Exit.
- *
- * 2.3 Walking of unsync pages sees sp->unsync is
- * false and skips the page.
- *
- * 2.4 Guest accesses GVA X.
- * Since the mapping in the SP was not updated,
- * so the old mapping for GVA X incorrectly
- * gets used.
- * 1.1 Host marks SP
- * as unsync
- * (sp->unsync = true)
- *
- * The write barrier below ensures that 1.1 happens before 1.2 and thus
- * the situation in 2.4 does not arise. It pairs with the read barrier
- * in is_unsync_root(), placed between 2.1's load of SPTE.W and 2.3.
- */
- smp_wmb();
-
- return 0;
-}
-
-static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot,
- u64 *sptep, unsigned int pte_access, gfn_t gfn,
- kvm_pfn_t pfn, struct kvm_page_fault *fault)
-{
- struct kvm_mmu_page *sp = sptep_to_sp(sptep);
- int level = sp->role.level;
- int was_rmapped = 0;
- int ret = RET_PF_FIXED;
- bool flush = false;
- bool wrprot;
- u64 spte;
-
- /* Prefetching always gets a writable pfn. */
- bool host_writable = !fault || fault->map_writable;
- bool prefetch = !fault || fault->prefetch;
- bool write_fault = fault && fault->write;
-
- pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
- *sptep, write_fault, gfn);
-
- if (unlikely(is_noslot_pfn(pfn))) {
- vcpu->stat.pf_mmio_spte_created++;
- mark_mmio_spte(vcpu, sptep, gfn, pte_access);
- return RET_PF_EMULATE;
- }
-
- if (is_shadow_present_pte(*sptep)) {
- /*
- * If we overwrite a PTE page pointer with a 2MB PMD, unlink
- * the parent of the now unreachable PTE.
- */
- if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
- struct kvm_mmu_page *child;
- u64 pte = *sptep;
-
- child = spte_to_child_sp(pte);
- drop_parent_pte(child, sptep);
- flush = true;
- } else if (pfn != spte_to_pfn(*sptep)) {
- pgprintk("hfn old %llx new %llx\n",
- spte_to_pfn(*sptep), pfn);
- drop_spte(vcpu->kvm, sptep);
- flush = true;
- } else
- was_rmapped = 1;
- }
-
- wrprot = make_spte(vcpu, sp, slot, pte_access, gfn, pfn, *sptep, prefetch,
- true, host_writable, &spte);
-
- if (*sptep == spte) {
- ret = RET_PF_SPURIOUS;
- } else {
- flush |= mmu_spte_update(sptep, spte);
- trace_kvm_mmu_set_spte(level, gfn, sptep);
- }
-
- if (wrprot) {
- if (write_fault)
- ret = RET_PF_EMULATE;
- }
-
- if (flush)
- kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
- KVM_PAGES_PER_HPAGE(level));
-
- pgprintk("%s: setting spte %llx\n", __func__, *sptep);
-
- if (!was_rmapped) {
- WARN_ON_ONCE(ret == RET_PF_SPURIOUS);
- rmap_add(vcpu, slot, sptep, gfn, pte_access);
- } else {
- /* Already rmapped but the pte_access bits may have changed. */
- kvm_mmu_page_set_access(sp, spte_index(sptep), pte_access);
- }
-
- return ret;
-}
-
-static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
- struct kvm_mmu_page *sp,
- u64 *start, u64 *end)
-{
- struct page *pages[PTE_PREFETCH_NUM];
- struct kvm_memory_slot *slot;
- unsigned int access = sp->role.access;
- int i, ret;
- gfn_t gfn;
-
- gfn = kvm_mmu_page_get_gfn(sp, spte_index(start));
- slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
- if (!slot)
- return -1;
-
- ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
- if (ret <= 0)
- return -1;
-
- for (i = 0; i < ret; i++, gfn++, start++) {
- mmu_set_spte(vcpu, slot, start, access, gfn,
- page_to_pfn(pages[i]), NULL);
- put_page(pages[i]);
- }
-
- return 0;
-}
-
-static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
- struct kvm_mmu_page *sp, u64 *sptep)
-{
- u64 *spte, *start = NULL;
- int i;
-
- WARN_ON(!sp->role.direct);
-
- i = spte_index(sptep) & ~(PTE_PREFETCH_NUM - 1);
- spte = sp->spt + i;
-
- for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
- if (is_shadow_present_pte(*spte) || spte == sptep) {
- if (!start)
- continue;
- if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
- return;
- start = NULL;
- } else if (!start)
- start = spte;
- }
- if (start)
- direct_pte_prefetch_many(vcpu, sp, start, spte);
-}
-
-static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
-{
- struct kvm_mmu_page *sp;
-
- sp = sptep_to_sp(sptep);
-
- /*
- * Without accessed bits, there's no way to distinguish between
- * actually accessed translations and prefetched, so disable pte
- * prefetch if accessed bits aren't available.
- */
- if (sp_ad_disabled(sp))
- return;
-
- if (sp->role.level > PG_LEVEL_4K)
- return;
-
- /*
- * If addresses are being invalidated, skip prefetching to avoid
- * accidentally prefetching those addresses.
- */
- if (unlikely(vcpu->kvm->mmu_invalidate_in_progress))
- return;
-
- __direct_pte_prefetch(vcpu, sp, sptep);
-}
-
-/*
- * Lookup the mapping level for @gfn in the current mm.
- *
- * WARNING! Use of host_pfn_mapping_level() requires the caller and the end
- * consumer to be tied into KVM's handlers for MMU notifier events!
- *
- * There are several ways to safely use this helper:
- *
- * - Check mmu_invalidate_retry_hva() after grabbing the mapping level, before
- * consuming it. In this case, mmu_lock doesn't need to be held during the
- * lookup, but it does need to be held while checking the MMU notifier.
- *
- * - Hold mmu_lock AND ensure there is no in-progress MMU notifier invalidation
- * event for the hva. This can be done by explicit checking the MMU notifier
- * or by ensuring that KVM already has a valid mapping that covers the hva.
- *
- * - Do not use the result to install new mappings, e.g. use the host mapping
- * level only to decide whether or not to zap an entry. In this case, it's
- * not required to hold mmu_lock (though it's highly likely the caller will
- * want to hold mmu_lock anyways, e.g. to modify SPTEs).
- *
- * Note! The lookup can still race with modifications to host page tables, but
- * the above "rules" ensure KVM will not _consume_ the result of the walk if a
- * race with the primary MMU occurs.
- */
-static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn,
- const struct kvm_memory_slot *slot)
-{
- int level = PG_LEVEL_4K;
- unsigned long hva;
- unsigned long flags;
- pgd_t pgd;
- p4d_t p4d;
- pud_t pud;
- pmd_t pmd;
-
- /*
- * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
- * is not solely for performance, it's also necessary to avoid the
- * "writable" check in __gfn_to_hva_many(), which will always fail on
- * read-only memslots due to gfn_to_hva() assuming writes. Earlier
- * page fault steps have already verified the guest isn't writing a
- * read-only memslot.
- */
- hva = __gfn_to_hva_memslot(slot, gfn);
-
- /*
- * Disable IRQs to prevent concurrent tear down of host page tables,
- * e.g. if the primary MMU promotes a P*D to a huge page and then frees
- * the original page table.
- */
- local_irq_save(flags);
-
- /*
- * Read each entry once. As above, a non-leaf entry can be promoted to
- * a huge page _during_ this walk. Re-reading the entry could send the
- * walk into the weeks, e.g. p*d_large() returns false (sees the old
- * value) and then p*d_offset() walks into the target huge page instead
- * of the old page table (sees the new value).
- */
- pgd = READ_ONCE(*pgd_offset(kvm->mm, hva));
- if (pgd_none(pgd))
- goto out;
-
- p4d = READ_ONCE(*p4d_offset(&pgd, hva));
- if (p4d_none(p4d) || !p4d_present(p4d))
- goto out;
-
- pud = READ_ONCE(*pud_offset(&p4d, hva));
- if (pud_none(pud) || !pud_present(pud))
- goto out;
-
- if (pud_large(pud)) {
- level = PG_LEVEL_1G;
- goto out;
- }
-
- pmd = READ_ONCE(*pmd_offset(&pud, hva));
- if (pmd_none(pmd) || !pmd_present(pmd))
- goto out;
-
- if (pmd_large(pmd))
- level = PG_LEVEL_2M;
-
-out:
- local_irq_restore(flags);
- return level;
-}
-
-int kvm_mmu_max_mapping_level(struct kvm *kvm,
- const struct kvm_memory_slot *slot, gfn_t gfn,
- int max_level)
-{
- struct kvm_lpage_info *linfo;
- int host_level;
-
- max_level = min(max_level, max_huge_page_level);
- for ( ; max_level > PG_LEVEL_4K; max_level--) {
- linfo = lpage_info_slot(gfn, slot, max_level);
- if (!linfo->disallow_lpage)
- break;
- }
-
- if (max_level == PG_LEVEL_4K)
- return PG_LEVEL_4K;
-
- host_level = host_pfn_mapping_level(kvm, gfn, slot);
- return min(host_level, max_level);
-}
-
-void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
-{
- struct kvm_memory_slot *slot = fault->slot;
- kvm_pfn_t mask;
-
- fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled;
-
- if (unlikely(fault->max_level == PG_LEVEL_4K))
- return;
-
- if (is_error_noslot_pfn(fault->pfn))
- return;
-
- if (kvm_slot_dirty_track_enabled(slot))
- return;
-
- /*
- * Enforce the iTLB multihit workaround after capturing the requested
- * level, which will be used to do precise, accurate accounting.
- */
- fault->req_level = kvm_mmu_max_mapping_level(vcpu->kvm, slot,
- fault->gfn, fault->max_level);
- if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed)
- return;
-
- /*
- * mmu_invalidate_retry() was successful and mmu_lock is held, so
- * the pmd can't be split from under us.
- */
- fault->goal_level = fault->req_level;
- mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1;
- VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask));
- fault->pfn &= ~mask;
-}
-
-void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level)
-{
- if (cur_level > PG_LEVEL_4K &&
- cur_level == fault->goal_level &&
- is_shadow_present_pte(spte) &&
- !is_large_pte(spte) &&
- spte_to_child_sp(spte)->nx_huge_page_disallowed) {
- /*
- * A small SPTE exists for this pfn, but FNAME(fetch)
- * and __direct_map would like to create a large PTE
- * instead: just force them to go down another level,
- * patching back for them into pfn the next 9 bits of
- * the address.
- */
- u64 page_mask = KVM_PAGES_PER_HPAGE(cur_level) -
- KVM_PAGES_PER_HPAGE(cur_level - 1);
- fault->pfn |= fault->gfn & page_mask;
- fault->goal_level--;
- }
-}
-
-static int __direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
-{
- struct kvm_shadow_walk_iterator it;
- struct kvm_mmu_page *sp;
- int ret;
- gfn_t base_gfn = fault->gfn;
-
- kvm_mmu_hugepage_adjust(vcpu, fault);
-
- trace_kvm_mmu_spte_requested(fault);
- for_each_shadow_entry(vcpu, fault->addr, it) {
- /*
- * We cannot overwrite existing page tables with an NX
- * large page, as the leaf could be executable.
- */
- if (fault->nx_huge_page_workaround_enabled)
- disallowed_hugepage_adjust(fault, *it.sptep, it.level);
-
- base_gfn = fault->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
- if (it.level == fault->goal_level)
- break;
-
- sp = kvm_mmu_get_child_sp(vcpu, it.sptep, base_gfn, true, ACC_ALL);
- if (sp == ERR_PTR(-EEXIST))
- continue;
-
- link_shadow_page(vcpu, it.sptep, sp);
- if (fault->huge_page_disallowed)
- account_nx_huge_page(vcpu->kvm, sp,
- fault->req_level >= it.level);
- }
-
- if (WARN_ON_ONCE(it.level != fault->goal_level))
- return -EFAULT;
-
- ret = mmu_set_spte(vcpu, fault->slot, it.sptep, ACC_ALL,
- base_gfn, fault->pfn, fault);
- if (ret == RET_PF_SPURIOUS)
- return ret;
-
- direct_pte_prefetch(vcpu, it.sptep);
- return ret;
-}
-
-static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
-{
- send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
-}
-
-static int kvm_handle_error_pfn(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
-{
- if (is_sigpending_pfn(pfn)) {
- kvm_handle_signal_exit(vcpu);
- return -EINTR;
- }
-
- /*
- * Do not cache the mmio info caused by writing the readonly gfn
- * into the spte otherwise read access on readonly gfn also can
- * caused mmio page fault and treat it as mmio access.
- */
- if (pfn == KVM_PFN_ERR_RO_FAULT)
- return RET_PF_EMULATE;
-
- if (pfn == KVM_PFN_ERR_HWPOISON) {
- kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
- return RET_PF_RETRY;
- }
-
- return -EFAULT;
-}
-
-static int handle_abnormal_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
- unsigned int access)
-{
- /* The pfn is invalid, report the error! */
- if (unlikely(is_error_pfn(fault->pfn)))
- return kvm_handle_error_pfn(vcpu, fault->gfn, fault->pfn);
-
- if (unlikely(!fault->slot)) {
- gva_t gva = fault->is_tdp ? 0 : fault->addr;
-
- vcpu_cache_mmio_info(vcpu, gva, fault->gfn,
- access & shadow_mmio_access_mask);
- /*
- * If MMIO caching is disabled, emulate immediately without
- * touching the shadow page tables as attempting to install an
- * MMIO SPTE will just be an expensive nop. Do not cache MMIO
- * whose gfn is greater than host.MAXPHYADDR, any guest that
- * generates such gfns is running nested and is being tricked
- * by L0 userspace (you can observe gfn > L1.MAXPHYADDR if
- * and only if L1's MAXPHYADDR is inaccurate with respect to
- * the hardware's).
- */
- if (unlikely(!enable_mmio_caching) ||
- unlikely(fault->gfn > kvm_mmu_max_gfn()))
- return RET_PF_EMULATE;
- }
-
- return RET_PF_CONTINUE;
-}
-
-static bool page_fault_can_be_fast(struct kvm_page_fault *fault)
-{
- /*
- * Page faults with reserved bits set, i.e. faults on MMIO SPTEs, only
- * reach the common page fault handler if the SPTE has an invalid MMIO
- * generation number. Refreshing the MMIO generation needs to go down
- * the slow path. Note, EPT Misconfigs do NOT set the PRESENT flag!
- */
- if (fault->rsvd)
- return false;
-
- /*
- * #PF can be fast if:
- *
- * 1. The shadow page table entry is not present and A/D bits are
- * disabled _by KVM_, which could mean that the fault is potentially
- * caused by access tracking (if enabled). If A/D bits are enabled
- * by KVM, but disabled by L1 for L2, KVM is forced to disable A/D
- * bits for L2 and employ access tracking, but the fast page fault
- * mechanism only supports direct MMUs.
- * 2. The shadow page table entry is present, the access is a write,
- * and no reserved bits are set (MMIO SPTEs cannot be "fixed"), i.e.
- * the fault was caused by a write-protection violation. If the
- * SPTE is MMU-writable (determined later), the fault can be fixed
- * by setting the Writable bit, which can be done out of mmu_lock.
- */
- if (!fault->present)
- return !kvm_ad_enabled();
-
- /*
- * Note, instruction fetches and writes are mutually exclusive, ignore
- * the "exec" flag.
- */
- return fault->write;
-}
-
-/*
- * Returns true if the SPTE was fixed successfully. Otherwise,
- * someone else modified the SPTE from its original value.
- */
-static bool
-fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
- u64 *sptep, u64 old_spte, u64 new_spte)
-{
- /*
- * Theoretically we could also set dirty bit (and flush TLB) here in
- * order to eliminate unnecessary PML logging. See comments in
- * set_spte. But fast_page_fault is very unlikely to happen with PML
- * enabled, so we do not do this. This might result in the same GPA
- * to be logged in PML buffer again when the write really happens, and
- * eventually to be called by mark_page_dirty twice. But it's also no
- * harm. This also avoids the TLB flush needed after setting dirty bit
- * so non-PML cases won't be impacted.
- *
- * Compare with set_spte where instead shadow_dirty_mask is set.
- */
- if (!try_cmpxchg64(sptep, &old_spte, new_spte))
- return false;
-
- if (is_writable_pte(new_spte) && !is_writable_pte(old_spte))
- mark_page_dirty_in_slot(vcpu->kvm, fault->slot, fault->gfn);
-
- return true;
-}
-
-static bool is_access_allowed(struct kvm_page_fault *fault, u64 spte)
-{
- if (fault->exec)
- return is_executable_pte(spte);
-
- if (fault->write)
- return is_writable_pte(spte);
-
- /* Fault was on Read access */
- return spte & PT_PRESENT_MASK;
-}
-
-/*
- * Returns the last level spte pointer of the shadow page walk for the given
- * gpa, and sets *spte to the spte value. This spte may be non-preset. If no
- * walk could be performed, returns NULL and *spte does not contain valid data.
- *
- * Contract:
- * - Must be called between walk_shadow_page_lockless_{begin,end}.
- * - The returned sptep must not be used after walk_shadow_page_lockless_end.
- */
-static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte)
-{
- struct kvm_shadow_walk_iterator iterator;
- u64 old_spte;
- u64 *sptep = NULL;
-
- for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) {
- sptep = iterator.sptep;
- *spte = old_spte;
- }
-
- return sptep;
-}
-
-/*
- * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
- */
-static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
-{
- struct kvm_mmu_page *sp;
- int ret = RET_PF_INVALID;
- u64 spte = 0ull;
- u64 *sptep = NULL;
- uint retry_count = 0;
-
- if (!page_fault_can_be_fast(fault))
- return ret;
-
- walk_shadow_page_lockless_begin(vcpu);
-
- do {
- u64 new_spte;
-
- if (is_tdp_mmu(vcpu->arch.mmu))
- sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->addr, &spte);
- else
- sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte);
-
- if (!is_shadow_present_pte(spte))
- break;
-
- sp = sptep_to_sp(sptep);
- if (!is_last_spte(spte, sp->role.level))
- break;
-
- /*
- * Check whether the memory access that caused the fault would
- * still cause it if it were to be performed right now. If not,
- * then this is a spurious fault caused by TLB lazily flushed,
- * or some other CPU has already fixed the PTE after the
- * current CPU took the fault.
- *
- * Need not check the access of upper level table entries since
- * they are always ACC_ALL.
- */
- if (is_access_allowed(fault, spte)) {
- ret = RET_PF_SPURIOUS;
- break;
- }
-
- new_spte = spte;
-
- /*
- * KVM only supports fixing page faults outside of MMU lock for
- * direct MMUs, nested MMUs are always indirect, and KVM always
- * uses A/D bits for non-nested MMUs. Thus, if A/D bits are
- * enabled, the SPTE can't be an access-tracked SPTE.
- */
- if (unlikely(!kvm_ad_enabled()) && is_access_track_spte(spte))
- new_spte = restore_acc_track_spte(new_spte);
-
- /*
- * To keep things simple, only SPTEs that are MMU-writable can
- * be made fully writable outside of mmu_lock, e.g. only SPTEs
- * that were write-protected for dirty-logging or access
- * tracking are handled here. Don't bother checking if the
- * SPTE is writable to prioritize running with A/D bits enabled.
- * The is_access_allowed() check above handles the common case
- * of the fault being spurious, and the SPTE is known to be
- * shadow-present, i.e. except for access tracking restoration
- * making the new SPTE writable, the check is wasteful.
- */
- if (fault->write && is_mmu_writable_spte(spte)) {
- new_spte |= PT_WRITABLE_MASK;
-
- /*
- * Do not fix write-permission on the large spte when
- * dirty logging is enabled. Since we only dirty the
- * first page into the dirty-bitmap in
- * fast_pf_fix_direct_spte(), other pages are missed
- * if its slot has dirty logging enabled.
- *
- * Instead, we let the slow page fault path create a
- * normal spte to fix the access.
- */
- if (sp->role.level > PG_LEVEL_4K &&
- kvm_slot_dirty_track_enabled(fault->slot))
- break;
- }
-
- /* Verify that the fault can be handled in the fast path */
- if (new_spte == spte ||
- !is_access_allowed(fault, new_spte))
- break;
-
- /*
- * Currently, fast page fault only works for direct mapping
- * since the gfn is not stable for indirect shadow page. See
- * Documentation/virt/kvm/locking.rst to get more detail.
- */
- if (fast_pf_fix_direct_spte(vcpu, fault, sptep, spte, new_spte)) {
- ret = RET_PF_FIXED;
- break;
- }
-
- if (++retry_count > 4) {
- printk_once(KERN_WARNING
- "kvm: Fast #PF retrying more than 4 times.\n");
- break;
- }
-
- } while (true);
-
- trace_fast_page_fault(vcpu, fault, sptep, spte, ret);
- walk_shadow_page_lockless_end(vcpu);
-
- if (ret != RET_PF_INVALID)
- vcpu->stat.pf_fast++;
-
- return ret;
-}
-
-static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
- struct list_head *invalid_list)
-{
- struct kvm_mmu_page *sp;
-
- if (!VALID_PAGE(*root_hpa))
- return;
-
- /*
- * The "root" may be a special root, e.g. a PAE entry, treat it as a
- * SPTE to ensure any non-PA bits are dropped.
