[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <c65bedd9-49e1-4ce9-cb98-afa093ed2fe6@linaro.org>
Date: Tue, 10 Jan 2023 19:29:07 +0100
From: Konrad Dybcio <konrad.dybcio@...aro.org>
To: Robert Marko <robimarko@...il.com>, linux-arm-msm@...r.kernel.org,
andersson@...nel.org, agross@...nel.org,
krzysztof.kozlowski@...aro.org
Cc: marijn.suijten@...ainline.org,
angelogioacchino.delregno@...labora.com,
AngeloGioacchino Del Regno
<angelogioacchino.delregno@...ainline.org>,
Liam Girdwood <lgirdwood@...il.com>,
Mark Brown <broonie@...nel.org>, linux-kernel@...r.kernel.org
Subject: Re: [PATCH v8 4/5] soc: qcom: Add support for Core Power Reduction
v3, v4 and Hardened
On 10.01.2023 19:27, Robert Marko wrote:
>
> On 10. 01. 2023. 18:56, Konrad Dybcio wrote:
>> From: AngeloGioacchino Del Regno <angelogioacchino.delregno@...ainline.org>
>>
>> This commit introduces a new driver, based on the one for cpr v1,
>> to enable support for the newer Qualcomm Core Power Reduction
>> hardware, known downstream as CPR3, CPR4 and CPRh, and support
>> for MSM8998 and SDM630 CPU power reduction.
>>
>> In these new versions of the hardware, support for various new
>> features was introduced, including voltage reduction for the GPU,
>> security hardening and a new way of controlling CPU DVFS,
>> consisting in internal communication between microcontrollers,
>> specifically the CPR-Hardened and the Operating State Manager.
>>
>> The CPR v3, v4 and CPRh are present in a broad range of SoCs,
>> from the mid-range to the high end ones including, but not limited
>> to, MSM8953/8996/8998, SDM630/636/660/845.
>>
>> Signed-off-by: AngeloGioacchino Del Regno <angelogioacchino.delregno@...ainline.org>
>> [Konrad: rebase, apply review comments]
>> Signed-off-by: Konrad Dybcio <konrad.dybcio@...aro.org>
>
> Hi Konrad, great to see the series is alive again.
> I am working on IPQ8074 which uses CPRv4 and its the last piece for
> upstream CPU scaling that is missing so this is really interesting for me.
>
> However, I think you forgot to include the <soc/qcom/cpr.h> header so
> it wont currently compile.
>
> Regards,
> Robert
Right, that's rather embarassing..
Here's the contents of the file, I will hold on with resending
until there are some more reviwew comments..
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Copyright (c) 2013-2020, The Linux Foundation. All rights reserved.
* Copyright (c) 2019 Linaro Limited
* Copyright (c) 2021, AngeloGioacchino Del Regno
* <angelogioacchino.delregno@...ainline.org>
*/
#ifndef __CPR_H__
#define __CPR_H__
struct cpr_ext_data {
int mem_acc_threshold_uV;
int apm_threshold_uV;
};
#endif /* __CPR_H__ */
Konrad
>
>> ---
>> drivers/soc/qcom/Kconfig | 21 +
>> drivers/soc/qcom/Makefile | 4 +-
>> drivers/soc/qcom/cpr-common.h | 2 +
>> drivers/soc/qcom/cpr3.c | 2923 +++++++++++++++++++++++++++++++++
>> 4 files changed, 2949 insertions(+), 1 deletion(-)
>> create mode 100644 drivers/soc/qcom/cpr3.c
>>
>> diff --git a/drivers/soc/qcom/Kconfig b/drivers/soc/qcom/Kconfig
>> index 21c4ce2315ba..303e958d9432 100644
>> --- a/drivers/soc/qcom/Kconfig
>> +++ b/drivers/soc/qcom/Kconfig
>> @@ -29,6 +29,7 @@ config QCOM_COMMAND_DB
>> config QCOM_CPR
>> tristate "QCOM Core Power Reduction (CPR) support"
>> depends on ARCH_QCOM && HAS_IOMEM
>> + select QCOM_CPR_COMMON
>> select PM_OPP
>> select REGMAP
>> help
>> @@ -42,6 +43,26 @@ config QCOM_CPR
>> To compile this driver as a module, choose M here: the module will
>> be called qcom-cpr
>> +config QCOM_CPR_COMMON
>> + tristate
>> +
>> +config QCOM_CPR3
>> + tristate "QCOM Core Power Reduction (CPR v3/v4/Hardened) support"
>> + depends on ARCH_QCOM && HAS_IOMEM
>> + select PM_OPP
>> + select REGMAP
>> + help
>> + Say Y here to enable support for the CPR hardware found on a broad
>> + variety of Qualcomm SoCs like MSM8996, MSM8998, SDM630, SDM660,
>> + SDM845 and others.
>> +
>> + This driver populates OPP tables and makes adjustments to them
>> + based on feedback from the CPR hardware. If you want to do CPU
>> + and/or GPU frequency scaling say Y here.
>> +
>> + To compile this driver as a module, choose M here: the module will
>> + be called qcom-cpr3
>> +
>> config QCOM_GENI_SE
>> tristate "QCOM GENI Serial Engine Driver"
>> depends on ARCH_QCOM || COMPILE_TEST
>> diff --git a/drivers/soc/qcom/Makefile b/drivers/soc/qcom/Makefile
>> index ba2b55dd94ff..362e9b712a68 100644
>> --- a/drivers/soc/qcom/Makefile
>> +++ b/drivers/soc/qcom/Makefile
>> @@ -3,7 +3,9 @@ CFLAGS_rpmh-rsc.o := -I$(src)
>> obj-$(CONFIG_QCOM_AOSS_QMP) += qcom_aoss.o
>> obj-$(CONFIG_QCOM_GENI_SE) += qcom-geni-se.o
>> obj-$(CONFIG_QCOM_COMMAND_DB) += cmd-db.o
>> -obj-$(CONFIG_QCOM_CPR) += cpr-common.o cpr.o
>> +obj-$(CONFIG_QCOM_CPR) += cpr.o
>> +obj-$(CONFIG_QCOM_CPR_COMMON) += cpr-common.o
>> +obj-$(CONFIG_QCOM_CPR3) += cpr3.o
>> obj-$(CONFIG_QCOM_DCC) += dcc.o
>> obj-$(CONFIG_QCOM_GSBI) += qcom_gsbi.o
>> obj-$(CONFIG_QCOM_MDT_LOADER) += mdt_loader.o
>> diff --git a/drivers/soc/qcom/cpr-common.h b/drivers/soc/qcom/cpr-common.h
>> index 2cd15f7eac90..a90f6351d022 100644
>> --- a/drivers/soc/qcom/cpr-common.h
>> +++ b/drivers/soc/qcom/cpr-common.h
>> @@ -65,6 +65,8 @@ struct corner {
>> struct corner_data {
>> unsigned int fuse_corner;
>> unsigned long freq;
>> + int oloop_vadj;
>> + int cloop_vadj;
>> };
>> struct acc_desc {
>> diff --git a/drivers/soc/qcom/cpr3.c b/drivers/soc/qcom/cpr3.c
>> new file mode 100644
>> index 000000000000..14a1163d37eb
>> --- /dev/null
>> +++ b/drivers/soc/qcom/cpr3.c
>> @@ -0,0 +1,2923 @@
>> +// SPDX-License-Identifier: GPL-2.0
>> +/*
>> + * Copyright (c) 2013-2020, The Linux Foundation. All rights reserved.