- */
- sp = spte_to_child_sp(*root_hpa);
- if (WARN_ON(!sp))
- return;
-
- if (is_tdp_mmu_page(sp))
- kvm_tdp_mmu_put_root(kvm, sp, false);
- else if (!--sp->root_count && sp->role.invalid)
- kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
-
- *root_hpa = INVALID_PAGE;
-}
-
-/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
-void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu,
- ulong roots_to_free)
-{
- int i;
- LIST_HEAD(invalid_list);
- bool free_active_root;
-
- BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
-
- /* Before acquiring the MMU lock, see if we need to do any real work. */
- free_active_root = (roots_to_free & KVM_MMU_ROOT_CURRENT)
- && VALID_PAGE(mmu->root.hpa);
-
- if (!free_active_root) {
- for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
- if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
- VALID_PAGE(mmu->prev_roots[i].hpa))
- break;
-
- if (i == KVM_MMU_NUM_PREV_ROOTS)
- return;
- }
-
- write_lock(&kvm->mmu_lock);
-
- for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
- if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
- mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
- &invalid_list);
-
- if (free_active_root) {
- if (to_shadow_page(mmu->root.hpa)) {
- mmu_free_root_page(kvm, &mmu->root.hpa, &invalid_list);
- } else if (mmu->pae_root) {
- for (i = 0; i < 4; ++i) {
- if (!IS_VALID_PAE_ROOT(mmu->pae_root[i]))
- continue;
-
- mmu_free_root_page(kvm, &mmu->pae_root[i],
- &invalid_list);
- mmu->pae_root[i] = INVALID_PAE_ROOT;
- }
- }
- mmu->root.hpa = INVALID_PAGE;
- mmu->root.pgd = 0;
- }
-
- kvm_mmu_commit_zap_page(kvm, &invalid_list);
- write_unlock(&kvm->mmu_lock);
-}
-EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
-
-void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu)
-{
- unsigned long roots_to_free = 0;
- hpa_t root_hpa;
- int i;
-
- /*
- * This should not be called while L2 is active, L2 can't invalidate
- * _only_ its own roots, e.g. INVVPID unconditionally exits.
- */
- WARN_ON_ONCE(mmu->root_role.guest_mode);
-
- for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
- root_hpa = mmu->prev_roots[i].hpa;
- if (!VALID_PAGE(root_hpa))
- continue;
-
- if (!to_shadow_page(root_hpa) ||
- to_shadow_page(root_hpa)->role.guest_mode)
- roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
- }
-
- kvm_mmu_free_roots(kvm, mmu, roots_to_free);
-}
-EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots);
-
-
-static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
-{
- int ret = 0;
-
- if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
- kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
- ret = 1;
- }
-
- return ret;
-}
-
-static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, int quadrant,
- u8 level)
-{
- union kvm_mmu_page_role role = vcpu->arch.mmu->root_role;
- struct kvm_mmu_page *sp;
-
- role.level = level;
- role.quadrant = quadrant;
-
- WARN_ON_ONCE(quadrant && !role.has_4_byte_gpte);
- WARN_ON_ONCE(role.direct && role.has_4_byte_gpte);
-
- sp = kvm_mmu_get_shadow_page(vcpu, gfn, role);
- ++sp->root_count;
-
- return __pa(sp->spt);
-}
-
-static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
-{
- struct kvm_mmu *mmu = vcpu->arch.mmu;
- u8 shadow_root_level = mmu->root_role.level;
- hpa_t root;
- unsigned i;
- int r;
-
- write_lock(&vcpu->kvm->mmu_lock);
- r = make_mmu_pages_available(vcpu);
- if (r < 0)
- goto out_unlock;
-
- if (is_tdp_mmu_enabled(vcpu->kvm)) {
- root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
- mmu->root.hpa = root;
- } else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
- root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level);
- mmu->root.hpa = root;
- } else if (shadow_root_level == PT32E_ROOT_LEVEL) {
- if (WARN_ON_ONCE(!mmu->pae_root)) {
- r = -EIO;
- goto out_unlock;
- }
-
- for (i = 0; i < 4; ++i) {
- WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
-
- root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT), 0,
- PT32_ROOT_LEVEL);
- mmu->pae_root[i] = root | PT_PRESENT_MASK |
- shadow_me_value;
- }
- mmu->root.hpa = __pa(mmu->pae_root);
- } else {
- WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
- r = -EIO;
- goto out_unlock;
- }
-
- /* root.pgd is ignored for direct MMUs. */
- mmu->root.pgd = 0;
-out_unlock:
- write_unlock(&vcpu->kvm->mmu_lock);
- return r;
-}
-
-static int mmu_first_shadow_root_alloc(struct kvm *kvm)
-{
- struct kvm_memslots *slots;
- struct kvm_memory_slot *slot;
- int r = 0, i, bkt;
-
- /*
- * Check if this is the first shadow root being allocated before
- * taking the lock.
- */
- if (kvm_shadow_root_allocated(kvm))
- return 0;
-
- mutex_lock(&kvm->slots_arch_lock);
-
- /* Recheck, under the lock, whether this is the first shadow root. */
- if (kvm_shadow_root_allocated(kvm))
- goto out_unlock;
-
- /*
- * Check if anything actually needs to be allocated, e.g. all metadata
- * will be allocated upfront if TDP is disabled.
- */
- if (kvm_memslots_have_rmaps(kvm) &&
- kvm_page_track_write_tracking_enabled(kvm))
- goto out_success;
-
- for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
- slots = __kvm_memslots(kvm, i);
- kvm_for_each_memslot(slot, bkt, slots) {
- /*
- * Both of these functions are no-ops if the target is
- * already allocated, so unconditionally calling both
- * is safe. Intentionally do NOT free allocations on
- * failure to avoid having to track which allocations
- * were made now versus when the memslot was created.
- * The metadata is guaranteed to be freed when the slot
- * is freed, and will be kept/used if userspace retries
- * KVM_RUN instead of killing the VM.
- */
- r = memslot_rmap_alloc(slot, slot->npages);
- if (r)
- goto out_unlock;
- r = kvm_page_track_write_tracking_alloc(slot);
- if (r)
- goto out_unlock;
- }
- }
-
- /*
- * Ensure that shadow_root_allocated becomes true strictly after
- * all the related pointers are set.
- */
-out_success:
- smp_store_release(&kvm->arch.shadow_root_allocated, true);
-
-out_unlock:
- mutex_unlock(&kvm->slots_arch_lock);
- return r;
-}
-
-static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
-{
- struct kvm_mmu *mmu = vcpu->arch.mmu;
- u64 pdptrs[4], pm_mask;
- gfn_t root_gfn, root_pgd;
- int quadrant, i, r;
- hpa_t root;
-
- root_pgd = mmu->get_guest_pgd(vcpu);
- root_gfn = root_pgd >> PAGE_SHIFT;
-
- if (mmu_check_root(vcpu, root_gfn))
- return 1;
-
- /*
- * On SVM, reading PDPTRs might access guest memory, which might fault
- * and thus might sleep. Grab the PDPTRs before acquiring mmu_lock.
- */
- if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) {
- for (i = 0; i < 4; ++i) {
- pdptrs[i] = mmu->get_pdptr(vcpu, i);
- if (!(pdptrs[i] & PT_PRESENT_MASK))
- continue;
-
- if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT))
- return 1;
- }
- }
-
- r = mmu_first_shadow_root_alloc(vcpu->kvm);
- if (r)
- return r;
-
- write_lock(&vcpu->kvm->mmu_lock);
- r = make_mmu_pages_available(vcpu);
- if (r < 0)
- goto out_unlock;
-
- /*
- * Do we shadow a long mode page table? If so we need to
- * write-protect the guests page table root.
- */
- if (mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) {
- root = mmu_alloc_root(vcpu, root_gfn, 0,
- mmu->root_role.level);
- mmu->root.hpa = root;
- goto set_root_pgd;
- }
-
- if (WARN_ON_ONCE(!mmu->pae_root)) {
- r = -EIO;
- goto out_unlock;
- }
-
- /*
- * We shadow a 32 bit page table. This may be a legacy 2-level
- * or a PAE 3-level page table. In either case we need to be aware that
- * the shadow page table may be a PAE or a long mode page table.
- */
- pm_mask = PT_PRESENT_MASK | shadow_me_value;
- if (mmu->root_role.level >= PT64_ROOT_4LEVEL) {
- pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
-
- if (WARN_ON_ONCE(!mmu->pml4_root)) {
- r = -EIO;
- goto out_unlock;
- }
- mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask;
-
- if (mmu->root_role.level == PT64_ROOT_5LEVEL) {
- if (WARN_ON_ONCE(!mmu->pml5_root)) {
- r = -EIO;
- goto out_unlock;
- }
- mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask;
- }
- }
-
- for (i = 0; i < 4; ++i) {
- WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
-
- if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) {
- if (!(pdptrs[i] & PT_PRESENT_MASK)) {
- mmu->pae_root[i] = INVALID_PAE_ROOT;
- continue;
- }
- root_gfn = pdptrs[i] >> PAGE_SHIFT;
- }
-
- /*
- * If shadowing 32-bit non-PAE page tables, each PAE page
- * directory maps one quarter of the guest's non-PAE page
- * directory. Othwerise each PAE page direct shadows one guest
- * PAE page directory so that quadrant should be 0.
- */
- quadrant = (mmu->cpu_role.base.level == PT32_ROOT_LEVEL) ? i : 0;
-
- root = mmu_alloc_root(vcpu, root_gfn, quadrant, PT32_ROOT_LEVEL);
- mmu->pae_root[i] = root | pm_mask;
- }
-
- if (mmu->root_role.level == PT64_ROOT_5LEVEL)
- mmu->root.hpa = __pa(mmu->pml5_root);
- else if (mmu->root_role.level == PT64_ROOT_4LEVEL)
- mmu->root.hpa = __pa(mmu->pml4_root);
- else
- mmu->root.hpa = __pa(mmu->pae_root);
-
-set_root_pgd:
- mmu->root.pgd = root_pgd;
-out_unlock:
- write_unlock(&vcpu->kvm->mmu_lock);
-
- return r;
-}
-
-static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
-{
- struct kvm_mmu *mmu = vcpu->arch.mmu;
- bool need_pml5 = mmu->root_role.level > PT64_ROOT_4LEVEL;
- u64 *pml5_root = NULL;
- u64 *pml4_root = NULL;
- u64 *pae_root;
-
- /*
- * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
- * tables are allocated and initialized at root creation as there is no
- * equivalent level in the guest's NPT to shadow. Allocate the tables
- * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
- */
- if (mmu->root_role.direct ||
- mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL ||
- mmu->root_role.level < PT64_ROOT_4LEVEL)
- return 0;
-
- /*
- * NPT, the only paging mode that uses this horror, uses a fixed number
- * of levels for the shadow page tables, e.g. all MMUs are 4-level or
- * all MMus are 5-level. Thus, this can safely require that pml5_root
- * is allocated if the other roots are valid and pml5 is needed, as any
- * prior MMU would also have required pml5.
- */
- if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root))
- return 0;
-
- /*
- * The special roots should always be allocated in concert. Yell and
- * bail if KVM ends up in a state where only one of the roots is valid.
- */
- if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root ||
- (need_pml5 && mmu->pml5_root)))
- return -EIO;
-
- /*
- * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and
- * doesn't need to be decrypted.
- */
- pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
- if (!pae_root)
- return -ENOMEM;
-
-#ifdef CONFIG_X86_64
- pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
- if (!pml4_root)
- goto err_pml4;
+ if (++retry_count > 4) {
+ printk_once(KERN_WARNING
+ "kvm: Fast #PF retrying more than 4 times.\n");
+ break;
+ }
- if (need_pml5) {
- pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
- if (!pml5_root)
- goto err_pml5;
- }
-#endif
+ } while (true);
- mmu->pae_root = pae_root;
- mmu->pml4_root = pml4_root;
- mmu->pml5_root = pml5_root;
+ trace_fast_page_fault(vcpu, fault, sptep, spte, ret);
+ walk_shadow_page_lockless_end(vcpu);
- return 0;
+ if (ret != RET_PF_INVALID)
+ vcpu->stat.pf_fast++;
-#ifdef CONFIG_X86_64
-err_pml5:
- free_page((unsigned long)pml4_root);
-err_pml4:
- free_page((unsigned long)pae_root);
- return -ENOMEM;
-#endif
+ return ret;
}
-static bool is_unsync_root(hpa_t root)
+static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
+ struct list_head *invalid_list)
{
struct kvm_mmu_page *sp;
- if (!VALID_PAGE(root))
- return false;
-
- /*
- * The read barrier orders the CPU's read of SPTE.W during the page table
- * walk before the reads of sp->unsync/sp->unsync_children here.
- *
- * Even if another CPU was marking the SP as unsync-ed simultaneously,
- * any guest page table changes are not guaranteed to be visible anyway
- * until this VCPU issues a TLB flush strictly after those changes are
- * made. We only need to ensure that the other CPU sets these flags
- * before any actual changes to the page tables are made. The comments
- * in mmu_try_to_unsync_pages() describe what could go wrong if this
- * requirement isn't satisfied.
- */
- smp_rmb();
- sp = to_shadow_page(root);
+ if (!VALID_PAGE(*root_hpa))
+ return;
/*
- * PAE roots (somewhat arbitrarily) aren't backed by shadow pages, the
- * PDPTEs for a given PAE root need to be synchronized individually.
+ * The "root" may be a special root, e.g. a PAE entry, treat it as a
+ * SPTE to ensure any non-PA bits are dropped.
*/
- if (WARN_ON_ONCE(!sp))
- return false;
+ sp = spte_to_child_sp(*root_hpa);
+ if (WARN_ON(!sp))
+ return;
- if (sp->unsync || sp->unsync_children)
- return true;
+ if (is_tdp_mmu_page(sp))
+ kvm_tdp_mmu_put_root(kvm, sp, false);
+ else if (!--sp->root_count && sp->role.invalid)
+ kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
- return false;
+ *root_hpa = INVALID_PAGE;
}
-void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
+/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
+void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu,
+ ulong roots_to_free)
{
int i;
- struct kvm_mmu_page *sp;
-
- if (vcpu->arch.mmu->root_role.direct)
- return;
+ LIST_HEAD(invalid_list);
+ bool free_active_root;
- if (!VALID_PAGE(vcpu->arch.mmu->root.hpa))
- return;
+ BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
- vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
+ /* Before acquiring the MMU lock, see if we need to do any real work. */
+ free_active_root = (roots_to_free & KVM_MMU_ROOT_CURRENT)
+ && VALID_PAGE(mmu->root.hpa);
- if (vcpu->arch.mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) {
- hpa_t root = vcpu->arch.mmu->root.hpa;
- sp = to_shadow_page(root);
+ if (!free_active_root) {
+ for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
+ if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
+ VALID_PAGE(mmu->prev_roots[i].hpa))
+ break;
- if (!is_unsync_root(root))
+ if (i == KVM_MMU_NUM_PREV_ROOTS)
return;
-
- write_lock(&vcpu->kvm->mmu_lock);
- mmu_sync_children(vcpu, sp, true);
- write_unlock(&vcpu->kvm->mmu_lock);
- return;
}
- write_lock(&vcpu->kvm->mmu_lock);
+ write_lock(&kvm->mmu_lock);
+
+ for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
+ if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
+ mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
+ &invalid_list);
- for (i = 0; i < 4; ++i) {
- hpa_t root = vcpu->arch.mmu->pae_root[i];
+ if (free_active_root) {
+ if (to_shadow_page(mmu->root.hpa)) {
+ mmu_free_root_page(kvm, &mmu->root.hpa, &invalid_list);
+ } else if (mmu->pae_root) {
+ for (i = 0; i < 4; ++i) {
+ if (!IS_VALID_PAE_ROOT(mmu->pae_root[i]))
+ continue;
- if (IS_VALID_PAE_ROOT(root)) {
- sp = spte_to_child_sp(root);
- mmu_sync_children(vcpu, sp, true);
+ mmu_free_root_page(kvm, &mmu->pae_root[i],
+ &invalid_list);
+ mmu->pae_root[i] = INVALID_PAE_ROOT;
+ }
}
+ mmu->root.hpa = INVALID_PAGE;
+ mmu->root.pgd = 0;
}
- write_unlock(&vcpu->kvm->mmu_lock);
+ kvm_mmu_commit_zap_page(kvm, &invalid_list);
+ write_unlock(&kvm->mmu_lock);
}
+EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
-void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu)
+static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
{
- unsigned long roots_to_free = 0;
- int i;
+ struct kvm_mmu *mmu = vcpu->arch.mmu;
+ u8 shadow_root_level = mmu->root_role.level;
+ hpa_t root;
+ unsigned i;
+ int r;
- for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
- if (is_unsync_root(vcpu->arch.mmu->prev_roots[i].hpa))
- roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
+ write_lock(&vcpu->kvm->mmu_lock);
+ r = make_mmu_pages_available(vcpu);
+ if (r < 0)
+ goto out_unlock;
+
+ if (is_tdp_mmu_enabled(vcpu->kvm)) {
+ root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
+ mmu->root.hpa = root;
+ } else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
+ root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level);
+ mmu->root.hpa = root;
+ } else if (shadow_root_level == PT32E_ROOT_LEVEL) {
+ if (WARN_ON_ONCE(!mmu->pae_root)) {
+ r = -EIO;
+ goto out_unlock;
+ }
+
+ for (i = 0; i < 4; ++i) {
+ WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
- /* sync prev_roots by simply freeing them */
- kvm_mmu_free_roots(vcpu->kvm, vcpu->arch.mmu, roots_to_free);
+ root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT), 0,
+ PT32_ROOT_LEVEL);
+ mmu->pae_root[i] = root | PT_PRESENT_MASK |
+ shadow_me_value;
+ }
+ mmu->root.hpa = __pa(mmu->pae_root);
+ } else {
+ WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
+ r = -EIO;
+ goto out_unlock;
+ }
+
+ /* root.pgd is ignored for direct MMUs. */
+ mmu->root.pgd = 0;
+out_unlock:
+ write_unlock(&vcpu->kvm->mmu_lock);
+ return r;
}
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
@@ -3984,31 +1191,6 @@ static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
return vcpu_match_mmio_gva(vcpu, addr);
}
-/*
- * Return the level of the lowest level SPTE added to sptes.
- * That SPTE may be non-present.
- *
- * Must be called between walk_shadow_page_lockless_{begin,end}.
- */
-static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
-{
- struct kvm_shadow_walk_iterator iterator;
- int leaf = -1;
- u64 spte;
-
- for (shadow_walk_init(&iterator, vcpu, addr),
- *root_level = iterator.level;
- shadow_walk_okay(&iterator);
- __shadow_walk_next(&iterator, spte)) {
- leaf = iterator.level;
- spte = mmu_spte_get_lockless(iterator.sptep);
-
- sptes[leaf] = spte;
- }
-
- return leaf;
-}
-
/* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
{
@@ -4112,17 +1294,6 @@ static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
return false;
}
-static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
-{
- struct kvm_shadow_walk_iterator iterator;
- u64 spte;
-
- walk_shadow_page_lockless_begin(vcpu);
- for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
- clear_sp_write_flooding_count(iterator.sptep);
- walk_shadow_page_lockless_end(vcpu);
-}
-
static u32 alloc_apf_token(struct kvm_vcpu *vcpu)
{
/* make sure the token value is not 0 */
@@ -5305,264 +2476,65 @@ void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu)
vcpu->arch.nested_mmu.root_role.word = 0;
vcpu->arch.root_mmu.cpu_role.ext.valid = 0;
vcpu->arch.guest_mmu.cpu_role.ext.valid = 0;
- vcpu->arch.nested_mmu.cpu_role.ext.valid = 0;
- kvm_mmu_reset_context(vcpu);
-
- /*
- * Changing guest CPUID after KVM_RUN is forbidden, see the comment in
- * kvm_arch_vcpu_ioctl().
- */
- KVM_BUG_ON(vcpu->arch.last_vmentry_cpu != -1, vcpu->kvm);
-}
-
-void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
-{
- kvm_mmu_unload(vcpu);
- kvm_init_mmu(vcpu);
-}
-EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
-
-int kvm_mmu_load(struct kvm_vcpu *vcpu)
-{
- int r;
-
- r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->root_role.direct);
- if (r)
- goto out;
- r = mmu_alloc_special_roots(vcpu);
- if (r)
- goto out;
- if (vcpu->arch.mmu->root_role.direct)
- r = mmu_alloc_direct_roots(vcpu);
- else
- r = mmu_alloc_shadow_roots(vcpu);
- if (r)
- goto out;
-
- kvm_mmu_sync_roots(vcpu);
-
- kvm_mmu_load_pgd(vcpu);
-
- /*
- * Flush any TLB entries for the new root, the provenance of the root
- * is unknown. Even if KVM ensures there are no stale TLB entries
- * for a freed root, in theory another hypervisor could have left
- * stale entries. Flushing on alloc also allows KVM to skip the TLB
- * flush when freeing a root (see kvm_tdp_mmu_put_root()).
- */
- static_call(kvm_x86_flush_tlb_current)(vcpu);
-out:
- return r;
-}
-
-void kvm_mmu_unload(struct kvm_vcpu *vcpu)
-{
- struct kvm *kvm = vcpu->kvm;
-
- kvm_mmu_free_roots(kvm, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
- WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root.hpa));
- kvm_mmu_free_roots(kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
- WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root.hpa));
- vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
-}
-
-static bool is_obsolete_root(struct kvm *kvm, hpa_t root_hpa)
-{
- struct kvm_mmu_page *sp;
-
- if (!VALID_PAGE(root_hpa))
- return false;
-
- /*
- * When freeing obsolete roots, treat roots as obsolete if they don't
- * have an associated shadow page. This does mean KVM will get false
- * positives and free roots that don't strictly need to be freed, but
- * such false positives are relatively rare:
- *
- * (a) only PAE paging and nested NPT has roots without shadow pages
- * (b) remote reloads due to a memslot update obsoletes _all_ roots
- * (c) KVM doesn't track previous roots for PAE paging, and the guest
- * is unlikely to zap an in-use PGD.
- */
- sp = to_shadow_page(root_hpa);
- return !sp || is_obsolete_sp(kvm, sp);
-}
-
-static void __kvm_mmu_free_obsolete_roots(struct kvm *kvm, struct kvm_mmu *mmu)
-{
- unsigned long roots_to_free = 0;
- int i;
-
- if (is_obsolete_root(kvm, mmu->root.hpa))
- roots_to_free |= KVM_MMU_ROOT_CURRENT;
-
- for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
- if (is_obsolete_root(kvm, mmu->prev_roots[i].hpa))
- roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
- }
-
- if (roots_to_free)
- kvm_mmu_free_roots(kvm, mmu, roots_to_free);
-}
-
-void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu)
-{
- __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.root_mmu);
- __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.guest_mmu);
-}
-
-static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
- int *bytes)
-{
- u64 gentry = 0;
- int r;
-
- /*
- * Assume that the pte write on a page table of the same type
- * as the current vcpu paging mode since we update the sptes only
- * when they have the same mode.
- */
- if (is_pae(vcpu) && *bytes == 4) {
- /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
- *gpa &= ~(gpa_t)7;
- *bytes = 8;
- }
-
- if (*bytes == 4 || *bytes == 8) {
- r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
- if (r)
- gentry = 0;
- }
-
- return gentry;
-}
-
-/*
- * If we're seeing too many writes to a page, it may no longer be a page table,
- * or we may be forking, in which case it is better to unmap the page.