>> + * Copyright (c) 2019 Linaro Limited
>> + * Copyright (c) 2021, AngeloGioacchino Del Regno
>> + * <angelogioacchino.delregno@...ainline.org>
>> + */
>> +
>> +#include <linux/bitops.h>
>> +#include <linux/clk.h>
>> +#include <linux/debugfs.h>
>> +#include <linux/err.h>
>> +#include <linux/init.h>
>> +#include <linux/interrupt.h>
>> +#include <linux/io.h>
>> +#include <linux/kernel.h>
>> +#include <linux/mfd/syscon.h>
>> +#include <linux/module.h>
>> +#include <linux/nvmem-consumer.h>
>> +#include <linux/of_device.h>
>> +#include <linux/of.h>
>> +#include <linux/platform_device.h>
>> +#include <linux/pm_domain.h>
>> +#include <linux/pm_opp.h>
>> +#include <linux/regmap.h>
>> +#include <linux/regulator/consumer.h>
>> +#include <linux/slab.h>
>> +#include <linux/string.h>
>> +#include <linux/workqueue.h>
>> +#include <soc/qcom/cpr.h>
>> +
>> +#include "cpr-common.h"
>> +
>> +#define CPR3_RO_COUNT 16
>> +#define CPR3_RO_MASK GENMASK(CPR3_RO_COUNT - 1, 0)
>> +
>> +/* CPR3 registers */
>> +#define CPR3_REG_CPR_VERSION 0x0
>> +#define CPRH_CPR_VERSION_4P5 0x40050000
>> +
>> +#define CPR3_REG_CPR_CTL 0x4
>> +#define CPR3_CPR_CTL_LOOP_EN_MASK BIT(0)
>> +#define CPR3_CPR_CTL_IDLE_CLOCKS_MASK GENMASK(5, 1)
>> +#define CPR3_CPR_CTL_IDLE_CLOCKS_SHIFT 1
>> +#define CPR3_CPR_CTL_COUNT_MODE_MASK GENMASK(7, 6)
>> +#define CPR3_CPR_CTL_COUNT_MODE_SHIFT 6
>> +#define CPR3_CPR_CTL_COUNT_MODE_ALL_AT_ONCE_MIN 0
>> +#define CPR3_CPR_CTL_COUNT_MODE_ALL_AT_ONCE_MAX 1
>> +#define CPR3_CPR_CTL_COUNT_MODE_STAGGERED 2
>> +#define CPR3_CPR_CTL_COUNT_MODE_ALL_AT_ONCE_AGE 3
>> +#define CPR3_CPR_CTL_COUNT_REPEAT_MASK GENMASK(31, 9)
>> +#define CPR3_CPR_CTL_COUNT_REPEAT_SHIFT 9
>> +
>> +#define CPR3_REG_CPR_STATUS 0x8
>> +#define CPR3_CPR_STATUS_BUSY_MASK BIT(0)
>> +
>> +/*
>> + * This register is not present on controllers that support HW closed-loop
>> + * except CPR4 APSS controller.
>> + */
>> +#define CPR3_REG_CPR_TIMER_AUTO_CONT 0xC
>> +
>> +#define CPR3_REG_CPR_STEP_QUOT 0x14
>> +#define CPR3_CPR_STEP_QUOT_MIN_MASK GENMASK(5, 0)
>> +#define CPR3_CPR_STEP_QUOT_MIN_SHIFT 0
>> +#define CPR3_CPR_STEP_QUOT_MAX_MASK GENMASK(11, 6)
>> +#define CPR3_CPR_STEP_QUOT_MAX_SHIFT 6
>> +#define CPRH_DELTA_QUOT_STEP_FACTOR 4
>> +
>> +#define CPR3_REG_GCNT(ro) (0xA0 + 0x4 * (ro))
>> +#define CPR3_REG_SENSOR_OWNER(sensor) (0x200 + 0x4 * (sensor))
>> +
>> +#define CPR3_REG_CONT_CMD 0x800
>> +#define CPR3_CONT_CMD_ACK 0x1
>> +#define CPR3_CONT_CMD_NACK 0x0
>> +
>> +#define CPR3_REG_THRESH(thread) (0x808 + 0x440 * (thread))
>> +#define CPR3_THRESH_CONS_DOWN_MASK GENMASK(3, 0)
>> +#define CPR3_THRESH_CONS_DOWN_SHIFT 0
>> +#define CPR3_THRESH_CONS_UP_MASK GENMASK(7, 4)