- */
-static bool detect_write_flooding(struct kvm_mmu_page *sp)
-{
- /*
- * Skip write-flooding detected for the sp whose level is 1, because
- * it can become unsync, then the guest page is not write-protected.
- */
- if (sp->role.level == PG_LEVEL_4K)
- return false;
-
- atomic_inc(&sp->write_flooding_count);
- return atomic_read(&sp->write_flooding_count) >= 3;
-}
-
-/*
- * Misaligned accesses are too much trouble to fix up; also, they usually
- * indicate a page is not used as a page table.
- */
-static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
- int bytes)
-{
- unsigned offset, pte_size, misaligned;
-
- pgprintk("misaligned: gpa %llx bytes %d role %x\n",
- gpa, bytes, sp->role.word);
-
- offset = offset_in_page(gpa);
- pte_size = sp->role.has_4_byte_gpte ? 4 : 8;
+ vcpu->arch.nested_mmu.cpu_role.ext.valid = 0;
+ kvm_mmu_reset_context(vcpu);
/*
- * Sometimes, the OS only writes the last one bytes to update status
- * bits, for example, in linux, andb instruction is used in clear_bit().
+ * Changing guest CPUID after KVM_RUN is forbidden, see the comment in
+ * kvm_arch_vcpu_ioctl().
*/
- if (!(offset & (pte_size - 1)) && bytes == 1)
- return false;
-
- misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
- misaligned |= bytes < 4;
-
- return misaligned;
+ KVM_BUG_ON(vcpu->arch.last_vmentry_cpu != -1, vcpu->kvm);
}
-static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
+void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
{
- unsigned page_offset, quadrant;
- u64 *spte;
- int level;
-
- page_offset = offset_in_page(gpa);
- level = sp->role.level;
- *nspte = 1;
- if (sp->role.has_4_byte_gpte) {
- page_offset <<= 1; /* 32->64 */
- /*
- * A 32-bit pde maps 4MB while the shadow pdes map
- * only 2MB. So we need to double the offset again
- * and zap two pdes instead of one.
- */
- if (level == PT32_ROOT_LEVEL) {
- page_offset &= ~7; /* kill rounding error */
- page_offset <<= 1;
- *nspte = 2;
- }
- quadrant = page_offset >> PAGE_SHIFT;
- page_offset &= ~PAGE_MASK;
- if (quadrant != sp->role.quadrant)
- return NULL;
- }
-
- spte = &sp->spt[page_offset / sizeof(*spte)];
- return spte;
+ kvm_mmu_unload(vcpu);
+ kvm_init_mmu(vcpu);
}
+EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
-static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
- const u8 *new, int bytes,
- struct kvm_page_track_notifier_node *node)
+int kvm_mmu_load(struct kvm_vcpu *vcpu)
{
- gfn_t gfn = gpa >> PAGE_SHIFT;
- struct kvm_mmu_page *sp;
- LIST_HEAD(invalid_list);
- u64 entry, gentry, *spte;
- int npte;
- bool flush = false;
-
- /*
- * If we don't have indirect shadow pages, it means no page is
- * write-protected, so we can exit simply.
- */
- if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
- return;
-
- pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
+ int r;
- write_lock(&vcpu->kvm->mmu_lock);
+ r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->root_role.direct);
+ if (r)
+ goto out;
+ r = mmu_alloc_special_roots(vcpu);
+ if (r)
+ goto out;
+ if (vcpu->arch.mmu->root_role.direct)
+ r = mmu_alloc_direct_roots(vcpu);
+ else
+ r = mmu_alloc_shadow_roots(vcpu);
+ if (r)
+ goto out;
- gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
+ kvm_mmu_sync_roots(vcpu);
- ++vcpu->kvm->stat.mmu_pte_write;
+ kvm_mmu_load_pgd(vcpu);
- for_each_gfn_valid_sp_with_gptes(vcpu->kvm, sp, gfn) {
- if (detect_write_misaligned(sp, gpa, bytes) ||
- detect_write_flooding(sp)) {
- kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
- ++vcpu->kvm->stat.mmu_flooded;
- continue;
- }
+ /*
+ * Flush any TLB entries for the new root, the provenance of the root
+ * is unknown. Even if KVM ensures there are no stale TLB entries
+ * for a freed root, in theory another hypervisor could have left
+ * stale entries. Flushing on alloc also allows KVM to skip the TLB
+ * flush when freeing a root (see kvm_tdp_mmu_put_root()).
+ */
+ static_call(kvm_x86_flush_tlb_current)(vcpu);
+out:
+ return r;
+}
- spte = get_written_sptes(sp, gpa, &npte);
- if (!spte)
- continue;
+void kvm_mmu_unload(struct kvm_vcpu *vcpu)
+{
+ struct kvm *kvm = vcpu->kvm;
- while (npte--) {
- entry = *spte;
- mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
- if (gentry && sp->role.level != PG_LEVEL_4K)
- ++vcpu->kvm->stat.mmu_pde_zapped;
- if (is_shadow_present_pte(entry))
- flush = true;
- ++spte;
- }
- }
- kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
- write_unlock(&vcpu->kvm->mmu_lock);
+ kvm_mmu_free_roots(kvm, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
+ WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root.hpa));
+ kvm_mmu_free_roots(kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
+ WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root.hpa));
+ vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
}
int noinline kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
@@ -5728,58 +2700,6 @@ void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
}
EXPORT_SYMBOL_GPL(kvm_configure_mmu);
-/* The return value indicates if tlb flush on all vcpus is needed. */
-typedef bool (*slot_level_handler) (struct kvm *kvm,
- struct kvm_rmap_head *rmap_head,
- const struct kvm_memory_slot *slot);
-
-/* The caller should hold mmu-lock before calling this function. */
-static __always_inline bool
-slot_handle_level_range(struct kvm *kvm, const struct kvm_memory_slot *memslot,
- slot_level_handler fn, int start_level, int end_level,
- gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield,
- bool flush)
-{
- struct slot_rmap_walk_iterator iterator;
-
- for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
- end_gfn, &iterator) {
- if (iterator.rmap)
- flush |= fn(kvm, iterator.rmap, memslot);
-
- if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
- if (flush && flush_on_yield) {
- kvm_flush_remote_tlbs_with_address(kvm,
- start_gfn,
- iterator.gfn - start_gfn + 1);
- flush = false;
- }
- cond_resched_rwlock_write(&kvm->mmu_lock);
- }
- }
-
- return flush;
-}
-
-static __always_inline bool
-slot_handle_level(struct kvm *kvm, const struct kvm_memory_slot *memslot,
- slot_level_handler fn, int start_level, int end_level,
- bool flush_on_yield)
-{
- return slot_handle_level_range(kvm, memslot, fn, start_level,
- end_level, memslot->base_gfn,
- memslot->base_gfn + memslot->npages - 1,
- flush_on_yield, false);
-}
-
-static __always_inline bool
-slot_handle_level_4k(struct kvm *kvm, const struct kvm_memory_slot *memslot,
- slot_level_handler fn, bool flush_on_yield)
-{
- return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
- PG_LEVEL_4K, flush_on_yield);
-}
-
static void free_mmu_pages(struct kvm_mmu *mmu)
{
if (!tdp_enabled && mmu->pae_root)
@@ -5871,63 +2791,6 @@ int kvm_mmu_create(struct kvm_vcpu *vcpu)
return ret;
}
-#define BATCH_ZAP_PAGES 10
-static void kvm_zap_obsolete_pages(struct kvm *kvm)
-{
- struct kvm_mmu_page *sp, *node;
- int nr_zapped, batch = 0;
- bool unstable;
-
-restart:
- list_for_each_entry_safe_reverse(sp, node,
- &kvm->arch.active_mmu_pages, link) {
- /*
- * No obsolete valid page exists before a newly created page
- * since active_mmu_pages is a FIFO list.
- */
- if (!is_obsolete_sp(kvm, sp))
- break;
-
- /*
- * Invalid pages should never land back on the list of active
- * pages. Skip the bogus page, otherwise we'll get stuck in an
- * infinite loop if the page gets put back on the list (again).
- */
- if (WARN_ON(sp->role.invalid))
- continue;
-
- /*
- * No need to flush the TLB since we're only zapping shadow
- * pages with an obsolete generation number and all vCPUS have
- * loaded a new root, i.e. the shadow pages being zapped cannot
- * be in active use by the guest.
- */
- if (batch >= BATCH_ZAP_PAGES &&
- cond_resched_rwlock_write(&kvm->mmu_lock)) {
- batch = 0;
- goto restart;
- }
-
- unstable = __kvm_mmu_prepare_zap_page(kvm, sp,
- &kvm->arch.zapped_obsolete_pages, &nr_zapped);
- batch += nr_zapped;
-
- if (unstable)
- goto restart;
- }
-
- /*
- * Kick all vCPUs (via remote TLB flush) before freeing the page tables
- * to ensure KVM is not in the middle of a lockless shadow page table
- * walk, which may reference the pages. The remote TLB flush itself is
- * not required and is simply a convenient way to kick vCPUs as needed.
- * KVM performs a local TLB flush when allocating a new root (see
- * kvm_mmu_load()), and the reload in the caller ensure no vCPUs are
- * running with an obsolete MMU.
- */
- kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
-}
-
/*
* Fast invalidate all shadow pages and use lock-break technique
* to zap obsolete pages.
@@ -5988,11 +2851,6 @@ static void kvm_mmu_zap_all_fast(struct kvm *kvm)
kvm_tdp_mmu_zap_invalidated_roots(kvm);
}
-static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
-{
- return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
-}
-
static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
struct kvm_memory_slot *slot,
struct kvm_page_track_notifier_node *node)
@@ -6047,37 +2905,6 @@ void kvm_mmu_uninit_vm(struct kvm *kvm)
mmu_free_vm_memory_caches(kvm);
}
-static bool kvm_rmap_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
-{
- const struct kvm_memory_slot *memslot;
- struct kvm_memslots *slots;
- struct kvm_memslot_iter iter;
- bool flush = false;
- gfn_t start, end;
- int i;
-
- if (!kvm_memslots_have_rmaps(kvm))
- return flush;
-
- for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
- slots = __kvm_memslots(kvm, i);
-
- kvm_for_each_memslot_in_gfn_range(&iter, slots, gfn_start, gfn_end) {
- memslot = iter.slot;
- start = max(gfn_start, memslot->base_gfn);
- end = min(gfn_end, memslot->base_gfn + memslot->npages);
- if (WARN_ON_ONCE(start >= end))
- continue;
-
- flush = slot_handle_level_range(kvm, memslot, __kvm_zap_rmap,
- PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
- start, end - 1, true, flush);
- }
- }
-
- return flush;
-}
-
/*
* Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end
* (not including it)
@@ -6111,13 +2938,6 @@ void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
write_unlock(&kvm->mmu_lock);
}
-static bool slot_rmap_write_protect(struct kvm *kvm,
- struct kvm_rmap_head *rmap_head,
- const struct kvm_memory_slot *slot)
-{
- return rmap_write_protect(rmap_head, false);
-}
-
void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
const struct kvm_memory_slot *memslot,
int start_level)
@@ -6189,183 +3009,6 @@ int topup_split_caches(struct kvm *kvm)
return kvm_mmu_topup_memory_cache(&kvm->arch.split_shadow_page_cache, 1);
}
-static struct kvm_mmu_page *shadow_mmu_get_sp_for_split(struct kvm *kvm, u64 *huge_sptep)
-{
- struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep);
- struct shadow_page_caches caches = {};
- union kvm_mmu_page_role role;
- unsigned int access;
- gfn_t gfn;
-
- gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep));
- access = kvm_mmu_page_get_access(huge_sp, spte_index(huge_sptep));
-
- /*
- * Note, huge page splitting always uses direct shadow pages, regardless
- * of whether the huge page itself is mapped by a direct or indirect
- * shadow page, since the huge page region itself is being directly
- * mapped with smaller pages.
- */
- role = kvm_mmu_child_role(huge_sptep, /*direct=*/true, access);
-
- /* Direct SPs do not require a shadowed_info_cache. */
- caches.page_header_cache = &kvm->arch.split_page_header_cache;
- caches.shadow_page_cache = &kvm->arch.split_shadow_page_cache;
-
- /* Safe to pass NULL for vCPU since requesting a direct SP. */
- return __kvm_mmu_get_shadow_page(kvm, NULL, &caches, gfn, role);
-}
-
-static void shadow_mmu_split_huge_page(struct kvm *kvm,
- const struct kvm_memory_slot *slot,
- u64 *huge_sptep)
-
-{
- struct kvm_mmu_memory_cache *cache = &kvm->arch.split_desc_cache;
- u64 huge_spte = READ_ONCE(*huge_sptep);
- struct kvm_mmu_page *sp;
- bool flush = false;
- u64 *sptep, spte;
- gfn_t gfn;
- int index;
-
- sp = shadow_mmu_get_sp_for_split(kvm, huge_sptep);
-
- for (index = 0; index < SPTE_ENT_PER_PAGE; index++) {
- sptep = &sp->spt[index];
- gfn = kvm_mmu_page_get_gfn(sp, index);
-
- /*
- * The SP may already have populated SPTEs, e.g. if this huge
- * page is aliased by multiple sptes with the same access
- * permissions. These entries are guaranteed to map the same
- * gfn-to-pfn translation since the SP is direct, so no need to
- * modify them.
- *
- * However, if a given SPTE points to a lower level page table,
- * that lower level page table may only be partially populated.
- * Installing such SPTEs would effectively unmap a potion of the
- * huge page. Unmapping guest memory always requires a TLB flush
- * since a subsequent operation on the unmapped regions would
- * fail to detect the need to flush.
- */
- if (is_shadow_present_pte(*sptep)) {
- flush |= !is_last_spte(*sptep, sp->role.level);
- continue;
- }
-
- spte = make_huge_page_split_spte(kvm, huge_spte, sp->role, index);
- mmu_spte_set(sptep, spte);
- __rmap_add(kvm, cache, slot, sptep, gfn, sp->role.access);
- }
-
- __link_shadow_page(kvm, cache, huge_sptep, sp, flush);
-}
-
-static int shadow_mmu_try_split_huge_page(struct kvm *kvm,
- const struct kvm_memory_slot *slot,
- u64 *huge_sptep)
-{
- struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep);
- int level, r = 0;
- gfn_t gfn;
- u64 spte;
-
- /* Grab information for the tracepoint before dropping the MMU lock. */
- gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep));
- level = huge_sp->role.level;
- spte = *huge_sptep;
-
- if (kvm_mmu_available_pages(kvm) <= KVM_MIN_FREE_MMU_PAGES) {
- r = -ENOSPC;
- goto out;
- }
-
- if (need_topup_split_caches_or_resched(kvm)) {
- write_unlock(&kvm->mmu_lock);
- cond_resched();
- /*
- * If the topup succeeds, return -EAGAIN to indicate that the
- * rmap iterator should be restarted because the MMU lock was
- * dropped.
- */
- r = topup_split_caches(kvm) ?: -EAGAIN;
- write_lock(&kvm->mmu_lock);
- goto out;
- }
-
- shadow_mmu_split_huge_page(kvm, slot, huge_sptep);
-
-out:
- trace_kvm_mmu_split_huge_page(gfn, spte, level, r);
- return r;
-}
-
-static bool shadow_mmu_try_split_huge_pages(struct kvm *kvm,
- struct kvm_rmap_head *rmap_head,
- const struct kvm_memory_slot *slot)
-{
- struct rmap_iterator iter;
- struct kvm_mmu_page *sp;
- u64 *huge_sptep;
- int r;
-
-restart:
- for_each_rmap_spte(rmap_head, &iter, huge_sptep) {
- sp = sptep_to_sp(huge_sptep);
-
- /* TDP MMU is enabled, so rmap only contains nested MMU SPs. */
- if (WARN_ON_ONCE(!sp->role.guest_mode))
- continue;
-
- /* The rmaps should never contain non-leaf SPTEs. */
- if (WARN_ON_ONCE(!is_large_pte(*huge_sptep)))
- continue;
-
- /* SPs with level >PG_LEVEL_4K should never by unsync. */
- if (WARN_ON_ONCE(sp->unsync))
- continue;
-
- /* Don't bother splitting huge pages on invalid SPs. */
- if (sp->role.invalid)
- continue;
-
- r = shadow_mmu_try_split_huge_page(kvm, slot, huge_sptep);
-
- /*
- * The split succeeded or needs to be retried because the MMU
- * lock was dropped. Either way, restart the iterator to get it
- * back into a consistent state.
- */
- if (!r || r == -EAGAIN)
- goto restart;
-
- /* The split failed and shouldn't be retried (e.g. -ENOMEM). */
- break;
- }
-
- return false;
-}
-
-static void kvm_shadow_mmu_try_split_huge_pages(struct kvm *kvm,
- const struct kvm_memory_slot *slot,
- gfn_t start, gfn_t end,
- int target_level)
-{
- int level;
-
- /*
- * Split huge pages starting with KVM_MAX_HUGEPAGE_LEVEL and working
- * down to the target level. This ensures pages are recursively split
- * all the way to the target level. There's no need to split pages
- * already at the target level.
- */
- for (level = KVM_MAX_HUGEPAGE_LEVEL; level > target_level; level--) {
- slot_handle_level_range(kvm, slot, shadow_mmu_try_split_huge_pages,
- level, level, start, end - 1, true, false);
- }
-}
-
/* Must be called with the mmu_lock held in write-mode. */
void kvm_mmu_try_split_huge_pages(struct kvm *kvm,
const struct kvm_memory_slot *memslot,
@@ -6417,56 +3060,6 @@ void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm,
*/
}
-static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
- struct kvm_rmap_head *rmap_head,
- const struct kvm_memory_slot *slot)
-{
- u64 *sptep;
- struct rmap_iterator iter;
- int need_tlb_flush = 0;
- struct kvm_mmu_page *sp;
-
-restart:
- for_each_rmap_spte(rmap_head, &iter, sptep) {
- sp = sptep_to_sp(sptep);
-
- /*
- * We cannot do huge page mapping for indirect shadow pages,
- * which are found on the last rmap (level = 1) when not using
- * tdp; such shadow pages are synced with the page table in
- * the guest, and the guest page table is using 4K page size
- * mapping if the indirect sp has level = 1.
- */
- if (sp->role.direct &&
- sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
- PG_LEVEL_NUM)) {
- kvm_zap_one_rmap_spte(kvm, rmap_head, sptep);
-
- if (kvm_available_flush_tlb_with_range())
- kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
- KVM_PAGES_PER_HPAGE(sp->role.level));
- else
- need_tlb_flush = 1;
-
- goto restart;
- }
- }
-
- return need_tlb_flush;
-}
-
-static void kvm_rmap_zap_collapsible_sptes(struct kvm *kvm,
- const struct kvm_memory_slot *slot)
-{
- /*
- * Note, use KVM_MAX_HUGEPAGE_LEVEL - 1 since there's no need to zap
- * pages that are already mapped at the maximum hugepage level.
- */
- if (slot_handle_level(kvm, slot, kvm_mmu_zap_collapsible_spte,
- PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL - 1, true))
- kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
-}
-
void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
const struct kvm_memory_slot *slot)
{
@@ -6577,67 +3170,8 @@ void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
}
}
-static unsigned long
-mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
-{
- struct kvm *kvm;
- int nr_to_scan = sc->nr_to_scan;
- unsigned long freed = 0;
-
- mutex_lock(&kvm_lock);
-
- list_for_each_entry(kvm, &vm_list, vm_list) {
- int idx;
- LIST_HEAD(invalid_list);
-
- /*
- * Never scan more than sc->nr_to_scan VM instances.
- * Will not hit this condition practically since we do not try
- * to shrink more than one VM and it is very unlikely to see
- * !n_used_mmu_pages so many times.
- */
- if (!nr_to_scan--)
- break;
- /*
- * n_used_mmu_pages is accessed without holding kvm->mmu_lock
- * here. We may skip a VM instance errorneosly, but we do not
- * want to shrink a VM that only started to populate its MMU
- * anyway.
- */
- if (!kvm->arch.n_used_mmu_pages &&
- !kvm_has_zapped_obsolete_pages(kvm))
- continue;
-
- idx = srcu_read_lock(&kvm->srcu);
- write_lock(&kvm->mmu_lock);
-
- if (kvm_has_zapped_obsolete_pages(kvm)) {
- kvm_mmu_commit_zap_page(kvm,
- &kvm->arch.zapped_obsolete_pages);
- goto unlock;
- }
-
- freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
-
-unlock:
- write_unlock(&kvm->mmu_lock);
- srcu_read_unlock(&kvm->srcu, idx);
-
- /*
- * unfair on small ones
- * per-vm shrinkers cry out
- * sadness comes quickly
- */
- list_move_tail(&kvm->vm_list, &vm_list);
- break;
- }
-
- mutex_unlock(&kvm_lock);
- return freed;
-}
-
-static unsigned long
-mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
+static unsigned long mmu_shrink_count(struct shrinker *shrink,
+ struct shrink_control *sc)
{
return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
}
diff --git a/arch/x86/kvm/mmu/mmu_internal.h b/arch/x86/kvm/mmu/mmu_internal.h
index 856e2e0a8420..74a99b67f09e 100644
--- a/arch/x86/kvm/mmu/mmu_internal.h
+++ b/arch/x86/kvm/mmu/mmu_internal.h
@@ -44,6 +44,8 @@ extern bool dbg;
#define INVALID_PAE_ROOT 0
#define IS_VALID_PAE_ROOT(x) (!!(x))
+#define PTE_PREFETCH_NUM 8
+
typedef u64 __rcu *tdp_ptep_t;
struct kvm_mmu_page {
@@ -168,8 +170,6 @@ bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
int min_level);
void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
u64 start_gfn, u64 pages);
-unsigned int pte_list_count(struct kvm_rmap_head *rmap_head);
-
extern int nx_huge_pages;
static inline bool is_nx_huge_page_enabled(struct kvm *kvm)
{
diff --git a/arch/x86/kvm/mmu/shadow_mmu.c b/arch/x86/kvm/mmu/shadow_mmu.c
index 7bce5ec52b2e..05d8f5be559d 100644
--- a/arch/x86/kvm/mmu/shadow_mmu.c
+++ b/arch/x86/kvm/mmu/shadow_mmu.c
@@ -19,3 +19,3411 @@
#include <asm/vmx.h>
#include <asm/cmpxchg.h>
#include <trace/events/kvm.h>
+
+#define for_each_shadow_entry(_vcpu, _addr, _walker) \
+ for (shadow_walk_init(&(_walker), _vcpu, _addr); \
+ shadow_walk_okay(&(_walker)); \
+ shadow_walk_next(&(_walker)))
+
+#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
+ for (shadow_walk_init(&(_walker), _vcpu, _addr); \
+ shadow_walk_okay(&(_walker)) && \
+ ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
+ __shadow_walk_next(&(_walker), spte))
+
+static void mmu_spte_set(u64 *sptep, u64 spte);
+
+void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
+ unsigned int access)
+{
+ u64 spte = make_mmio_spte(vcpu, gfn, access);
+
+ trace_mark_mmio_spte(sptep, gfn, spte);
+ mmu_spte_set(sptep, spte);
+}
+
+#ifdef CONFIG_X86_64
+static void __set_spte(u64 *sptep, u64 spte)
+{
+ WRITE_ONCE(*sptep, spte);
+}
+
+static void __update_clear_spte_fast(u64 *sptep, u64 spte)
+{
+ WRITE_ONCE(*sptep, spte);
+}
+
+static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
+{
+ return xchg(sptep, spte);
+}
+
+static u64 __get_spte_lockless(u64 *sptep)
+{
+ return READ_ONCE(*sptep);
+}
+#else
+union split_spte {
+ struct {
+ u32 spte_low;
+ u32 spte_high;
+ };
+ u64 spte;
+};
+
+static void count_spte_clear(u64 *sptep, u64 spte)
+{
+ struct kvm_mmu_page *sp = sptep_to_sp(sptep);
+
+ if (is_shadow_present_pte(spte))
+ return;
+
+ /* Ensure the spte is completely set before we increase the count */
+ smp_wmb();
+ sp->clear_spte_count++;
+}
+
+static void __set_spte(u64 *sptep, u64 spte)
+{
+ union split_spte *ssptep, sspte;
+
+ ssptep = (union split_spte *)sptep;
+ sspte = (union split_spte)spte;
+
+ ssptep->spte_high = sspte.spte_high;
+
+ /*
+ * If we map the spte from nonpresent to present, We should store
+ * the high bits firstly, then set present bit, so cpu can not
+ * fetch this spte while we are setting the spte.
+ */
+ smp_wmb();
+
+ WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
+}
+
+static void __update_clear_spte_fast(u64 *sptep, u64 spte)
+{
+ union split_spte *ssptep, sspte;
+
+ ssptep = (union split_spte *)sptep;
+ sspte = (union split_spte)spte;
+
+ WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
+
+ /*
+ * If we map the spte from present to nonpresent, we should clear
+ * present bit firstly to avoid vcpu fetch the old high bits.
+ */
+ smp_wmb();
+
+ ssptep->spte_high = sspte.spte_high;
+ count_spte_clear(sptep, spte);
+}
+
+static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
+{
+ union split_spte *ssptep, sspte, orig;
+
+ ssptep = (union split_spte *)sptep;
+ sspte = (union split_spte)spte;
+
+ /* xchg acts as a barrier before the setting of the high bits */
+ orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
+ orig.spte_high = ssptep->spte_high;
+ ssptep->spte_high = sspte.spte_high;
+ count_spte_clear(sptep, spte);
+
+ return orig.spte;
+}
+
+/*
+ * The idea using the light way get the spte on x86_32 guest is from
+ * gup_get_pte (mm/gup.c).
+ *
+ * An spte tlb flush may be pending, because kvm_set_pte_rmap
+ * coalesces them and we are running out of the MMU lock. Therefore
+ * we need to protect against in-progress updates of the spte.
+ *
+ * Reading the spte while an update is in progress may get the old value
+ * for the high part of the spte. The race is fine for a present->non-present
+ * change (because the high part of the spte is ignored for non-present spte),
+ * but for a present->present change we must reread the spte.
+ *
+ * All such changes are done in two steps (present->non-present and
+ * non-present->present), hence it is enough to count the number of
+ * present->non-present updates: if it changed while reading the spte,
+ * we might have hit the race. This is done using clear_spte_count.
+ */
+static u64 __get_spte_lockless(u64 *sptep)
+{
+ struct kvm_mmu_page *sp = sptep_to_sp(sptep);
+ union split_spte spte, *orig = (union split_spte *)sptep;
+ int count;
+
+retry:
+ count = sp->clear_spte_count;
+ smp_rmb();
+
+ spte.spte_low = orig->spte_low;
+ smp_rmb();
+
+ spte.spte_high = orig->spte_high;
+ smp_rmb();
+
+ if (unlikely(spte.spte_low != orig->spte_low ||
+ count != sp->clear_spte_count))
+ goto retry;
+
+ return spte.spte;
+}
+#endif
+
+/* Rules for using mmu_spte_set:
+ * Set the sptep from nonpresent to present.
+ * Note: the sptep being assigned *must* be either not present
+ * or in a state where the hardware will not attempt to update
+ * the spte.
+ */
+static void mmu_spte_set(u64 *sptep, u64 new_spte)
+{
+ WARN_ON(is_shadow_present_pte(*sptep));
+ __set_spte(sptep, new_spte);
+}
+
+/*
+ * Update the SPTE (excluding the PFN), but do not track changes in its
+ * accessed/dirty status.
+ */
+static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
+{
+ u64 old_spte = *sptep;
+
+ WARN_ON(!is_shadow_present_pte(new_spte));
+ check_spte_writable_invariants(new_spte);
+
+ if (!is_shadow_present_pte(old_spte)) {
+ mmu_spte_set(sptep, new_spte);
+ return old_spte;
+ }
+
+ if (!spte_has_volatile_bits(old_spte))
+ __update_clear_spte_fast(sptep, new_spte);
+ else
+ old_spte = __update_clear_spte_slow(sptep, new_spte);
+
+ WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
+
+ return old_spte;
+}
+
+/* Rules for using mmu_spte_update:
+ * Update the state bits, it means the mapped pfn is not changed.
+ *
+ * Whenever an MMU-writable SPTE is overwritten with a read-only SPTE, remote
+ * TLBs must be flushed. Otherwise rmap_write_protect will find a read-only
+ * spte, even though the writable spte might be cached on a CPU's TLB.
+ *
+ * Returns true if the TLB needs to be flushed
+ */
+bool mmu_spte_update(u64 *sptep, u64 new_spte)
+{
+ bool flush = false;
+ u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
+
+ if (!is_shadow_present_pte(old_spte))
+ return false;
+
+ /*
+ * For the spte updated out of mmu-lock is safe, since
+ * we always atomically update it, see the comments in
+ * spte_has_volatile_bits().
+ */
+ if (is_mmu_writable_spte(old_spte) &&
+ !is_writable_pte(new_spte))
+ flush = true;
+
+ /*
+ * Flush TLB when accessed/dirty states are changed in the page tables,
+ * to guarantee consistency between TLB and page tables.
+ */
+
+ if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
+ flush = true;
+ kvm_set_pfn_accessed(spte_to_pfn(old_spte));
+ }
+
+ if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
+ flush = true;
+ kvm_set_pfn_dirty(spte_to_pfn(old_spte));
+ }
+
+ return flush;
+}
+
+/*
+ * Rules for using mmu_spte_clear_track_bits:
+ * It sets the sptep from present to nonpresent, and track the
+ * state bits, it is used to clear the last level sptep.
+ * Returns the old PTE.
+ */
+static u64 mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep)
+{
+ kvm_pfn_t pfn;
+ u64 old_spte = *sptep;
+ int level = sptep_to_sp(sptep)->role.level;
+ struct page *page;
+
+ if (!is_shadow_present_pte(old_spte) ||
+ !spte_has_volatile_bits(old_spte))
+ __update_clear_spte_fast(sptep, 0ull);
+ else
+ old_spte = __update_clear_spte_slow(sptep, 0ull);
+
+ if (!is_shadow_present_pte(old_spte))
+ return old_spte;
+
+ kvm_update_page_stats(kvm, level, -1);
+
+ pfn = spte_to_pfn(old_spte);
+
+ /*
+ * KVM doesn't hold a reference to any pages mapped into the guest, and
+ * instead uses the mmu_notifier to ensure that KVM unmaps any pages
+ * before they are reclaimed. Sanity check that, if the pfn is backed
+ * by a refcounted page, the refcount is elevated.
+ */
+ page = kvm_pfn_to_refcounted_page(pfn);
+ WARN_ON(page && !page_count(page));
+
+ if (is_accessed_spte(old_spte))
+ kvm_set_pfn_accessed(pfn);
+
+ if (is_dirty_spte(old_spte))
+ kvm_set_pfn_dirty(pfn);
+
+ return old_spte;
+}
+
+/*
+ * Rules for using mmu_spte_clear_no_track:
+ * Directly clear spte without caring the state bits of sptep,
+ * it is used to set the upper level spte.
+ */
+void mmu_spte_clear_no_track(u64 *sptep)
+{
+ __update_clear_spte_fast(sptep, 0ull);
+}
+
+static u64 mmu_spte_get_lockless(u64 *sptep)
+{
+ return __get_spte_lockless(sptep);
+}
+
+/* Returns the Accessed status of the PTE and resets it at the same time. */
+static bool mmu_spte_age(u64 *sptep)
+{
+ u64 spte = mmu_spte_get_lockless(sptep);
+
+ if (!is_accessed_spte(spte))
+ return false;
+
+ if (spte_ad_enabled(spte)) {
+ clear_bit((ffs(shadow_accessed_mask) - 1),
+ (unsigned long *)sptep);
+ } else {
+ /*
+ * Capture the dirty status of the page, so that it doesn't get
+ * lost when the SPTE is marked for access tracking.
+ */
+ if (is_writable_pte(spte))
+ kvm_set_pfn_dirty(spte_to_pfn(spte));
+
+ spte = mark_spte_for_access_track(spte);
+ mmu_spte_update_no_track(sptep, spte);
+ }
+
+ return true;
+}
+
+static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
+{
+ kmem_cache_free(pte_list_desc_cache, pte_list_desc);
+}
+
+static bool sp_has_gptes(struct kvm_mmu_page *sp);
+
+gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
+{
+ if (sp->role.passthrough)
+ return sp->gfn;
+
+ if (!sp->role.direct)
+ return sp->shadowed_translation[index] >> PAGE_SHIFT;
+
+ return sp->gfn + (index << ((sp->role.level - 1) * SPTE_LEVEL_BITS));
+}
+
+/*
+ * For leaf SPTEs, fetch the *guest* access permissions being shadowed. Note
+ * that the SPTE itself may have a more constrained access permissions that
+ * what the guest enforces. For example, a guest may create an executable
+ * huge PTE but KVM may disallow execution to mitigate iTLB multihit.
+ */
+static u32 kvm_mmu_page_get_access(struct kvm_mmu_page *sp, int index)
+{
+ if (sp_has_gptes(sp))
+ return sp->shadowed_translation[index] & ACC_ALL;
+
+ /*
+ * For direct MMUs (e.g. TDP or non-paging guests) or passthrough SPs,
+ * KVM is not shadowing any guest page tables, so the "guest access
+ * permissions" are just ACC_ALL.
+ *
+ * For direct SPs in indirect MMUs (shadow paging), i.e. when KVM
+ * is shadowing a guest huge page with small pages, the guest access
+ * permissions being shadowed are the access permissions of the huge
+ * page.
+ *
+ * In both cases, sp->role.access contains the correct access bits.
+ */
+ return sp->role.access;
+}
+
+static void kvm_mmu_page_set_translation(struct kvm_mmu_page *sp, int index,
+ gfn_t gfn, unsigned int access)
+{
+ if (sp_has_gptes(sp)) {
+ sp->shadowed_translation[index] = (gfn << PAGE_SHIFT) | access;
+ return;
+ }
+
+ WARN_ONCE(access != kvm_mmu_page_get_access(sp, index),
+ "access mismatch under %s page %llx (expected %u, got %u)\n",
+ sp->role.passthrough ? "passthrough" : "direct",
+ sp->gfn, kvm_mmu_page_get_access(sp, index), access);
+
+ WARN_ONCE(gfn != kvm_mmu_page_get_gfn(sp, index),
+ "gfn mismatch under %s page %llx (expected %llx, got %llx)\n",
+ sp->role.passthrough ? "passthrough" : "direct",
+ sp->gfn, kvm_mmu_page_get_gfn(sp, index), gfn);
+}
+
+void kvm_mmu_page_set_access(struct kvm_mmu_page *sp, int index,
+ unsigned int access)
+{
+ gfn_t gfn = kvm_mmu_page_get_gfn(sp, index);
+
+ kvm_mmu_page_set_translation(sp, index, gfn, access);
+}
+
+static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
+{
+ struct kvm_memslots *slots;
+ struct kvm_memory_slot *slot;
+ gfn_t gfn;
+
+ kvm->arch.indirect_shadow_pages++;
+ gfn = sp->gfn;
+ slots = kvm_memslots_for_spte_role(kvm, sp->role);
+ slot = __gfn_to_memslot(slots, gfn);
+
+ /* the non-leaf shadow pages are keeping readonly. */
+ if (sp->role.level > PG_LEVEL_4K)
+ return kvm_slot_page_track_add_page(kvm, slot, gfn,
+ KVM_PAGE_TRACK_WRITE);
+
+ kvm_mmu_gfn_disallow_lpage(slot, gfn);
+
+ if (kvm_mmu_slot_gfn_write_protect(kvm, slot, gfn, PG_LEVEL_4K))
+ kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
+}
+
+static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
+{
+ struct kvm_memslots *slots;
+ struct kvm_memory_slot *slot;
+ gfn_t gfn;
+
+ kvm->arch.indirect_shadow_pages--;
+ gfn = sp->gfn;
+ slots = kvm_memslots_for_spte_role(kvm, sp->role);
+ slot = __gfn_to_memslot(slots, gfn);
+ if (sp->role.level > PG_LEVEL_4K)
+ return kvm_slot_page_track_remove_page(kvm, slot, gfn,
+ KVM_PAGE_TRACK_WRITE);
+
+ kvm_mmu_gfn_allow_lpage(slot, gfn);
+}
+
+/*
+ * About rmap_head encoding:
+ *
+ * If the bit zero of rmap_head->val is clear, then it points to the only spte
+ * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
+ * pte_list_desc containing more mappings.
+ */
+
+/*
+ * Returns the number of pointers in the rmap chain, not counting the new one.
+ */
+static int pte_list_add(struct kvm_mmu_memory_cache *cache, u64 *spte,
+ struct kvm_rmap_head *rmap_head)
+{
+ struct pte_list_desc *desc;
+ int count = 0;
+
+ if (!rmap_head->val) {
+ rmap_printk("%p %llx 0->1\n", spte, *spte);
+ rmap_head->val = (unsigned long)spte;
+ } else if (!(rmap_head->val & 1)) {
+ rmap_printk("%p %llx 1->many\n", spte, *spte);
+ desc = kvm_mmu_memory_cache_alloc(cache);
+ desc->sptes[0] = (u64 *)rmap_head->val;
+ desc->sptes[1] = spte;
+ desc->spte_count = 2;
+ rmap_head->val = (unsigned long)desc | 1;
+ ++count;
+ } else {
+ rmap_printk("%p %llx many->many\n", spte, *spte);
+ desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
+ while (desc->spte_count == PTE_LIST_EXT) {
+ count += PTE_LIST_EXT;
+ if (!desc->more) {
+ desc->more = kvm_mmu_memory_cache_alloc(cache);
+ desc = desc->more;
+ desc->spte_count = 0;
+ break;
+ }
+ desc = desc->more;
+ }
+ count += desc->spte_count;
+ desc->sptes[desc->spte_count++] = spte;
+ }
+ return count;
+}
+
+static void
+pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
+ struct pte_list_desc *desc, int i,
+ struct pte_list_desc *prev_desc)
+{
+ int j = desc->spte_count - 1;
+
+ desc->sptes[i] = desc->sptes[j];
+ desc->sptes[j] = NULL;
+ desc->spte_count--;
+ if (desc->spte_count)
+ return;
+ if (!prev_desc && !desc->more)
+ rmap_head->val = 0;
+ else
+ if (prev_desc)
+ prev_desc->more = desc->more;
+ else
+ rmap_head->val = (unsigned long)desc->more | 1;
+ mmu_free_pte_list_desc(desc);
+}
+
+static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
+{
+ struct pte_list_desc *desc;
+ struct pte_list_desc *prev_desc;
+ int i;
+
+ if (!rmap_head->val) {
+ pr_err("%s: %p 0->BUG\n", __func__, spte);
+ BUG();
+ } else if (!(rmap_head->val & 1)) {
+ rmap_printk("%p 1->0\n", spte);
+ if ((u64 *)rmap_head->val != spte) {
+ pr_err("%s: %p 1->BUG\n", __func__, spte);
+ BUG();
+ }
+ rmap_head->val = 0;
+ } else {
+ rmap_printk("%p many->many\n", spte);
+ desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
+ prev_desc = NULL;
+ while (desc) {
+ for (i = 0; i < desc->spte_count; ++i) {
+ if (desc->sptes[i] == spte) {
+ pte_list_desc_remove_entry(rmap_head,
+ desc, i, prev_desc);
+ return;
+ }
+ }
+ prev_desc = desc;
+ desc = desc->more;
+ }
+ pr_err("%s: %p many->many\n", __func__, spte);
+ BUG();
+ }
+}
+
+static void kvm_zap_one_rmap_spte(struct kvm *kvm,
+ struct kvm_rmap_head *rmap_head, u64 *sptep)
+{
+ mmu_spte_clear_track_bits(kvm, sptep);
+ pte_list_remove(sptep, rmap_head);
+}
+
+/* Return true if at least one SPTE was zapped, false otherwise */
+static bool kvm_zap_all_rmap_sptes(struct kvm *kvm,
+ struct kvm_rmap_head *rmap_head)
+{
+ struct pte_list_desc *desc, *next;
+ int i;
+
+ if (!rmap_head->val)
+ return false;
+
+ if (!(rmap_head->val & 1)) {
+ mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val);
+ goto out;
+ }
+
+ desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
+
+ for (; desc; desc = next) {
+ for (i = 0; i < desc->spte_count; i++)
+ mmu_spte_clear_track_bits(kvm, desc->sptes[i]);
+ next = desc->more;
+ mmu_free_pte_list_desc(desc);
+ }
+out:
+ /* rmap_head is meaningless now, remember to reset it */
+ rmap_head->val = 0;
+ return true;
+}
+
+unsigned int pte_list_count(struct kvm_rmap_head *rmap_head)
+{
+ struct pte_list_desc *desc;
+ unsigned int count = 0;
+
+ if (!rmap_head->val)
+ return 0;
+ else if (!(rmap_head->val & 1))
+ return 1;
+
+ desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
+
+ while (desc) {
+ count += desc->spte_count;
+ desc = desc->more;
+ }
+
+ return count;
+}
+
+struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level,
+ const struct kvm_memory_slot *slot)
+{
+ unsigned long idx;
+
+ idx = gfn_to_index(gfn, slot->base_gfn, level);
+ return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
+}
+
+bool rmap_can_add(struct kvm_vcpu *vcpu)
+{
+ struct kvm_mmu_memory_cache *mc;
+
+ mc = &vcpu->arch.mmu_pte_list_desc_cache;
+ return kvm_mmu_memory_cache_nr_free_objects(mc);
+}
+
+static void rmap_remove(struct kvm *kvm, u64 *spte)
+{
+ struct kvm_memslots *slots;
+ struct kvm_memory_slot *slot;
+ struct kvm_mmu_page *sp;
+ gfn_t gfn;
+ struct kvm_rmap_head *rmap_head;
+
+ sp = sptep_to_sp(spte);
+ gfn = kvm_mmu_page_get_gfn(sp, spte_index(spte));
+
+ /*
+ * Unlike rmap_add, rmap_remove does not run in the context of a vCPU
+ * so we have to determine which memslots to use based on context
+ * information in sp->role.
+ */
+ slots = kvm_memslots_for_spte_role(kvm, sp->role);
+
+ slot = __gfn_to_memslot(slots, gfn);
+ rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
+
+ pte_list_remove(spte, rmap_head);
+}
+
+/*
+ * Used by the following functions to iterate through the sptes linked by a
+ * rmap. All fields are private and not assumed to be used outside.
+ */
+struct rmap_iterator {
+ /* private fields */
+ struct pte_list_desc *desc; /* holds the sptep if not NULL */
+ int pos; /* index of the sptep */
+};
+
+/*
+ * Iteration must be started by this function. This should also be used after
+ * removing/dropping sptes from the rmap link because in such cases the
+ * information in the iterator may not be valid.
+ *
+ * Returns sptep if found, NULL otherwise.
+ */
+static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
+ struct rmap_iterator *iter)
+{
+ u64 *sptep;
+
+ if (!rmap_head->val)
+ return NULL;
+
+ if (!(rmap_head->val & 1)) {
+ iter->desc = NULL;
+ sptep = (u64 *)rmap_head->val;
+ goto out;
+ }
+
+ iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
+ iter->pos = 0;
+ sptep = iter->desc->sptes[iter->pos];
+out:
+ BUG_ON(!is_shadow_present_pte(*sptep));
+ return sptep;
+}
+
+/*
+ * Must be used with a valid iterator: e.g. after rmap_get_first().
+ *
+ * Returns sptep if found, NULL otherwise.