>> +#define CPR3_THRESH_CONS_UP_SHIFT 4
>> +#define CPR3_THRESH_DOWN_THRESH_MASK GENMASK(12, 8)
>> +#define CPR3_THRESH_DOWN_THRESH_SHIFT 8
>> +#define CPR3_THRESH_UP_THRESH_MASK GENMASK(17, 13)
>> +#define CPR3_THRESH_UP_THRESH_SHIFT 13
>> +
>> +#define CPR3_REG_RO_MASK(thread) (0x80C + 0x440 * (thread))
>> +
>> +#define CPR3_REG_RESULT0(thread) (0x810 + 0x440 * (thread))
>> +#define CPR3_RESULT0_BUSY_MASK BIT(0)
>> +#define CPR3_RESULT0_STEP_DN_MASK BIT(1)
>> +#define CPR3_RESULT0_STEP_UP_MASK BIT(2)
>> +#define CPR3_RESULT0_ERROR_STEPS_MASK GENMASK(7, 3)
>> +#define CPR3_RESULT0_ERROR_STEPS_SHIFT 3
>> +#define CPR3_RESULT0_ERROR_MASK GENMASK(19, 8)
>> +#define CPR3_RESULT0_ERROR_SHIFT 8
>> +
>> +#define CPR3_REG_RESULT1(thread) (0x814 + 0x440 * (thread))
>> +#define CPR3_RESULT1_QUOT_MIN_MASK GENMASK(11, 0)
>> +#define CPR3_RESULT1_QUOT_MIN_SHIFT 0
>> +#define CPR3_RESULT1_QUOT_MAX_MASK GENMASK(23, 12)
>> +#define CPR3_RESULT1_QUOT_MAX_SHIFT 12
>> +#define CPR3_RESULT1_RO_MIN_MASK GENMASK(27, 24)
>> +#define CPR3_RESULT1_RO_MIN_SHIFT 24
>> +#define CPR3_RESULT1_RO_MAX_MASK GENMASK(31, 28)
>> +#define CPR3_RESULT1_RO_MAX_SHIFT 28
>> +
>> +#define CPR3_REG_RESULT2(thread) (0x818 + 0x440 * (thread))
>> +#define CPR3_RESULT2_STEP_QUOT_MIN_MASK GENMASK(5, 0)
>> +#define CPR3_RESULT2_STEP_QUOT_MIN_SHIFT 0
>> +#define CPR3_RESULT2_STEP_QUOT_MAX_MASK GENMASK(11, 6)
>> +#define CPR3_RESULT2_STEP_QUOT_MAX_SHIFT 6
>> +#define CPR3_RESULT2_SENSOR_MIN_MASK GENMASK(23, 16)
>> +#define CPR3_RESULT2_SENSOR_MIN_SHIFT 16
>> +#define CPR3_RESULT2_SENSOR_MAX_MASK GENMASK(31, 24)
>> +#define CPR3_RESULT2_SENSOR_MAX_SHIFT 24
>> +
>> +#define CPR3_REG_IRQ_EN 0x81C
>> +#define CPR3_REG_IRQ_CLEAR 0x820
>> +#define CPR3_REG_IRQ_STATUS 0x824
>> +#define CPR3_IRQ_UP BIT(3)
>> +#define CPR3_IRQ_MID BIT(2)
>> +#define CPR3_IRQ_DOWN BIT(1)
>> +#define CPR3_IRQ_ALL (CPR3_IRQ_UP | CPR3_IRQ_MID | CPR3_IRQ_DOWN)
>> +
>> +#define CPR3_REG_TARGET_QUOT(thread, ro) (0x840 + 0x440 * (thread) + 0x4 * (ro))
>> +
>> +/* Registers found only on controllers that support HW closed-loop. */
>> +#define CPR3_REG_PD_THROTTLE 0xE8
>> +
>> +#define CPR3_REG_HW_CLOSED_LOOP_DISABLED 0x3000
>> +#define CPR3_REG_CPR_TIMER_MID_CONT 0x3004
>> +#define CPR3_REG_CPR_TIMER_UP_DN_CONT 0x3008
>> +
>> +/* CPR4 controller specific registers and bit definitions */
>> +#define CPR4_REG_CPR_TIMER_CLAMP 0x10
>> +#define CPR4_CPR_TIMER_CLAMP_THREAD_AGGREGATION_EN BIT(27)
>> +
>> +#define CPR4_REG_MISC 0x700
>> +#define CPR4_MISC_RESET_STEP_QUOT_LOOP_EN BIT(2)
>> +#define CPR4_MISC_THREAD_HAS_ALWAYS_VOTE_EN BIT(3)
>> +
>> +#define CPR4_REG_SAW_ERROR_STEP_LIMIT 0x7A4