+ */
+static u64 *rmap_get_next(struct rmap_iterator *iter)
+{
+ u64 *sptep;
+
+ if (iter->desc) {
+ if (iter->pos < PTE_LIST_EXT - 1) {
+ ++iter->pos;
+ sptep = iter->desc->sptes[iter->pos];
+ if (sptep)
+ goto out;
+ }
+
+ iter->desc = iter->desc->more;
+
+ if (iter->desc) {
+ iter->pos = 0;
+ /* desc->sptes[0] cannot be NULL */
+ sptep = iter->desc->sptes[iter->pos];
+ goto out;
+ }
+ }
+
+ return NULL;
+out:
+ BUG_ON(!is_shadow_present_pte(*sptep));
+ return sptep;
+}
+
+#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
+ for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
+ _spte_; _spte_ = rmap_get_next(_iter_))
+
+void drop_spte(struct kvm *kvm, u64 *sptep)
+{
+ u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep);
+
+ if (is_shadow_present_pte(old_spte))
+ rmap_remove(kvm, sptep);
+}
+
+static void drop_large_spte(struct kvm *kvm, u64 *sptep, bool flush)
+{
+ struct kvm_mmu_page *sp;
+
+ sp = sptep_to_sp(sptep);
+ WARN_ON(sp->role.level == PG_LEVEL_4K);
+
+ drop_spte(kvm, sptep);
+
+ if (flush)
+ kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
+ KVM_PAGES_PER_HPAGE(sp->role.level));
+}
+
+/*
+ * Write-protect on the specified @sptep, @pt_protect indicates whether
+ * spte write-protection is caused by protecting shadow page table.
+ *
+ * Note: write protection is difference between dirty logging and spte
+ * protection:
+ * - for dirty logging, the spte can be set to writable at anytime if
+ * its dirty bitmap is properly set.
+ * - for spte protection, the spte can be writable only after unsync-ing
+ * shadow page.
+ *
+ * Return true if tlb need be flushed.
+ */
+static bool spte_write_protect(u64 *sptep, bool pt_protect)
+{
+ u64 spte = *sptep;
+
+ if (!is_writable_pte(spte) &&
+ !(pt_protect && is_mmu_writable_spte(spte)))
+ return false;
+
+ rmap_printk("spte %p %llx\n", sptep, *sptep);
+
+ if (pt_protect)
+ spte &= ~shadow_mmu_writable_mask;
+ spte = spte & ~PT_WRITABLE_MASK;
+
+ return mmu_spte_update(sptep, spte);
+}
+
+bool rmap_write_protect(struct kvm_rmap_head *rmap_head, bool pt_protect)
+{
+ u64 *sptep;
+ struct rmap_iterator iter;
+ bool flush = false;
+
+ for_each_rmap_spte(rmap_head, &iter, sptep)
+ flush |= spte_write_protect(sptep, pt_protect);
+
+ return flush;
+}
+
+static bool spte_clear_dirty(u64 *sptep)
+{
+ u64 spte = *sptep;
+
+ rmap_printk("spte %p %llx\n", sptep, *sptep);
+
+ MMU_WARN_ON(!spte_ad_enabled(spte));
+ spte &= ~shadow_dirty_mask;
+ return mmu_spte_update(sptep, spte);
+}
+
+static bool spte_wrprot_for_clear_dirty(u64 *sptep)
+{
+ bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
+ (unsigned long *)sptep);
+ if (was_writable && !spte_ad_enabled(*sptep))
+ kvm_set_pfn_dirty(spte_to_pfn(*sptep));
+
+ return was_writable;
+}
+
+/*
+ * Gets the GFN ready for another round of dirty logging by clearing the
+ * - D bit on ad-enabled SPTEs, and
+ * - W bit on ad-disabled SPTEs.
+ * Returns true iff any D or W bits were cleared.
+ */
+bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
+ const struct kvm_memory_slot *slot)
+{
+ u64 *sptep;
+ struct rmap_iterator iter;
+ bool flush = false;
+
+ for_each_rmap_spte(rmap_head, &iter, sptep)
+ if (spte_ad_need_write_protect(*sptep))
+ flush |= spte_wrprot_for_clear_dirty(sptep);
+ else
+ flush |= spte_clear_dirty(sptep);
+
+ return flush;
+}
+
+static bool __kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
+ const struct kvm_memory_slot *slot)
+{
+ return kvm_zap_all_rmap_sptes(kvm, rmap_head);
+}
+
+bool kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
+ struct kvm_memory_slot *slot, gfn_t gfn, int level,
+ pte_t unused)
+{
+ return __kvm_zap_rmap(kvm, rmap_head, slot);
+}
+
+bool kvm_set_pte_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
+ struct kvm_memory_slot *slot, gfn_t gfn, int level,
+ pte_t pte)
+{
+ u64 *sptep;
+ struct rmap_iterator iter;
+ bool need_flush = false;
+ u64 new_spte;
+ kvm_pfn_t new_pfn;
+
+ WARN_ON(pte_huge(pte));
+ new_pfn = pte_pfn(pte);
+
+restart:
+ for_each_rmap_spte(rmap_head, &iter, sptep) {
+ rmap_printk("spte %p %llx gfn %llx (%d)\n",
+ sptep, *sptep, gfn, level);
+
+ need_flush = true;
+
+ if (pte_write(pte)) {
+ kvm_zap_one_rmap_spte(kvm, rmap_head, sptep);
+ goto restart;
+ } else {
+ new_spte = kvm_mmu_changed_pte_notifier_make_spte(
+ *sptep, new_pfn);
+
+ mmu_spte_clear_track_bits(kvm, sptep);
+ mmu_spte_set(sptep, new_spte);
+ }
+ }
+
+ if (need_flush && kvm_available_flush_tlb_with_range()) {
+ kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
+ return false;
+ }
+
+ return need_flush;
+}
+
+struct slot_rmap_walk_iterator {
+ /* input fields. */
+ const struct kvm_memory_slot *slot;
+ gfn_t start_gfn;
+ gfn_t end_gfn;
+ int start_level;
+ int end_level;
+
+ /* output fields. */
+ gfn_t gfn;
+ struct kvm_rmap_head *rmap;
+ int level;
+
+ /* private field. */
+ struct kvm_rmap_head *end_rmap;
+};
+
+static void
+rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
+{
+ iterator->level = level;
+ iterator->gfn = iterator->start_gfn;
+ iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot);
+ iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot);
+}
+
+static void
+slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
+ const struct kvm_memory_slot *slot, int start_level,
+ int end_level, gfn_t start_gfn, gfn_t end_gfn)
+{
+ iterator->slot = slot;
+ iterator->start_level = start_level;
+ iterator->end_level = end_level;
+ iterator->start_gfn = start_gfn;
+ iterator->end_gfn = end_gfn;
+
+ rmap_walk_init_level(iterator, iterator->start_level);
+}
+
+static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
+{
+ return !!iterator->rmap;
+}
+
+static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
+{
+ while (++iterator->rmap <= iterator->end_rmap) {
+ iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
+
+ if (iterator->rmap->val)
+ return;
+ }
+
+ if (++iterator->level > iterator->end_level) {
+ iterator->rmap = NULL;
+ return;
+ }
+
+ rmap_walk_init_level(iterator, iterator->level);
+}
+
+#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
+ _start_gfn, _end_gfn, _iter_) \
+ for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
+ _end_level_, _start_gfn, _end_gfn); \
+ slot_rmap_walk_okay(_iter_); \
+ slot_rmap_walk_next(_iter_))
+
+__always_inline bool kvm_handle_gfn_range(struct kvm *kvm,
+ struct kvm_gfn_range *range,
+ rmap_handler_t handler)
+{
+ struct slot_rmap_walk_iterator iterator;
+ bool ret = false;
+
+ for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
+ range->start, range->end - 1, &iterator)
+ ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn,
+ iterator.level, range->pte);
+
+ return ret;
+}
+
+bool kvm_age_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
+ struct kvm_memory_slot *slot, gfn_t gfn, int level,
+ pte_t unused)
+{
+ u64 *sptep;
+ struct rmap_iterator iter;
+ int young = 0;
+
+ for_each_rmap_spte(rmap_head, &iter, sptep)
+ young |= mmu_spte_age(sptep);
+
+ return young;
+}
+
+bool kvm_test_age_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
+ struct kvm_memory_slot *slot, gfn_t gfn,
+ int level, pte_t unused)
+{
+ u64 *sptep;
+ struct rmap_iterator iter;
+
+ for_each_rmap_spte(rmap_head, &iter, sptep)
+ if (is_accessed_spte(*sptep))
+ return true;
+ return false;
+}
+
+#define RMAP_RECYCLE_THRESHOLD 1000
+
+static void __rmap_add(struct kvm *kvm,
+ struct kvm_mmu_memory_cache *cache,
+ const struct kvm_memory_slot *slot,
+ u64 *spte, gfn_t gfn, unsigned int access)
+{
+ struct kvm_mmu_page *sp;
+ struct kvm_rmap_head *rmap_head;
+ int rmap_count;
+
+ sp = sptep_to_sp(spte);
+ kvm_mmu_page_set_translation(sp, spte_index(spte), gfn, access);
+ kvm_update_page_stats(kvm, sp->role.level, 1);
+
+ rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
+ rmap_count = pte_list_add(cache, spte, rmap_head);
+
+ if (rmap_count > kvm->stat.max_mmu_rmap_size)
+ kvm->stat.max_mmu_rmap_size = rmap_count;
+ if (rmap_count > RMAP_RECYCLE_THRESHOLD) {
+ kvm_zap_all_rmap_sptes(kvm, rmap_head);
+ kvm_flush_remote_tlbs_with_address(
+ kvm, sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level));
+ }
+}
+
+static void rmap_add(struct kvm_vcpu *vcpu, const struct kvm_memory_slot *slot,
+ u64 *spte, gfn_t gfn, unsigned int access)
+{
+ struct kvm_mmu_memory_cache *cache = &vcpu->arch.mmu_pte_list_desc_cache;
+
+ __rmap_add(vcpu->kvm, cache, slot, spte, gfn, access);
+}
+
+#ifdef MMU_DEBUG
+static int is_empty_shadow_page(u64 *spt)
+{
+ u64 *pos;
+ u64 *end;
+
+ for (pos = spt, end = pos + SPTE_ENT_PER_PAGE; pos != end; pos++)
+ if (is_shadow_present_pte(*pos)) {
+ printk(KERN_ERR "%s: %p %llx\n", __func__,
+ pos, *pos);
+ return 0;
+ }
+ return 1;
+}
+#endif
+
+/*
+ * This value is the sum of all of the kvm instances's
+ * kvm->arch.n_used_mmu_pages values. We need a global,
+ * aggregate version in order to make the slab shrinker
+ * faster
+ */
+static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr)
+{
+ kvm->arch.n_used_mmu_pages += nr;
+ percpu_counter_add(&kvm_total_used_mmu_pages, nr);
+}
+
+static void kvm_account_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp)
+{
+ kvm_mod_used_mmu_pages(kvm, +1);
+ kvm_account_pgtable_pages((void *)sp->spt, +1);
+}
+
+static void kvm_unaccount_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp)
+{
+ kvm_mod_used_mmu_pages(kvm, -1);
+ kvm_account_pgtable_pages((void *)sp->spt, -1);
+}
+
+static void kvm_mmu_free_shadow_page(struct kvm_mmu_page *sp)
+{
+ MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
+ hlist_del(&sp->hash_link);
+ list_del(&sp->link);
+ free_page((unsigned long)sp->spt);
+ if (!sp->role.direct)
+ free_page((unsigned long)sp->shadowed_translation);
+ kmem_cache_free(mmu_page_header_cache, sp);
+}
+
+static unsigned kvm_page_table_hashfn(gfn_t gfn)
+{
+ return hash_64(gfn, KVM_MMU_HASH_SHIFT);
+}
+
+static void mmu_page_add_parent_pte(struct kvm_mmu_memory_cache *cache,
+ struct kvm_mmu_page *sp, u64 *parent_pte)
+{
+ if (!parent_pte)
+ return;
+
+ pte_list_add(cache, parent_pte, &sp->parent_ptes);
+}
+
+static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
+ u64 *parent_pte)
+{
+ pte_list_remove(parent_pte, &sp->parent_ptes);
+}
+
+void drop_parent_pte(struct kvm_mmu_page *sp, u64 *parent_pte)
+{
+ mmu_page_remove_parent_pte(sp, parent_pte);
+ mmu_spte_clear_no_track(parent_pte);
+}
+
+static void mark_unsync(u64 *spte);
+static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
+{
+ u64 *sptep;
+ struct rmap_iterator iter;
+
+ for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
+ mark_unsync(sptep);
+ }
+}
+
+static void mark_unsync(u64 *spte)
+{
+ struct kvm_mmu_page *sp;
+
+ sp = sptep_to_sp(spte);
+ if (__test_and_set_bit(spte_index(spte), sp->unsync_child_bitmap))
+ return;
+ if (sp->unsync_children++)
+ return;
+ kvm_mmu_mark_parents_unsync(sp);
+}
+
+int nonpaging_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
+{
+ return -1;
+}
+
+#define KVM_PAGE_ARRAY_NR 16
+
+struct kvm_mmu_pages {
+ struct mmu_page_and_offset {
+ struct kvm_mmu_page *sp;
+ unsigned int idx;
+ } page[KVM_PAGE_ARRAY_NR];
+ unsigned int nr;
+};
+
+static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
+ int idx)
+{
+ int i;
+
+ if (sp->unsync)
+ for (i=0; i < pvec->nr; i++)
+ if (pvec->page[i].sp == sp)
+ return 0;
+
+ pvec->page[pvec->nr].sp = sp;
+ pvec->page[pvec->nr].idx = idx;
+ pvec->nr++;
+ return (pvec->nr == KVM_PAGE_ARRAY_NR);
+}
+
+static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
+{
+ --sp->unsync_children;
+ WARN_ON((int)sp->unsync_children < 0);
+ __clear_bit(idx, sp->unsync_child_bitmap);
+}
+
+static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
+ struct kvm_mmu_pages *pvec)
+{
+ int i, ret, nr_unsync_leaf = 0;
+
+ for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
+ struct kvm_mmu_page *child;
+ u64 ent = sp->spt[i];
+
+ if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
+ clear_unsync_child_bit(sp, i);
+ continue;
+ }
+
+ child = spte_to_child_sp(ent);
+
+ if (child->unsync_children) {
+ if (mmu_pages_add(pvec, child, i))
+ return -ENOSPC;
+
+ ret = __mmu_unsync_walk(child, pvec);
+ if (!ret) {
+ clear_unsync_child_bit(sp, i);
+ continue;
+ } else if (ret > 0) {
+ nr_unsync_leaf += ret;
+ } else
+ return ret;
+ } else if (child->unsync) {
+ nr_unsync_leaf++;
+ if (mmu_pages_add(pvec, child, i))
+ return -ENOSPC;
+ } else
+ clear_unsync_child_bit(sp, i);
+ }
+
+ return nr_unsync_leaf;
+}
+
+#define INVALID_INDEX (-1)
+
+static int mmu_unsync_walk(struct kvm_mmu_page *sp,
+ struct kvm_mmu_pages *pvec)
+{
+ pvec->nr = 0;
+ if (!sp->unsync_children)
+ return 0;
+
+ mmu_pages_add(pvec, sp, INVALID_INDEX);
+ return __mmu_unsync_walk(sp, pvec);
+}
+
+static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
+{
+ WARN_ON(!sp->unsync);
+ trace_kvm_mmu_sync_page(sp);
+ sp->unsync = 0;
+ --kvm->stat.mmu_unsync;
+}
+
+static bool sp_has_gptes(struct kvm_mmu_page *sp)
+{
+ if (sp->role.direct)
+ return false;
+
+ if (sp->role.passthrough)
+ return false;
+
+ return true;
+}
+
+#define for_each_valid_sp(_kvm, _sp, _list) \
+ hlist_for_each_entry(_sp, _list, hash_link) \
+ if (is_obsolete_sp((_kvm), (_sp))) { \
+ } else
+
+#define for_each_gfn_valid_sp_with_gptes(_kvm, _sp, _gfn) \
+ for_each_valid_sp(_kvm, _sp, \
+ &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \
+ if ((_sp)->gfn != (_gfn) || !sp_has_gptes(_sp)) {} else
+
+static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
+ struct list_head *invalid_list)
+{
+ int ret = vcpu->arch.mmu->sync_page(vcpu, sp);
+
+ if (ret < 0)
+ kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
+ return ret;
+}
+
+struct mmu_page_path {
+ struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
+ unsigned int idx[PT64_ROOT_MAX_LEVEL];
+};
+
+#define for_each_sp(pvec, sp, parents, i) \
+ for (i = mmu_pages_first(&pvec, &parents); \
+ i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
+ i = mmu_pages_next(&pvec, &parents, i))
+
+static int mmu_pages_next(struct kvm_mmu_pages *pvec,
+ struct mmu_page_path *parents,
+ int i)
+{
+ int n;
+
+ for (n = i+1; n < pvec->nr; n++) {
+ struct kvm_mmu_page *sp = pvec->page[n].sp;
+ unsigned idx = pvec->page[n].idx;
+ int level = sp->role.level;
+
+ parents->idx[level-1] = idx;
+ if (level == PG_LEVEL_4K)
+ break;
+
+ parents->parent[level-2] = sp;
+ }
+
+ return n;
+}
+
+static int mmu_pages_first(struct kvm_mmu_pages *pvec,
+ struct mmu_page_path *parents)
+{
+ struct kvm_mmu_page *sp;
+ int level;
+
+ if (pvec->nr == 0)
+ return 0;
+
+ WARN_ON(pvec->page[0].idx != INVALID_INDEX);
+
+ sp = pvec->page[0].sp;
+ level = sp->role.level;
+ WARN_ON(level == PG_LEVEL_4K);
+
+ parents->parent[level-2] = sp;
+
+ /* Also set up a sentinel. Further entries in pvec are all
+ * children of sp, so this element is never overwritten.
+ */
+ parents->parent[level-1] = NULL;
+ return mmu_pages_next(pvec, parents, 0);
+}
+
+static void mmu_pages_clear_parents(struct mmu_page_path *parents)
+{
+ struct kvm_mmu_page *sp;
+ unsigned int level = 0;
+
+ do {
+ unsigned int idx = parents->idx[level];
+ sp = parents->parent[level];
+ if (!sp)
+ return;
+
+ WARN_ON(idx == INVALID_INDEX);
+ clear_unsync_child_bit(sp, idx);
+ level++;
+ } while (!sp->unsync_children);
+}
+
+int mmu_sync_children(struct kvm_vcpu *vcpu, struct kvm_mmu_page *parent,
+ bool can_yield)
+{
+ int i;
+ struct kvm_mmu_page *sp;
+ struct mmu_page_path parents;
+ struct kvm_mmu_pages pages;
+ LIST_HEAD(invalid_list);
+ bool flush = false;
+
+ while (mmu_unsync_walk(parent, &pages)) {
+ bool protected = false;
+
+ for_each_sp(pages, sp, parents, i)
+ protected |= kvm_vcpu_write_protect_gfn(vcpu, sp->gfn);
+
+ if (protected) {
+ kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true);
+ flush = false;
+ }
+
+ for_each_sp(pages, sp, parents, i) {
+ kvm_unlink_unsync_page(vcpu->kvm, sp);
+ flush |= kvm_sync_page(vcpu, sp, &invalid_list) > 0;
+ mmu_pages_clear_parents(&parents);
+ }
+ if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
+ kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
+ if (!can_yield) {
+ kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
+ return -EINTR;
+ }
+
+ cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
+ flush = false;
+ }
+ }
+
+ kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
+ return 0;
+}
+
+void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
+{
+ atomic_set(&sp->write_flooding_count, 0);
+}
+
+void clear_sp_write_flooding_count(u64 *spte)
+{
+ __clear_sp_write_flooding_count(sptep_to_sp(spte));
+}
+
+/*
+ * The vCPU is required when finding indirect shadow pages; the shadow
+ * page may already exist and syncing it needs the vCPU pointer in
+ * order to read guest page tables. Direct shadow pages are never
+ * unsync, thus @vcpu can be NULL if @role.direct is true.
+ */
+static struct kvm_mmu_page *kvm_mmu_find_shadow_page(struct kvm *kvm,
+ struct kvm_vcpu *vcpu,
+ gfn_t gfn,
+ struct hlist_head *sp_list,
+ union kvm_mmu_page_role role)
+{
+ struct kvm_mmu_page *sp;
+ int ret;
+ int collisions = 0;
+ LIST_HEAD(invalid_list);
+
+ for_each_valid_sp(kvm, sp, sp_list) {
+ if (sp->gfn != gfn) {
+ collisions++;
+ continue;
+ }
+
+ if (sp->role.word != role.word) {
+ /*
+ * If the guest is creating an upper-level page, zap
+ * unsync pages for the same gfn. While it's possible
+ * the guest is using recursive page tables, in all
+ * likelihood the guest has stopped using the unsync
+ * page and is installing a completely unrelated page.
+ * Unsync pages must not be left as is, because the new
+ * upper-level page will be write-protected.
+ */
+ if (role.level > PG_LEVEL_4K && sp->unsync)
+ kvm_mmu_prepare_zap_page(kvm, sp,
+ &invalid_list);
+ continue;
+ }
+
+ /* unsync and write-flooding only apply to indirect SPs. */
+ if (sp->role.direct)
+ goto out;
+
+ if (sp->unsync) {
+ if (KVM_BUG_ON(!vcpu, kvm))
+ break;
+
+ /*
+ * The page is good, but is stale. kvm_sync_page does
+ * get the latest guest state, but (unlike mmu_unsync_children)
+ * it doesn't write-protect the page or mark it synchronized!
+ * This way the validity of the mapping is ensured, but the
+ * overhead of write protection is not incurred until the
+ * guest invalidates the TLB mapping. This allows multiple
+ * SPs for a single gfn to be unsync.
+ *
+ * If the sync fails, the page is zapped. If so, break
+ * in order to rebuild it.
+ */
+ ret = kvm_sync_page(vcpu, sp, &invalid_list);
+ if (ret < 0)
+ break;
+
+ WARN_ON(!list_empty(&invalid_list));
+ if (ret > 0)
+ kvm_flush_remote_tlbs(kvm);
+ }
+
+ __clear_sp_write_flooding_count(sp);
+
+ goto out;
+ }
+
+ sp = NULL;
+ ++kvm->stat.mmu_cache_miss;
+
+out:
+ kvm_mmu_commit_zap_page(kvm, &invalid_list);
+
+ if (collisions > kvm->stat.max_mmu_page_hash_collisions)
+ kvm->stat.max_mmu_page_hash_collisions = collisions;
+ return sp;
+}
+
+/* Caches used when allocating a new shadow page. */
+struct shadow_page_caches {
+ struct kvm_mmu_memory_cache *page_header_cache;
+ struct kvm_mmu_memory_cache *shadow_page_cache;
+ struct kvm_mmu_memory_cache *shadowed_info_cache;
+};
+
+static struct kvm_mmu_page *kvm_mmu_alloc_shadow_page(struct kvm *kvm,
+ struct shadow_page_caches *caches,
+ gfn_t gfn,
+ struct hlist_head *sp_list,
+ union kvm_mmu_page_role role)
+{
+ struct kvm_mmu_page *sp;
+
+ sp = kvm_mmu_memory_cache_alloc(caches->page_header_cache);
+ sp->spt = kvm_mmu_memory_cache_alloc(caches->shadow_page_cache);
+ if (!role.direct)
+ sp->shadowed_translation = kvm_mmu_memory_cache_alloc(caches->shadowed_info_cache);
+
+ set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
+
+ INIT_LIST_HEAD(&sp->possible_nx_huge_page_link);
+
+ /*
+ * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
+ * depends on valid pages being added to the head of the list. See
+ * comments in kvm_zap_obsolete_pages().
+ */
+ sp->mmu_valid_gen = kvm->arch.mmu_valid_gen;
+ list_add(&sp->link, &kvm->arch.active_mmu_pages);
+ kvm_account_mmu_page(kvm, sp);
+
+ sp->gfn = gfn;
+ sp->role = role;
+ hlist_add_head(&sp->hash_link, sp_list);
+ if (sp_has_gptes(sp))
+ account_shadowed(kvm, sp);
+
+ return sp;
+}
+
+/* Note, @vcpu may be NULL if @role.direct is true; see kvm_mmu_find_shadow_page. */
+static struct kvm_mmu_page *__kvm_mmu_get_shadow_page(struct kvm *kvm,
+ struct kvm_vcpu *vcpu,
+ struct shadow_page_caches *caches,
+ gfn_t gfn,
+ union kvm_mmu_page_role role)
+{
+ struct hlist_head *sp_list;
+ struct kvm_mmu_page *sp;
+ bool created = false;
+
+ sp_list = &kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
+
+ sp = kvm_mmu_find_shadow_page(kvm, vcpu, gfn, sp_list, role);
+ if (!sp) {
+ created = true;
+ sp = kvm_mmu_alloc_shadow_page(kvm, caches, gfn, sp_list, role);
+ }
+
+ trace_kvm_mmu_get_page(sp, created);
+ return sp;
+}
+
+static struct kvm_mmu_page *kvm_mmu_get_shadow_page(struct kvm_vcpu *vcpu,
+ gfn_t gfn,
+ union kvm_mmu_page_role role)
+{
+ struct shadow_page_caches caches = {
+ .page_header_cache = &vcpu->arch.mmu_page_header_cache,
+ .shadow_page_cache = &vcpu->arch.mmu_shadow_page_cache,
+ .shadowed_info_cache = &vcpu->arch.mmu_shadowed_info_cache,
+ };
+
+ return __kvm_mmu_get_shadow_page(vcpu->kvm, vcpu, &caches, gfn, role);
+}
+
+static union kvm_mmu_page_role kvm_mmu_child_role(u64 *sptep, bool direct,
+ unsigned int access)
+{
+ struct kvm_mmu_page *parent_sp = sptep_to_sp(sptep);
+ union kvm_mmu_page_role role;
+
+ role = parent_sp->role;
+ role.level--;
+ role.access = access;
+ role.direct = direct;
+ role.passthrough = 0;
+
+ /*
+ * If the guest has 4-byte PTEs then that means it's using 32-bit,
+ * 2-level, non-PAE paging. KVM shadows such guests with PAE paging
+ * (i.e. 8-byte PTEs). The difference in PTE size means that KVM must
+ * shadow each guest page table with multiple shadow page tables, which
+ * requires extra bookkeeping in the role.
+ *
+ * Specifically, to shadow the guest's page directory (which covers a
+ * 4GiB address space), KVM uses 4 PAE page directories, each mapping
+ * 1GiB of the address space. @role.quadrant encodes which quarter of
+ * the address space each maps.
+ *
+ * To shadow the guest's page tables (which each map a 4MiB region), KVM
+ * uses 2 PAE page tables, each mapping a 2MiB region. For these,
+ * @role.quadrant encodes which half of the region they map.
+ *
+ * Concretely, a 4-byte PDE consumes bits 31:22, while an 8-byte PDE
+ * consumes bits 29:21. To consume bits 31:30, KVM's uses 4 shadow
+ * PDPTEs; those 4 PAE page directories are pre-allocated and their
+ * quadrant is assigned in mmu_alloc_root(). A 4-byte PTE consumes
+ * bits 21:12, while an 8-byte PTE consumes bits 20:12. To consume
+ * bit 21 in the PTE (the child here), KVM propagates that bit to the
+ * quadrant, i.e. sets quadrant to '0' or '1'. The parent 8-byte PDE
+ * covers bit 21 (see above), thus the quadrant is calculated from the
+ * _least_ significant bit of the PDE index.
+ */
+ if (role.has_4_byte_gpte) {
+ WARN_ON_ONCE(role.level != PG_LEVEL_4K);
+ role.quadrant = spte_index(sptep) & 1;
+ }
+
+ return role;
+}
+
+struct kvm_mmu_page *kvm_mmu_get_child_sp(struct kvm_vcpu *vcpu, u64 *sptep,
+ gfn_t gfn, bool direct,
+ unsigned int access)
+{
+ union kvm_mmu_page_role role;
+
+ if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep))
+ return ERR_PTR(-EEXIST);
+
+ role = kvm_mmu_child_role(sptep, direct, access);
+ return kvm_mmu_get_shadow_page(vcpu, gfn, role);
+}
+
+void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
+ struct kvm_vcpu *vcpu, hpa_t root, u64 addr)
+{
+ iterator->addr = addr;
+ iterator->shadow_addr = root;
+ iterator->level = vcpu->arch.mmu->root_role.level;
+
+ if (iterator->level >= PT64_ROOT_4LEVEL &&
+ vcpu->arch.mmu->cpu_role.base.level < PT64_ROOT_4LEVEL &&
+ !vcpu->arch.mmu->root_role.direct)
+ iterator->level = PT32E_ROOT_LEVEL;
+
+ if (iterator->level == PT32E_ROOT_LEVEL) {
+ /*
+ * prev_root is currently only used for 64-bit hosts. So only
+ * the active root_hpa is valid here.
+ */
+ BUG_ON(root != vcpu->arch.mmu->root.hpa);
+
+ iterator->shadow_addr
+ = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
+ iterator->shadow_addr &= SPTE_BASE_ADDR_MASK;
+ --iterator->level;
+ if (!iterator->shadow_addr)
+ iterator->level = 0;
+ }
+}
+
+void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
+ struct kvm_vcpu *vcpu, u64 addr)
+{
+ shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root.hpa,
+ addr);
+}
+
+bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
+{
+ if (iterator->level < PG_LEVEL_4K)
+ return false;
+
+ iterator->index = SPTE_INDEX(iterator->addr, iterator->level);
+ iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
+ return true;
+}
+
+static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
+ u64 spte)
+{
+ if (!is_shadow_present_pte(spte) || is_last_spte(spte, iterator->level)) {
+ iterator->level = 0;
+ return;
+ }
+
+ iterator->shadow_addr = spte & SPTE_BASE_ADDR_MASK;
+ --iterator->level;
+}
+
+void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
+{
+ __shadow_walk_next(iterator, *iterator->sptep);
+}
+
+static void __link_shadow_page(struct kvm *kvm,
+ struct kvm_mmu_memory_cache *cache, u64 *sptep,
+ struct kvm_mmu_page *sp, bool flush)
+{
+ u64 spte;
+
+ BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
+
+ /*
+ * If an SPTE is present already, it must be a leaf and therefore
+ * a large one. Drop it, and flush the TLB if needed, before
+ * installing sp.
+ */
+ if (is_shadow_present_pte(*sptep))
+ drop_large_spte(kvm, sptep, flush);
+
+ spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
+
+ mmu_spte_set(sptep, spte);
+
+ mmu_page_add_parent_pte(cache, sp, sptep);
+
+ if (sp->unsync_children || sp->unsync)
+ mark_unsync(sptep);
+}
+
+void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep, struct kvm_mmu_page *sp)
+{
+ __link_shadow_page(vcpu->kvm, &vcpu->arch.mmu_pte_list_desc_cache, sptep, sp, true);
+}
+
+void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
+ unsigned direct_access)
+{
+ if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
+ struct kvm_mmu_page *child;
+
+ /*
+ * For the direct sp, if the guest pte's dirty bit
+ * changed form clean to dirty, it will corrupt the
+ * sp's access: allow writable in the read-only sp,
+ * so we should update the spte at this point to get
+ * a new sp with the correct access.
+ */
+ child = spte_to_child_sp(*sptep);
+ if (child->role.access == direct_access)
+ return;
+
+ drop_parent_pte(child, sptep);
+ kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
+ }
+}
+
+/* Returns the number of zapped non-leaf child shadow pages. */
+int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp, u64 *spte,
+ struct list_head *invalid_list)
+{
+ u64 pte;
+ struct kvm_mmu_page *child;
+
+ pte = *spte;
+ if (is_shadow_present_pte(pte)) {
+ if (is_last_spte(pte, sp->role.level)) {
+ drop_spte(kvm, spte);
+ } else {
+ child = spte_to_child_sp(pte);
+ drop_parent_pte(child, spte);
+
+ /*
+ * Recursively zap nested TDP SPs, parentless SPs are
+ * unlikely to be used again in the near future. This
+ * avoids retaining a large number of stale nested SPs.
+ */
+ if (tdp_enabled && invalid_list &&
+ child->role.guest_mode && !child->parent_ptes.val)
+ return kvm_mmu_prepare_zap_page(kvm, child,
+ invalid_list);
+ }
+ } else if (is_mmio_spte(pte)) {
+ mmu_spte_clear_no_track(spte);
+ }
+ return 0;
+}
+
+static int kvm_mmu_page_unlink_children(struct kvm *kvm,
+ struct kvm_mmu_page *sp,
+ struct list_head *invalid_list)
+{
+ int zapped = 0;
+ unsigned i;
+
+ for (i = 0; i < SPTE_ENT_PER_PAGE; ++i)
+ zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
+
+ return zapped;
+}
+
+static void kvm_mmu_unlink_parents(struct kvm_mmu_page *sp)
+{
+ u64 *sptep;
+ struct rmap_iterator iter;
+
+ while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
+ drop_parent_pte(sp, sptep);
+}
+
+static int mmu_zap_unsync_children(struct kvm *kvm,
+ struct kvm_mmu_page *parent,
+ struct list_head *invalid_list)
+{
+ int i, zapped = 0;
+ struct mmu_page_path parents;
+ struct kvm_mmu_pages pages;
+
+ if (parent->role.level == PG_LEVEL_4K)
+ return 0;
+
+ while (mmu_unsync_walk(parent, &pages)) {
+ struct kvm_mmu_page *sp;
+
+ for_each_sp(pages, sp, parents, i) {
+ kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
+ mmu_pages_clear_parents(&parents);
+ zapped++;
+ }
+ }
+
+ return zapped;
+}
+
+bool __kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
+ struct list_head *invalid_list,
+ int *nr_zapped)
+{
+ bool list_unstable, zapped_root = false;
+
+ trace_kvm_mmu_prepare_zap_page(sp);
+ ++kvm->stat.mmu_shadow_zapped;
+ *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
+ *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
+ kvm_mmu_unlink_parents(sp);
+
+ /* Zapping children means active_mmu_pages has become unstable. */
+ list_unstable = *nr_zapped;
+
+ if (!sp->role.invalid && sp_has_gptes(sp))
+ unaccount_shadowed(kvm, sp);
+
+ if (sp->unsync)
+ kvm_unlink_unsync_page(kvm, sp);
+ if (!sp->root_count) {
+ /* Count self */
+ (*nr_zapped)++;
+
+ /*
+ * Already invalid pages (previously active roots) are not on
+ * the active page list. See list_del() in the "else" case of
+ * !sp->root_count.
+ */
+ if (sp->role.invalid)
+ list_add(&sp->link, invalid_list);
+ else
+ list_move(&sp->link, invalid_list);
+ kvm_unaccount_mmu_page(kvm, sp);
+ } else {
+ /*
+ * Remove the active root from the active page list, the root
+ * will be explicitly freed when the root_count hits zero.
+ */
+ list_del(&sp->link);
+
+ /*
+ * Obsolete pages cannot be used on any vCPUs, see the comment
+ * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also
+ * treats invalid shadow pages as being obsolete.
+ */
+ zapped_root = !is_obsolete_sp(kvm, sp);
+ }
+
+ if (sp->nx_huge_page_disallowed)
+ unaccount_nx_huge_page(kvm, sp);
+
+ sp->role.invalid = 1;
+
+ /*
+ * Make the request to free obsolete roots after marking the root
+ * invalid, otherwise other vCPUs may not see it as invalid.
+ */
+ if (zapped_root)
+ kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS);
+ return list_unstable;
+}
+
+bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
+ struct list_head *invalid_list)
+{
+ int nr_zapped;
+
+ __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
+ return nr_zapped;
+}
+
+void kvm_mmu_commit_zap_page(struct kvm *kvm, struct list_head *invalid_list)
+{
+ struct kvm_mmu_page *sp, *nsp;
+
+ if (list_empty(invalid_list))
+ return;
+
+ /*
+ * We need to make sure everyone sees our modifications to
+ * the page tables and see changes to vcpu->mode here. The barrier
+ * in the kvm_flush_remote_tlbs() achieves this. This pairs
+ * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
+ *
+ * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
+ * guest mode and/or lockless shadow page table walks.
+ */
+ kvm_flush_remote_tlbs(kvm);
+
+ list_for_each_entry_safe(sp, nsp, invalid_list, link) {
+ WARN_ON(!sp->role.invalid || sp->root_count);
+ kvm_mmu_free_shadow_page(sp);
+ }
+}
+
+static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
+ unsigned long nr_to_zap)
+{
+ unsigned long total_zapped = 0;
+ struct kvm_mmu_page *sp, *tmp;
+ LIST_HEAD(invalid_list);
+ bool unstable;
+ int nr_zapped;
+
+ if (list_empty(&kvm->arch.active_mmu_pages))
+ return 0;
+
+restart:
+ list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
+ /*
+ * Don't zap active root pages, the page itself can't be freed
+ * and zapping it will just force vCPUs to realloc and reload.
+ */
+ if (sp->root_count)
+ continue;
+
+ unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
+ &nr_zapped);
+ total_zapped += nr_zapped;
+ if (total_zapped >= nr_to_zap)
+ break;
+
+ if (unstable)
+ goto restart;
+ }
+
+ kvm_mmu_commit_zap_page(kvm, &invalid_list);
+
+ kvm->stat.mmu_recycled += total_zapped;
+ return total_zapped;
+}
+
+static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
+{
+ if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
+ return kvm->arch.n_max_mmu_pages -
+ kvm->arch.n_used_mmu_pages;
+
+ return 0;
+}
+
+int make_mmu_pages_available(struct kvm_vcpu *vcpu)
+{
+ unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
+
+ if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
+ return 0;
+
+ kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
+
+ /*
+ * Note, this check is intentionally soft, it only guarantees that one
+ * page is available, while the caller may end up allocating as many as
+ * four pages, e.g. for PAE roots or for 5-level paging. Temporarily
+ * exceeding the (arbitrary by default) limit will not harm the host,
+ * being too aggressive may unnecessarily kill the guest, and getting an
+ * exact count is far more trouble than it's worth, especially in the
+ * page fault paths.
+ */
+ if (!kvm_mmu_available_pages(vcpu->kvm))
+ return -ENOSPC;
+ return 0;
+}
+
+/*
+ * Changing the number of mmu pages allocated to the vm
+ * Note: if goal_nr_mmu_pages is too small, you will get dead lock
+ */
+void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
+{
+ write_lock(&kvm->mmu_lock);
+
+ if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
+ kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
+ goal_nr_mmu_pages);
+
+ goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
+ }
+
+ kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
+
+ write_unlock(&kvm->mmu_lock);
+}
+
+int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
+{
+ struct kvm_mmu_page *sp;
+ LIST_HEAD(invalid_list);
+ int r;
+
+ pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
+ r = 0;
+ write_lock(&kvm->mmu_lock);
+ for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) {
+ pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
+ sp->role.word);
+ r = 1;
+ kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
+ }
+ kvm_mmu_commit_zap_page(kvm, &invalid_list);
+ write_unlock(&kvm->mmu_lock);
+
+ return r;
+}
+
+int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
+{
+ gpa_t gpa;
+ int r;
+
+ if (vcpu->arch.mmu->root_role.direct)
+ return 0;
+
+ gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
+
+ r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
+
+ return r;
+}
+
+static void kvm_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
+{
+ trace_kvm_mmu_unsync_page(sp);
+ ++kvm->stat.mmu_unsync;
+ sp->unsync = 1;
+
+ kvm_mmu_mark_parents_unsync(sp);
+}
+
+/*
+ * Attempt to unsync any shadow pages that can be reached by the specified gfn,
+ * KVM is creating a writable mapping for said gfn. Returns 0 if all pages
+ * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must
+ * be write-protected.
+ */
+int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot,
+ gfn_t gfn, bool can_unsync, bool prefetch)
+{
+ struct kvm_mmu_page *sp;
+ bool locked = false;
+
+ /*
+ * Force write-protection if the page is being tracked. Note, the page
+ * track machinery is used to write-protect upper-level shadow pages,
+ * i.e. this guards the role.level == 4K assertion below!
+ */
+ if (kvm_slot_page_track_is_active(kvm, slot, gfn, KVM_PAGE_TRACK_WRITE))
+ return -EPERM;
+
+ /*
+ * The page is not write-tracked, mark existing shadow pages unsync
+ * unless KVM is synchronizing an unsync SP (can_unsync = false). In
+ * that case, KVM must complete emulation of the guest TLB flush before
+ * allowing shadow pages to become unsync (writable by the guest).
+ */
+ for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) {
+ if (!can_unsync)
+ return -EPERM;
+
+ if (sp->unsync)
+ continue;
+
+ if (prefetch)
+ return -EEXIST;
+
+ /*
+ * TDP MMU page faults require an additional spinlock as they
+ * run with mmu_lock held for read, not write, and the unsync
+ * logic is not thread safe. Take the spinklock regardless of
+ * the MMU type to avoid extra conditionals/parameters, there's
+ * no meaningful penalty if mmu_lock is held for write.
+ */
+ if (!locked) {
+ locked = true;
+ spin_lock(&kvm->arch.mmu_unsync_pages_lock);
+
+ /*
+ * Recheck after taking the spinlock, a different vCPU
+ * may have since marked the page unsync. A false
+ * positive on the unprotected check above is not
+ * possible as clearing sp->unsync _must_ hold mmu_lock
+ * for write, i.e. unsync cannot transition from 0->1
+ * while this CPU holds mmu_lock for read (or write).
+ */
+ if (READ_ONCE(sp->unsync))
+ continue;
+ }
+
+ WARN_ON(sp->role.level != PG_LEVEL_4K);
+ kvm_unsync_page(kvm, sp);
+ }
+ if (locked)
+ spin_unlock(&kvm->arch.mmu_unsync_pages_lock);
+
+ /*
+ * We need to ensure that the marking of unsync pages is visible
+ * before the SPTE is updated to allow writes because
+ * kvm_mmu_sync_roots() checks the unsync flags without holding
+ * the MMU lock and so can race with this. If the SPTE was updated
+ * before the page had been marked as unsync-ed, something like the
+ * following could happen:
+ *
+ * CPU 1 CPU 2
+ * ---------------------------------------------------------------------
+ * 1.2 Host updates SPTE
+ * to be writable
+ * 2.1 Guest writes a GPTE for GVA X.
+ * (GPTE being in the guest page table shadowed
+ * by the SP from CPU 1.)
+ * This reads SPTE during the page table walk.
+ * Since SPTE.W is read as 1, there is no
+ * fault.
+ *
+ * 2.2 Guest issues TLB flush.
+ * That causes a VM Exit.
+ *
+ * 2.3 Walking of unsync pages sees sp->unsync is
+ * false and skips the page.
+ *
+ * 2.4 Guest accesses GVA X.
+ * Since the mapping in the SP was not updated,
+ * so the old mapping for GVA X incorrectly
+ * gets used.
+ * 1.1 Host marks SP
+ * as unsync
+ * (sp->unsync = true)
+ *
+ * The write barrier below ensures that 1.1 happens before 1.2 and thus
+ * the situation in 2.4 does not arise. It pairs with the read barrier
+ * in is_unsync_root(), placed between 2.1's load of SPTE.W and 2.3.
+ */
+ smp_wmb();
+
+ return 0;
+}
+
+int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot,
+ u64 *sptep, unsigned int pte_access, gfn_t gfn,
+ kvm_pfn_t pfn, struct kvm_page_fault *fault)
+{
+ struct kvm_mmu_page *sp = sptep_to_sp(sptep);
+ int level = sp->role.level;
+ int was_rmapped = 0;
+ int ret = RET_PF_FIXED;
+ bool flush = false;
+ bool wrprot;
+ u64 spte;
+
+ /* Prefetching always gets a writable pfn. */
+ bool host_writable = !fault || fault->map_writable;
+ bool prefetch = !fault || fault->prefetch;
+ bool write_fault = fault && fault->write;
+
+ pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
+ *sptep, write_fault, gfn);
+
+ if (unlikely(is_noslot_pfn(pfn))) {
+ vcpu->stat.pf_mmio_spte_created++;
+ mark_mmio_spte(vcpu, sptep, gfn, pte_access);
+ return RET_PF_EMULATE;
+ }
+
+ if (is_shadow_present_pte(*sptep)) {
+ /*
+ * If we overwrite a PTE page pointer with a 2MB PMD, unlink
+ * the parent of the now unreachable PTE.
+ */
+ if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
+ struct kvm_mmu_page *child;
+ u64 pte = *sptep;
+
+ child = spte_to_child_sp(pte);
+ drop_parent_pte(child, sptep);
+ flush = true;
+ } else if (pfn != spte_to_pfn(*sptep)) {
+ pgprintk("hfn old %llx new %llx\n",
+ spte_to_pfn(*sptep), pfn);
+ drop_spte(vcpu->kvm, sptep);
+ flush = true;
+ } else
+ was_rmapped = 1;
+ }
+
+ wrprot = make_spte(vcpu, sp, slot, pte_access, gfn, pfn, *sptep, prefetch,
+ true, host_writable, &spte);
+
+ if (*sptep == spte) {
+ ret = RET_PF_SPURIOUS;
+ } else {
+ flush |= mmu_spte_update(sptep, spte);
+ trace_kvm_mmu_set_spte(level, gfn, sptep);
+ }
+
+ if (wrprot) {
+ if (write_fault)
+ ret = RET_PF_EMULATE;
+ }
+
+ if (flush)
+ kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
+ KVM_PAGES_PER_HPAGE(level));
+
+ pgprintk("%s: setting spte %llx\n", __func__, *sptep);
+
+ if (!was_rmapped) {
+ WARN_ON_ONCE(ret == RET_PF_SPURIOUS);
+ rmap_add(vcpu, slot, sptep, gfn, pte_access);
+ } else {
+ /* Already rmapped but the pte_access bits may have changed. */
+ kvm_mmu_page_set_access(sp, spte_index(sptep), pte_access);
+ }
+
+ return ret;
+}
+
+static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
+ struct kvm_mmu_page *sp,
+ u64 *start, u64 *end)
+{
+ struct page *pages[PTE_PREFETCH_NUM];
+ struct kvm_memory_slot *slot;
+ unsigned int access = sp->role.access;
+ int i, ret;
+ gfn_t gfn;
+
+ gfn = kvm_mmu_page_get_gfn(sp, spte_index(start));
+ slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
+ if (!slot)
+ return -1;
+
+ ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
+ if (ret <= 0)
+ return -1;
+
+ for (i = 0; i < ret; i++, gfn++, start++) {
+ mmu_set_spte(vcpu, slot, start, access, gfn,
+ page_to_pfn(pages[i]), NULL);
+ put_page(pages[i]);
+ }
+
+ return 0;
+}
+
+void __direct_pte_prefetch(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
+ u64 *sptep)
+{
+ u64 *spte, *start = NULL;
+ int i;
+
+ WARN_ON(!sp->role.direct);
+
+ i = spte_index(sptep) & ~(PTE_PREFETCH_NUM - 1);
+ spte = sp->spt + i;
+
+ for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
+ if (is_shadow_present_pte(*spte) || spte == sptep) {
+ if (!start)
+ continue;
+ if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
+ return;
+ start = NULL;
+ } else if (!start)
+ start = spte;
+ }
+ if (start)
+ direct_pte_prefetch_many(vcpu, sp, start, spte);
+}
+
+static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
+{
+ struct kvm_mmu_page *sp;
+
+ sp = sptep_to_sp(sptep);
+
+ /*
+ * Without accessed bits, there's no way to distinguish between
+ * actually accessed translations and prefetched, so disable pte
+ * prefetch if accessed bits aren't available.
+ */
+ if (sp_ad_disabled(sp))
+ return;
+
+ if (sp->role.level > PG_LEVEL_4K)
+ return;
+
+ /*
+ * If addresses are being invalidated, skip prefetching to avoid
+ * accidentally prefetching those addresses.
+ */
+ if (unlikely(vcpu->kvm->mmu_invalidate_in_progress))
+ return;
+
+ __direct_pte_prefetch(vcpu, sp, sptep);
+}
+
+int __direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
+{
+ struct kvm_shadow_walk_iterator it;
+ struct kvm_mmu_page *sp;
+ int ret;
+ gfn_t base_gfn = fault->gfn;
+
+ kvm_mmu_hugepage_adjust(vcpu, fault);
+
+ trace_kvm_mmu_spte_requested(fault);
+ for_each_shadow_entry(vcpu, fault->addr, it) {
+ /*
+ * We cannot overwrite existing page tables with an NX
+ * large page, as the leaf could be executable.
+ */
+ if (fault->nx_huge_page_workaround_enabled)
+ disallowed_hugepage_adjust(fault, *it.sptep, it.level);
+
+ base_gfn = fault->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
+ if (it.level == fault->goal_level)
+ break;
+
+ sp = kvm_mmu_get_child_sp(vcpu, it.sptep, base_gfn, true, ACC_ALL);
+ if (sp == ERR_PTR(-EEXIST))
+ continue;
+
+ link_shadow_page(vcpu, it.sptep, sp);
+ if (fault->huge_page_disallowed)
+ account_nx_huge_page(vcpu->kvm, sp,
+ fault->req_level >= it.level);
+ }
+
+ if (WARN_ON_ONCE(it.level != fault->goal_level))
+ return -EFAULT;
+
+ ret = mmu_set_spte(vcpu, fault->slot, it.sptep, ACC_ALL,
+ base_gfn, fault->pfn, fault);
+ if (ret == RET_PF_SPURIOUS)
+ return ret;
+
+ direct_pte_prefetch(vcpu, it.sptep);
+ return ret;
+}
+
+/*
+ * Returns the last level spte pointer of the shadow page walk for the given
+ * gpa, and sets *spte to the spte value. This spte may be non-preset. If no
+ * walk could be performed, returns NULL and *spte does not contain valid data.
+ *
+ * Contract:
+ * - Must be called between walk_shadow_page_lockless_{begin,end}.
+ * - The returned sptep must not be used after walk_shadow_page_lockless_end.
+ */
+u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte)
+{
+ struct kvm_shadow_walk_iterator iterator;
+ u64 old_spte;
+ u64 *sptep = NULL;
+
+ for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) {
+ sptep = iterator.sptep;
+ *spte = old_spte;
+ }
+
+ return sptep;
+}
+
+void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu)
+{
+ unsigned long roots_to_free = 0;
+ hpa_t root_hpa;
+ int i;
+
+ /*
+ * This should not be called while L2 is active, L2 can't invalidate
+ * _only_ its own roots, e.g. INVVPID unconditionally exits.
+ */
+ WARN_ON_ONCE(mmu->root_role.guest_mode);
+
+ for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
+ root_hpa = mmu->prev_roots[i].hpa;
+ if (!VALID_PAGE(root_hpa))
+ continue;
+
+ if (!to_shadow_page(root_hpa) ||
+ to_shadow_page(root_hpa)->role.guest_mode)
+ roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
+ }
+
+ kvm_mmu_free_roots(kvm, mmu, roots_to_free);
+}
+EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots);
+
+
+static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
+{
+ int ret = 0;
+
+ if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
+ kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
+ ret = 1;
+ }
+
+ return ret;
+}
+
+hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, int quadrant, u8 level)
+{
+ union kvm_mmu_page_role role = vcpu->arch.mmu->root_role;
+ struct kvm_mmu_page *sp;
+
+ role.level = level;
+ role.quadrant = quadrant;
+
+ WARN_ON_ONCE(quadrant && !role.has_4_byte_gpte);
+ WARN_ON_ONCE(role.direct && role.has_4_byte_gpte);
+
+ sp = kvm_mmu_get_shadow_page(vcpu, gfn, role);
+ ++sp->root_count;
+
+ return __pa(sp->spt);
+}
+
+static int mmu_first_shadow_root_alloc(struct kvm *kvm)
+{
+ struct kvm_memslots *slots;
+ struct kvm_memory_slot *slot;
+ int r = 0, i, bkt;
+
+ /*
+ * Check if this is the first shadow root being allocated before
+ * taking the lock.
+ */
+ if (kvm_shadow_root_allocated(kvm))
+ return 0;
+
+ mutex_lock(&kvm->slots_arch_lock);
+
+ /* Recheck, under the lock, whether this is the first shadow root. */
+ if (kvm_shadow_root_allocated(kvm))
+ goto out_unlock;
+
+ /*
+ * Check if anything actually needs to be allocated, e.g. all metadata
+ * will be allocated upfront if TDP is disabled.
+ */
+ if (kvm_memslots_have_rmaps(kvm) &&
+ kvm_page_track_write_tracking_enabled(kvm))
+ goto out_success;
+
+ for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
+ slots = __kvm_memslots(kvm, i);
+ kvm_for_each_memslot(slot, bkt, slots) {
+ /*
+ * Both of these functions are no-ops if the target is
+ * already allocated, so unconditionally calling both
+ * is safe. Intentionally do NOT free allocations on
+ * failure to avoid having to track which allocations
+ * were made now versus when the memslot was created.
+ * The metadata is guaranteed to be freed when the slot
+ * is freed, and will be kept/used if userspace retries
+ * KVM_RUN instead of killing the VM.
+ */
+ r = memslot_rmap_alloc(slot, slot->npages);
+ if (r)
+ goto out_unlock;
+ r = kvm_page_track_write_tracking_alloc(slot);
+ if (r)
+ goto out_unlock;
+ }
+ }
+
+ /*
+ * Ensure that shadow_root_allocated becomes true strictly after
+ * all the related pointers are set.
+ */
+out_success:
+ smp_store_release(&kvm->arch.shadow_root_allocated, true);
+
+out_unlock:
+ mutex_unlock(&kvm->slots_arch_lock);
+ return r;
+}
+
+int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
+{
+ struct kvm_mmu *mmu = vcpu->arch.mmu;
+ u64 pdptrs[4], pm_mask;
+ gfn_t root_gfn, root_pgd;
+ int quadrant, i, r;
+ hpa_t root;
+
+ root_pgd = mmu->get_guest_pgd(vcpu);
+ root_gfn = root_pgd >> PAGE_SHIFT;
+
+ if (mmu_check_root(vcpu, root_gfn))
+ return 1;
+
+ /*
+ * On SVM, reading PDPTRs might access guest memory, which might fault
+ * and thus might sleep. Grab the PDPTRs before acquiring mmu_lock.
+ */
+ if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) {
+ for (i = 0; i < 4; ++i) {
+ pdptrs[i] = mmu->get_pdptr(vcpu, i);
+ if (!(pdptrs[i] & PT_PRESENT_MASK))
+ continue;
+
+ if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT))
+ return 1;
+ }
+ }
+
+ r = mmu_first_shadow_root_alloc(vcpu->kvm);
+ if (r)
+ return r;
+
+ write_lock(&vcpu->kvm->mmu_lock);
+ r = make_mmu_pages_available(vcpu);
+ if (r < 0)
+ goto out_unlock;
+
+ /*
+ * Do we shadow a long mode page table? If so we need to
+ * write-protect the guests page table root.
+ */
+ if (mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) {
+ root = mmu_alloc_root(vcpu, root_gfn, 0,
+ mmu->root_role.level);
+ mmu->root.hpa = root;
+ goto set_root_pgd;
+ }
+
+ if (WARN_ON_ONCE(!mmu->pae_root)) {
+ r = -EIO;
+ goto out_unlock;
+ }
+
+ /*
+ * We shadow a 32 bit page table. This may be a legacy 2-level
+ * or a PAE 3-level page table. In either case we need to be aware that
+ * the shadow page table may be a PAE or a long mode page table.
+ */
+ pm_mask = PT_PRESENT_MASK | shadow_me_value;
+ if (mmu->root_role.level >= PT64_ROOT_4LEVEL) {
+ pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
+
+ if (WARN_ON_ONCE(!mmu->pml4_root)) {
+ r = -EIO;
+ goto out_unlock;
+ }
+ mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask;
+
+ if (mmu->root_role.level == PT64_ROOT_5LEVEL) {
+ if (WARN_ON_ONCE(!mmu->pml5_root)) {
+ r = -EIO;
+ goto out_unlock;
+ }
+ mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask;
+ }
+ }
+
+ for (i = 0; i < 4; ++i) {
+ WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
+
+ if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) {
+ if (!(pdptrs[i] & PT_PRESENT_MASK)) {
+ mmu->pae_root[i] = INVALID_PAE_ROOT;
+ continue;
+ }
+ root_gfn = pdptrs[i] >> PAGE_SHIFT;
+ }
+
+ /*
+ * If shadowing 32-bit non-PAE page tables, each PAE page
+ * directory maps one quarter of the guest's non-PAE page
+ * directory. Othwerise each PAE page direct shadows one guest
+ * PAE page directory so that quadrant should be 0.
+ */
+ quadrant = (mmu->cpu_role.base.level == PT32_ROOT_LEVEL) ? i : 0;
+
+ root = mmu_alloc_root(vcpu, root_gfn, quadrant, PT32_ROOT_LEVEL);
+ mmu->pae_root[i] = root | pm_mask;
+ }
+
+ if (mmu->root_role.level == PT64_ROOT_5LEVEL)
+ mmu->root.hpa = __pa(mmu->pml5_root);
+ else if (mmu->root_role.level == PT64_ROOT_4LEVEL)
+ mmu->root.hpa = __pa(mmu->pml4_root);
+ else
+ mmu->root.hpa = __pa(mmu->pae_root);
+
+set_root_pgd:
+ mmu->root.pgd = root_pgd;
+out_unlock:
+ write_unlock(&vcpu->kvm->mmu_lock);
+
+ return r;
+}
+
+int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
+{
+ struct kvm_mmu *mmu = vcpu->arch.mmu;
+ bool need_pml5 = mmu->root_role.level > PT64_ROOT_4LEVEL;
+ u64 *pml5_root = NULL;
+ u64 *pml4_root = NULL;
+ u64 *pae_root;
+
+ /*
+ * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
+ * tables are allocated and initialized at root creation as there is no
+ * equivalent level in the guest's NPT to shadow. Allocate the tables
+ * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
+ */
+ if (mmu->root_role.direct ||
+ mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL ||
+ mmu->root_role.level < PT64_ROOT_4LEVEL)
+ return 0;
+
+ /*
+ * NPT, the only paging mode that uses this horror, uses a fixed number
+ * of levels for the shadow page tables, e.g. all MMUs are 4-level or
+ * all MMus are 5-level. Thus, this can safely require that pml5_root
+ * is allocated if the other roots are valid and pml5 is needed, as any
+ * prior MMU would also have required pml5.
+ */
+ if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root))
+ return 0;
+
+ /*
+ * The special roots should always be allocated in concert. Yell and
+ * bail if KVM ends up in a state where only one of the roots is valid.
+ */
+ if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root ||
+ (need_pml5 && mmu->pml5_root)))
+ return -EIO;
+
+ /*
+ * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and
+ * doesn't need to be decrypted.
+ */
+ pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
+ if (!pae_root)
+ return -ENOMEM;
+
+#ifdef CONFIG_X86_64
+ pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
+ if (!pml4_root)
+ goto err_pml4;
+
+ if (need_pml5) {
+ pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
+ if (!pml5_root)
+ goto err_pml5;
+ }
+#endif
+
+ mmu->pae_root = pae_root;
+ mmu->pml4_root = pml4_root;
+ mmu->pml5_root = pml5_root;
+
+ return 0;
+
+#ifdef CONFIG_X86_64
+err_pml5:
+ free_page((unsigned long)pml4_root);
+err_pml4:
+ free_page((unsigned long)pae_root);
+ return -ENOMEM;
+#endif
+}
+
+static bool is_unsync_root(hpa_t root)
+{
+ struct kvm_mmu_page *sp;
+
+ if (!VALID_PAGE(root))
+ return false;
+
+ /*
+ * The read barrier orders the CPU's read of SPTE.W during the page table
+ * walk before the reads of sp->unsync/sp->unsync_children here.
+ *
+ * Even if another CPU was marking the SP as unsync-ed simultaneously,
+ * any guest page table changes are not guaranteed to be visible anyway
+ * until this VCPU issues a TLB flush strictly after those changes are
+ * made. We only need to ensure that the other CPU sets these flags
+ * before any actual changes to the page tables are made. The comments
+ * in mmu_try_to_unsync_pages() describe what could go wrong if this
+ * requirement isn't satisfied.
+ */
+ smp_rmb();
+ sp = to_shadow_page(root);
+
+ /*
+ * PAE roots (somewhat arbitrarily) aren't backed by shadow pages, the
+ * PDPTEs for a given PAE root need to be synchronized individually.
+ */
+ if (WARN_ON_ONCE(!sp))
+ return false;
+
+ if (sp->unsync || sp->unsync_children)
+ return true;
+
+ return false;
+}
+
+void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
+{
+ int i;
+ struct kvm_mmu_page *sp;
+
+ if (vcpu->arch.mmu->root_role.direct)
+ return;
+
+ if (!VALID_PAGE(vcpu->arch.mmu->root.hpa))
+ return;
+
+ vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
+
+ if (vcpu->arch.mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) {
+ hpa_t root = vcpu->arch.mmu->root.hpa;
+ sp = to_shadow_page(root);
+
+ if (!is_unsync_root(root))
+ return;
+
+ write_lock(&vcpu->kvm->mmu_lock);
+ mmu_sync_children(vcpu, sp, true);
+ write_unlock(&vcpu->kvm->mmu_lock);
+ return;
+ }
+
+ write_lock(&vcpu->kvm->mmu_lock);
+
+ for (i = 0; i < 4; ++i) {
+ hpa_t root = vcpu->arch.mmu->pae_root[i];
+
+ if (IS_VALID_PAE_ROOT(root)) {
+ sp = spte_to_child_sp(root);
+ mmu_sync_children(vcpu, sp, true);
+ }
+ }
+
+ write_unlock(&vcpu->kvm->mmu_lock);
+}
+
+void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu)
+{
+ unsigned long roots_to_free = 0;
+ int i;
+
+ for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
+ if (is_unsync_root(vcpu->arch.mmu->prev_roots[i].hpa))
+ roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
+
+ /* sync prev_roots by simply freeing them */
+ kvm_mmu_free_roots(vcpu->kvm, vcpu->arch.mmu, roots_to_free);
+}
+
+/*
+ * Return the level of the lowest level SPTE added to sptes.
+ * That SPTE may be non-present.
+ *
+ * Must be called between walk_shadow_page_lockless_{begin,end}.
+ */
+int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
+{
+ struct kvm_shadow_walk_iterator iterator;
+ int leaf = -1;
+ u64 spte;
+
+ for (shadow_walk_init(&iterator, vcpu, addr),
+ *root_level = iterator.level;
+ shadow_walk_okay(&iterator);
+ __shadow_walk_next(&iterator, spte)) {
+ leaf = iterator.level;
+ spte = mmu_spte_get_lockless(iterator.sptep);
+
+ sptes[leaf] = spte;
+ }
+
+ return leaf;
+}
+
+void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
+{
+ struct kvm_shadow_walk_iterator iterator;
+ u64 spte;
+
+ walk_shadow_page_lockless_begin(vcpu);
+ for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
+ clear_sp_write_flooding_count(iterator.sptep);
+ walk_shadow_page_lockless_end(vcpu);
+}
+
+static bool is_obsolete_root(struct kvm *kvm, hpa_t root_hpa)
+{
+ struct kvm_mmu_page *sp;
+
+ if (!VALID_PAGE(root_hpa))
+ return false;
+
+ /*
+ * When freeing obsolete roots, treat roots as obsolete if they don't
+ * have an associated shadow page. This does mean KVM will get false
+ * positives and free roots that don't strictly need to be freed, but
+ * such false positives are relatively rare:
+ *
+ * (a) only PAE paging and nested NPT has roots without shadow pages
+ * (b) remote reloads due to a memslot update obsoletes _all_ roots
+ * (c) KVM doesn't track previous roots for PAE paging, and the guest
+ * is unlikely to zap an in-use PGD.
+ */
+ sp = to_shadow_page(root_hpa);
+ return !sp || is_obsolete_sp(kvm, sp);
+}
+
+static void __kvm_mmu_free_obsolete_roots(struct kvm *kvm, struct kvm_mmu *mmu)
+{
+ unsigned long roots_to_free = 0;
+ int i;
+
+ if (is_obsolete_root(kvm, mmu->root.hpa))
+ roots_to_free |= KVM_MMU_ROOT_CURRENT;
+
+ for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
+ if (is_obsolete_root(kvm, mmu->prev_roots[i].hpa))
+ roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
+ }
+
+ if (roots_to_free)
+ kvm_mmu_free_roots(kvm, mmu, roots_to_free);
+}
+
+void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu)
+{
+ __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.root_mmu);
+ __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.guest_mmu);
+}
+
+static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
+ int *bytes)
+{
+ u64 gentry = 0;
+ int r;
+
+ /*
+ * Assume that the pte write on a page table of the same type
+ * as the current vcpu paging mode since we update the sptes only
+ * when they have the same mode.
+ */
+ if (is_pae(vcpu) && *bytes == 4) {
+ /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
+ *gpa &= ~(gpa_t)7;
+ *bytes = 8;
+ }
+
+ if (*bytes == 4 || *bytes == 8) {
+ r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
+ if (r)
+ gentry = 0;
+ }
+
+ return gentry;
+}
+
+/*
+ * If we're seeing too many writes to a page, it may no longer be a page table,
+ * or we may be forking, in which case it is better to unmap the page.
+ */
+static bool detect_write_flooding(struct kvm_mmu_page *sp)
+{
+ /*
+ * Skip write-flooding detected for the sp whose level is 1, because
+ * it can become unsync, then the guest page is not write-protected.
+ */
+ if (sp->role.level == PG_LEVEL_4K)
+ return false;
+
+ atomic_inc(&sp->write_flooding_count);
+ return atomic_read(&sp->write_flooding_count) >= 3;
+}
+
+/*
+ * Misaligned accesses are too much trouble to fix up; also, they usually
+ * indicate a page is not used as a page table.
+ */
+static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
+ int bytes)
+{
+ unsigned offset, pte_size, misaligned;
+
+ pgprintk("misaligned: gpa %llx bytes %d role %x\n",
+ gpa, bytes, sp->role.word);
+
+ offset = offset_in_page(gpa);
+ pte_size = sp->role.has_4_byte_gpte ? 4 : 8;
+
+ /*
+ * Sometimes, the OS only writes the last one bytes to update status
+ * bits, for example, in linux, andb instruction is used in clear_bit().
+ */
+ if (!(offset & (pte_size - 1)) && bytes == 1)
+ return false;
+
+ misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
+ misaligned |= bytes < 4;
+
+ return misaligned;
+}
+
+static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
+{
+ unsigned page_offset, quadrant;
+ u64 *spte;
+ int level;
+
+ page_offset = offset_in_page(gpa);
+ level = sp->role.level;
+ *nspte = 1;
+ if (sp->role.has_4_byte_gpte) {
+ page_offset <<= 1; /* 32->64 */
+ /*
+ * A 32-bit pde maps 4MB while the shadow pdes map
+ * only 2MB. So we need to double the offset again
+ * and zap two pdes instead of one.
+ */
+ if (level == PT32_ROOT_LEVEL) {
+ page_offset &= ~7; /* kill rounding error */
+ page_offset <<= 1;
+ *nspte = 2;
+ }
+ quadrant = page_offset >> PAGE_SHIFT;
+ page_offset &= ~PAGE_MASK;
+ if (quadrant != sp->role.quadrant)
+ return NULL;
+ }
+
+ spte = &sp->spt[page_offset / sizeof(*spte)];
+ return spte;
+}
+
+void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa, const u8 *new,
+ int bytes, struct kvm_page_track_notifier_node *node)
+{
+ gfn_t gfn = gpa >> PAGE_SHIFT;
+ struct kvm_mmu_page *sp;
+ LIST_HEAD(invalid_list);
+ u64 entry, gentry, *spte;
+ int npte;
+ bool flush = false;
+
+ /*
+ * If we don't have indirect shadow pages, it means no page is
+ * write-protected, so we can exit simply.
+ */
+ if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
+ return;
+
+ pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
+
+ write_lock(&vcpu->kvm->mmu_lock);
+
+ gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
+
+ ++vcpu->kvm->stat.mmu_pte_write;
+
+ for_each_gfn_valid_sp_with_gptes(vcpu->kvm, sp, gfn) {
+ if (detect_write_misaligned(sp, gpa, bytes) ||
+ detect_write_flooding(sp)) {
+ kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
+ ++vcpu->kvm->stat.mmu_flooded;
+ continue;
+ }
+
+ spte = get_written_sptes(sp, gpa, &npte);
+ if (!spte)
+ continue;
+
+ while (npte--) {
+ entry = *spte;
+ mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
+ if (gentry && sp->role.level != PG_LEVEL_4K)
+ ++vcpu->kvm->stat.mmu_pde_zapped;
+ if (is_shadow_present_pte(entry))
+ flush = true;
+ ++spte;
+ }
+ }
+ kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
+ write_unlock(&vcpu->kvm->mmu_lock);
+}
+
+/* The caller should hold mmu-lock before calling this function. */
+static __always_inline bool
+slot_handle_level_range(struct kvm *kvm, const struct kvm_memory_slot *memslot,
+ slot_level_handler fn, int start_level, int end_level,
+ gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield,
+ bool flush)
+{
+ struct slot_rmap_walk_iterator iterator;
+
+ for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
+ end_gfn, &iterator) {
+ if (iterator.rmap)
+ flush |= fn(kvm, iterator.rmap, memslot);
+
+ if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
+ if (flush && flush_on_yield) {
+ kvm_flush_remote_tlbs_with_address(kvm,
+ start_gfn,
+ iterator.gfn - start_gfn + 1);
+ flush = false;
+ }
+ cond_resched_rwlock_write(&kvm->mmu_lock);
+ }
+ }
+
+ return flush;
+}
+
+__always_inline bool slot_handle_level(struct kvm *kvm,
+ const struct kvm_memory_slot *memslot,
+ slot_level_handler fn, int start_level,
+ int end_level, bool flush_on_yield)
+{
+ return slot_handle_level_range(kvm, memslot, fn, start_level,
+ end_level, memslot->base_gfn,
+ memslot->base_gfn + memslot->npages - 1,
+ flush_on_yield, false);
+}
+
+__always_inline bool slot_handle_level_4k(struct kvm *kvm,
+ const struct kvm_memory_slot *memslot,
+ slot_level_handler fn,
+ bool flush_on_yield)
+{
+ return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
+ PG_LEVEL_4K, flush_on_yield);
+}
+
+#define BATCH_ZAP_PAGES 10
+void kvm_zap_obsolete_pages(struct kvm *kvm)
+{
+ struct kvm_mmu_page *sp, *node;
+ int nr_zapped, batch = 0;
+ bool unstable;
+
+restart:
+ list_for_each_entry_safe_reverse(sp, node,
+ &kvm->arch.active_mmu_pages, link) {
+ /*
+ * No obsolete valid page exists before a newly created page
+ * since active_mmu_pages is a FIFO list.
+ */
+ if (!is_obsolete_sp(kvm, sp))
+ break;
+
+ /*
+ * Invalid pages should never land back on the list of active
+ * pages. Skip the bogus page, otherwise we'll get stuck in an
+ * infinite loop if the page gets put back on the list (again).
+ */
+ if (WARN_ON(sp->role.invalid))
+ continue;
+
+ /*
+ * No need to flush the TLB since we're only zapping shadow
+ * pages with an obsolete generation number and all vCPUS have
+ * loaded a new root, i.e. the shadow pages being zapped cannot
+ * be in active use by the guest.
+ */
+ if (batch >= BATCH_ZAP_PAGES &&
+ cond_resched_rwlock_write(&kvm->mmu_lock)) {
+ batch = 0;
+ goto restart;
+ }
+
+ unstable = __kvm_mmu_prepare_zap_page(kvm, sp,
+ &kvm->arch.zapped_obsolete_pages, &nr_zapped);
+ batch += nr_zapped;
+
+ if (unstable)
+ goto restart;
+ }
+
+ /*
+ * Kick all vCPUs (via remote TLB flush) before freeing the page tables
+ * to ensure KVM is not in the middle of a lockless shadow page table
+ * walk, which may reference the pages. The remote TLB flush itself is
+ * not required and is simply a convenient way to kick vCPUs as needed.
+ * KVM performs a local TLB flush when allocating a new root (see
+ * kvm_mmu_load()), and the reload in the caller ensure no vCPUs are
+ * running with an obsolete MMU.
+ */
+ kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
+}
+
+static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
+{
+ return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
+}
+
+bool kvm_rmap_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
+{
+ const struct kvm_memory_slot *memslot;
+ struct kvm_memslots *slots;
+ struct kvm_memslot_iter iter;
+ bool flush = false;
+ gfn_t start, end;
+ int i;
+
+ if (!kvm_memslots_have_rmaps(kvm))
+ return flush;
+
+ for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
+ slots = __kvm_memslots(kvm, i);
+
+ kvm_for_each_memslot_in_gfn_range(&iter, slots, gfn_start, gfn_end) {
+ memslot = iter.slot;
+ start = max(gfn_start, memslot->base_gfn);
+ end = min(gfn_end, memslot->base_gfn + memslot->npages);
+ if (WARN_ON_ONCE(start >= end))
+ continue;
+
+ flush = slot_handle_level_range(kvm, memslot, __kvm_zap_rmap,
+ PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
+ start, end - 1, true, flush);
+ }
+ }
+
+ return flush;
+}
+
+bool slot_rmap_write_protect(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
+ const struct kvm_memory_slot *slot)
+{
+ return rmap_write_protect(rmap_head, false);
+}
+
+static struct kvm_mmu_page *shadow_mmu_get_sp_for_split(struct kvm *kvm, u64 *huge_sptep)
+{
+ struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep);
+ struct shadow_page_caches caches = {};
+ union kvm_mmu_page_role role;
+ unsigned int access;
+ gfn_t gfn;
+
+ gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep));
+ access = kvm_mmu_page_get_access(huge_sp, spte_index(huge_sptep));
+
+ /*
+ * Note, huge page splitting always uses direct shadow pages, regardless
+ * of whether the huge page itself is mapped by a direct or indirect
+ * shadow page, since the huge page region itself is being directly
+ * mapped with smaller pages.
+ */
+ role = kvm_mmu_child_role(huge_sptep, /*direct=*/true, access);
+
+ /* Direct SPs do not require a shadowed_info_cache. */
+ caches.page_header_cache = &kvm->arch.split_page_header_cache;
+ caches.shadow_page_cache = &kvm->arch.split_shadow_page_cache;
+
+ /* Safe to pass NULL for vCPU since requesting a direct SP. */
+ return __kvm_mmu_get_shadow_page(kvm, NULL, &caches, gfn, role);
+}
+
+static void shadow_mmu_split_huge_page(struct kvm *kvm,
+ const struct kvm_memory_slot *slot,
+ u64 *huge_sptep)
+
+{
+ struct kvm_mmu_memory_cache *cache = &kvm->arch.split_desc_cache;
+ u64 huge_spte = READ_ONCE(*huge_sptep);
+ struct kvm_mmu_page *sp;
+ bool flush = false;
+ u64 *sptep, spte;
+ gfn_t gfn;
+ int index;
+
+ sp = shadow_mmu_get_sp_for_split(kvm, huge_sptep);
+
+ for (index = 0; index < SPTE_ENT_PER_PAGE; index++) {
+ sptep = &sp->spt[index];
+ gfn = kvm_mmu_page_get_gfn(sp, index);
+
+ /*
+ * The SP may already have populated SPTEs, e.g. if this huge
+ * page is aliased by multiple sptes with the same access
+ * permissions. These entries are guaranteed to map the same
+ * gfn-to-pfn translation since the SP is direct, so no need to
+ * modify them.
+ *
+ * However, if a given SPTE points to a lower level page table,
+ * that lower level page table may only be partially populated.
+ * Installing such SPTEs would effectively unmap a potion of the
+ * huge page. Unmapping guest memory always requires a TLB flush
+ * since a subsequent operation on the unmapped regions would
+ * fail to detect the need to flush.
+ */
+ if (is_shadow_present_pte(*sptep)) {
+ flush |= !is_last_spte(*sptep, sp->role.level);
+ continue;
+ }
+
+ spte = make_huge_page_split_spte(kvm, huge_spte, sp->role, index);
+ mmu_spte_set(sptep, spte);
+ __rmap_add(kvm, cache, slot, sptep, gfn, sp->role.access);
+ }
+
+ __link_shadow_page(kvm, cache, huge_sptep, sp, flush);
+}
+
+static int shadow_mmu_try_split_huge_page(struct kvm *kvm,
+ const struct kvm_memory_slot *slot,
+ u64 *huge_sptep)
+{
+ struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep);
+ int level, r = 0;
+ gfn_t gfn;
+ u64 spte;
+
+ /* Grab information for the tracepoint before dropping the MMU lock. */
+ gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep));
+ level = huge_sp->role.level;
+ spte = *huge_sptep;
+
+ if (kvm_mmu_available_pages(kvm) <= KVM_MIN_FREE_MMU_PAGES) {
+ r = -ENOSPC;
+ goto out;
+ }
+
+ if (need_topup_split_caches_or_resched(kvm)) {
+ write_unlock(&kvm->mmu_lock);
+ cond_resched();
+ /*
+ * If the topup succeeds, return -EAGAIN to indicate that the
+ * rmap iterator should be restarted because the MMU lock was
+ * dropped.
+ */
+ r = topup_split_caches(kvm) ?: -EAGAIN;
+ write_lock(&kvm->mmu_lock);
+ goto out;
+ }
+
+ shadow_mmu_split_huge_page(kvm, slot, huge_sptep);
+
+out:
+ trace_kvm_mmu_split_huge_page(gfn, spte, level, r);
+ return r;
+}
+
+static bool shadow_mmu_try_split_huge_pages(struct kvm *kvm,
+ struct kvm_rmap_head *rmap_head,
+ const struct kvm_memory_slot *slot)
+{
+ struct rmap_iterator iter;
+ struct kvm_mmu_page *sp;
+ u64 *huge_sptep;
+ int r;
+
+restart:
+ for_each_rmap_spte(rmap_head, &iter, huge_sptep) {
+ sp = sptep_to_sp(huge_sptep);
+
+ /* TDP MMU is enabled, so rmap only contains nested MMU SPs. */
+ if (WARN_ON_ONCE(!sp->role.guest_mode))
+ continue;
+
+ /* The rmaps should never contain non-leaf SPTEs. */
+ if (WARN_ON_ONCE(!is_large_pte(*huge_sptep)))
+ continue;
+
+ /* SPs with level >PG_LEVEL_4K should never by unsync. */
+ if (WARN_ON_ONCE(sp->unsync))
+ continue;
+
+ /* Don't bother splitting huge pages on invalid SPs. */
+ if (sp->role.invalid)
+ continue;
+
+ r = shadow_mmu_try_split_huge_page(kvm, slot, huge_sptep);
+
+ /*
+ * The split succeeded or needs to be retried because the MMU
+ * lock was dropped. Either way, restart the iterator to get it
+ * back into a consistent state.
+ */
+ if (!r || r == -EAGAIN)
+ goto restart;
+
+ /* The split failed and shouldn't be retried (e.g. -ENOMEM). */
+ break;
+ }
+
+ return false;
+}
+
+void kvm_shadow_mmu_try_split_huge_pages(struct kvm *kvm,
+ const struct kvm_memory_slot *slot,
+ gfn_t start, gfn_t end,
+ int target_level)
+{
+ int level;
+
+ /*
+ * Split huge pages starting with KVM_MAX_HUGEPAGE_LEVEL and working
+ * down to the target level. This ensures pages are recursively split
+ * all the way to the target level. There's no need to split pages
+ * already at the target level.
+ */
+ for (level = KVM_MAX_HUGEPAGE_LEVEL; level > target_level; level--) {
+ slot_handle_level_range(kvm, slot, shadow_mmu_try_split_huge_pages,
+ level, level, start, end - 1, true, false);
+ }
+}
+
+static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
+ struct kvm_rmap_head *rmap_head,
+ const struct kvm_memory_slot *slot)
+{
+ u64 *sptep;
+ struct rmap_iterator iter;
+ int need_tlb_flush = 0;
+ struct kvm_mmu_page *sp;
+
+restart:
+ for_each_rmap_spte(rmap_head, &iter, sptep) {
+ sp = sptep_to_sp(sptep);
+
+ /*
+ * We cannot do huge page mapping for indirect shadow pages,
+ * which are found on the last rmap (level = 1) when not using
+ * tdp; such shadow pages are synced with the page table in
+ * the guest, and the guest page table is using 4K page size
+ * mapping if the indirect sp has level = 1.
+ */
+ if (sp->role.direct &&
+ sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
+ PG_LEVEL_NUM)) {
+ kvm_zap_one_rmap_spte(kvm, rmap_head, sptep);
+
+ if (kvm_available_flush_tlb_with_range())
+ kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
+ KVM_PAGES_PER_HPAGE(sp->role.level));
+ else
+ need_tlb_flush = 1;
+
+ goto restart;
+ }
+ }
+
+ return need_tlb_flush;
+}
+
+void kvm_rmap_zap_collapsible_sptes(struct kvm *kvm,
+ const struct kvm_memory_slot *slot)
+{
+ /*
+ * Note, use KVM_MAX_HUGEPAGE_LEVEL - 1 since there's no need to zap
+ * pages that are already mapped at the maximum hugepage level.
+ */
+ if (slot_handle_level(kvm, slot, kvm_mmu_zap_collapsible_spte,
+ PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL - 1, true))
+ kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
+}
+
+unsigned long mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
+{
+ struct kvm *kvm;
+ int nr_to_scan = sc->nr_to_scan;
+ unsigned long freed = 0;
+
+ mutex_lock(&kvm_lock);
+
+ list_for_each_entry(kvm, &vm_list, vm_list) {
+ int idx;
+ LIST_HEAD(invalid_list);
+
+ /*
+ * Never scan more than sc->nr_to_scan VM instances.
+ * Will not hit this condition practically since we do not try
+ * to shrink more than one VM and it is very unlikely to see
+ * !n_used_mmu_pages so many times.
+ */
+ if (!nr_to_scan--)
+ break;
+ /*
+ * n_used_mmu_pages is accessed without holding kvm->mmu_lock
+ * here. We may skip a VM instance errorneosly, but we do not
+ * want to shrink a VM that only started to populate its MMU
+ * anyway.
+ */
+ if (!kvm->arch.n_used_mmu_pages &&
+ !kvm_has_zapped_obsolete_pages(kvm))
+ continue;
+
+ idx = srcu_read_lock(&kvm->srcu);
+ write_lock(&kvm->mmu_lock);
+
+ if (kvm_has_zapped_obsolete_pages(kvm)) {
+ kvm_mmu_commit_zap_page(kvm,
+ &kvm->arch.zapped_obsolete_pages);
+ goto unlock;
+ }
+
+ freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
+
+unlock:
+ write_unlock(&kvm->mmu_lock);
+ srcu_read_unlock(&kvm->srcu, idx);
+
+ /*
+ * unfair on small ones
+ * per-vm shrinkers cry out
+ * sadness comes quickly
+ */
+ list_move_tail(&kvm->vm_list, &vm_list);
+ break;
+ }
+
+ mutex_unlock(&kvm_lock);
+ return freed;
+}
diff --git a/arch/x86/kvm/mmu/shadow_mmu.h b/arch/x86/kvm/mmu/shadow_mmu.h
index 719b10f6c403..83876047c1f5 100644
--- a/arch/x86/kvm/mmu/shadow_mmu.h
+++ b/arch/x86/kvm/mmu/shadow_mmu.h
@@ -5,4 +5,149 @@
#include <linux/kvm_host.h>
+/* make pte_list_desc fit well in cache lines */
+#define PTE_LIST_EXT 14
+
+/*
+ * Slight optimization of cacheline layout, by putting `more' and `spte_count'
+ * at the start; then accessing it will only use one single cacheline for
+ * either full (entries==PTE_LIST_EXT) case or entries<=6.
+ */
+struct pte_list_desc {
+ struct pte_list_desc *more;
+ /*
+ * Stores number of entries stored in the pte_list_desc. No need to be
+ * u64 but just for easier alignment. When PTE_LIST_EXT, means full.
+ */
+ u64 spte_count;
+ u64 *sptes[PTE_LIST_EXT];
+};
+
+unsigned int pte_list_count(struct kvm_rmap_head *rmap_head);
+
+struct kvm_shadow_walk_iterator {
+ u64 addr;
+ hpa_t shadow_addr;
+ u64 *sptep;
+ int level;
+ unsigned index;
+};
+
+#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \
+ for (shadow_walk_init_using_root(&(_walker), (_vcpu), \
+ (_root), (_addr)); \
+ shadow_walk_okay(&(_walker)); \
+ shadow_walk_next(&(_walker)))
+
+bool mmu_spte_update(u64 *sptep, u64 new_spte);
+void mmu_spte_clear_no_track(u64 *sptep);
+gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index);
+void kvm_mmu_page_set_access(struct kvm_mmu_page *sp, int index,
+ unsigned int access);
+
+struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level,
+ const struct kvm_memory_slot *slot);
+bool rmap_can_add(struct kvm_vcpu *vcpu);
+void drop_spte(struct kvm *kvm, u64 *sptep);
+bool rmap_write_protect(struct kvm_rmap_head *rmap_head, bool pt_protect);
+bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
+ const struct kvm_memory_slot *slot);
+bool kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
+ struct kvm_memory_slot *slot, gfn_t gfn, int level,
+ pte_t unused);
+bool kvm_set_pte_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
+ struct kvm_memory_slot *slot, gfn_t gfn, int level,
+ pte_t pte);
+
+typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
+ struct kvm_memory_slot *slot, gfn_t gfn,
+ int level, pte_t pte);
+bool kvm_handle_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range,
+ rmap_handler_t handler);
+
+bool kvm_age_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
+ struct kvm_memory_slot *slot, gfn_t gfn, int level,
+ pte_t unused);
+bool kvm_test_age_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
+ struct kvm_memory_slot *slot, gfn_t gfn,
+ int level, pte_t unused);
+
+void drop_parent_pte(struct kvm_mmu_page *sp, u64 *parent_pte);
+int nonpaging_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp);
+int mmu_sync_children(struct kvm_vcpu *vcpu, struct kvm_mmu_page *parent,
+ bool can_yield);
+void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp);
+void clear_sp_write_flooding_count(u64 *spte);
+
+struct kvm_mmu_page *kvm_mmu_get_child_sp(struct kvm_vcpu *vcpu, u64 *sptep,
+ gfn_t gfn, bool direct,
+ unsigned int access);
+
+void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
+ struct kvm_vcpu *vcpu, hpa_t root, u64 addr);
+void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
+ struct kvm_vcpu *vcpu, u64 addr);
+bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator);
+void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator);
+
+void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep, struct kvm_mmu_page *sp);
+
+void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
+ unsigned direct_access);
+
+int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp, u64 *spte,
+ struct list_head *invalid_list);
+bool __kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
+ struct list_head *invalid_list,
+ int *nr_zapped);
+bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
+ struct list_head *invalid_list);
+void kvm_mmu_commit_zap_page(struct kvm *kvm, struct list_head *invalid_list);
+
+int make_mmu_pages_available(struct kvm_vcpu *vcpu);
+
+int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva);
+
+int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot,
+ u64 *sptep, unsigned int pte_access, gfn_t gfn,
+ kvm_pfn_t pfn, struct kvm_page_fault *fault);
+void __direct_pte_prefetch(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
+ u64 *sptep);
+int __direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault);
+u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte);
+
+hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, int quadrant, u8 level);
+int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu);
+int mmu_alloc_special_roots(struct kvm_vcpu *vcpu);
+
+int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level);
+
+void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr);
+void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa, const u8 *new,
+ int bytes, struct kvm_page_track_notifier_node *node);
+
+/* The return value indicates if tlb flush on all vcpus is needed. */
+typedef bool (*slot_level_handler) (struct kvm *kvm,
+ struct kvm_rmap_head *rmap_head,
+ const struct kvm_memory_slot *slot);
+bool slot_handle_level(struct kvm *kvm, const struct kvm_memory_slot *memslot,
+ slot_level_handler fn, int start_level, int end_level,
+ bool flush_on_yield);
+bool slot_handle_level_4k(struct kvm *kvm, const struct kvm_memory_slot *memslot,
+ slot_level_handler fn, bool flush_on_yield);
+
+void kvm_zap_obsolete_pages(struct kvm *kvm);
+bool kvm_rmap_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end);
+
+bool slot_rmap_write_protect(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
+ const struct kvm_memory_slot *slot);
+
+void kvm_shadow_mmu_try_split_huge_pages(struct kvm *kvm,
+ const struct kvm_memory_slot *slot,
+ gfn_t start, gfn_t end,
+ int target_level);
+void kvm_rmap_zap_collapsible_sptes(struct kvm *kvm,
+ const struct kvm_memory_slot *slot);
+
+unsigned long mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc);
#endif /* __KVM_X86_MMU_SHADOW_MMU_H */
--
2.39.0.314.g84b9a713c41-goog
Powered by blists - more mailing lists