>> +#define CPR4_SAW_ERROR_STEP_LIMIT_UP_MASK GENMASK(4, 0)
>> +#define CPR4_SAW_ERROR_STEP_LIMIT_UP_SHIFT 0
>> +#define CPR4_SAW_ERROR_STEP_LIMIT_DN_MASK GENMASK(9, 5)
>> +#define CPR4_SAW_ERROR_STEP_LIMIT_DN_SHIFT 5
>> +
>> +#define CPR4_REG_MARGIN_TEMP_CORE_TIMERS 0x7A8
>> +#define CPR4_MARGIN_TEMP_CORE_TIMERS_SETTLE_VOLTAGE_COUNT_MASK GENMASK(28, 18)
>> +#define CPR4_MARGIN_TEMP_CORE_TIMERS_SETTLE_VOLTAGE_COUNT_SHFT 18
>> +
>> +#define CPR4_REG_MARGIN_ADJ_CTL 0x7F8
>> +#define CPR4_MARGIN_ADJ_HW_CLOSED_LOOP_EN BIT(4)
>> +#define CPR4_MARGIN_ADJ_PER_RO_KV_MARGIN_EN BIT(7)
>> +#define CPR4_MARGIN_ADJ_PMIC_STEP_SIZE_MASK GENMASK(16, 12)
>> +#define CPR4_MARGIN_ADJ_PMIC_STEP_SIZE_SHIFT 12
>> +#define CPR4_MARGIN_ADJ_KV_MARGIN_ADJ_STEP_QUOT_MASK GENMASK(31, 26)
>> +#define CPR4_MARGIN_ADJ_KV_MARGIN_ADJ_STEP_QUOT_SHIFT 26
>> +
>> +#define CPR4_REG_CPR_MASK_THREAD(thread) (0x80C + 0x440 * (thread))
>> +#define CPR4_CPR_MASK_THREAD_DISABLE_THREAD BIT(31)
>> +#define CPR4_CPR_MASK_THREAD_RO_MASK4THREAD_MASK GENMASK(15, 0)
>> +
>> +/* CPRh controller specific registers and bit definitions */
>> +#define __CPRH_REG_CORNER(rbase, tbase, tid, cnum) (rbase + (tbase * tid) + (0x4 * cnum))
>> +#define CPRH_REG_CORNER(d, t, c) __CPRH_REG_CORNER(d->reg_corner, d->reg_corner_tid, t, c)
>> +
>> +#define CPRH_CTL_OSM_ENABLED BIT(0)
>> +#define CPRH_CTL_BASE_VOLTAGE_MASK GENMASK(10, 1)
>> +#define CPRH_CTL_BASE_VOLTAGE_SHIFT 1
>> +#define CPRH_CTL_MODE_SWITCH_DELAY_MASK GENMASK(24, 17)
>> +#define CPRH_CTL_MODE_SWITCH_DELAY_SHIFT 17
>> +#define CPRH_CTL_VOLTAGE_MULTIPLIER_MASK GENMASK(28, 25)
>> +#define CPRH_CTL_VOLTAGE_MULTIPLIER_SHIFT 25
>> +
>> +#define CPRH_CORNER_INIT_VOLTAGE_MASK GENMASK(7, 0)
>> +#define CPRH_CORNER_INIT_VOLTAGE_SHIFT 0
>> +#define CPRH_CORNER_FLOOR_VOLTAGE_MASK GENMASK(15, 8)
>> +#define CPRH_CORNER_FLOOR_VOLTAGE_SHIFT 8
>> +#define CPRH_CORNER_QUOT_DELTA_MASK GENMASK(24, 16)
>> +#define CPRH_CORNER_QUOT_DELTA_SHIFT 16
>> +#define CPRH_CORNER_RO_SEL_MASK GENMASK(28, 25)
>> +#define CPRH_CORNER_RO_SEL_SHIFT 25
>> +#define CPRH_CORNER_CPR_CL_DISABLE BIT(29)
>> +
>> +#define CPRH_CORNER_INIT_VOLTAGE_MAX_VALUE 255
>> +#define CPRH_CORNER_FLOOR_VOLTAGE_MAX_VALUE 255
>> +#define CPRH_CORNER_QUOT_DELTA_MAX_VALUE 511
>> +
>> +enum cpr_type {
>> + CTRL_TYPE_CPR3,
>> + CTRL_TYPE_CPR4,
>> + CTRL_TYPE_CPRH,
>> + CTRL_TYPE_MAX,
>> +};
>> +
>> +/*
>> + * struct cpr_thread_desc - CPR Thread-specific parameters
>> + *
>> + * @controller_id: Identifier of the CPR controller expected by the HW
>> + * @ro_scaling_factor: Scaling factor for each ring oscillator entry
>> + * @hw_tid: Identifier of the CPR thread expected by the HW
>> + * @init_voltage_step: Voltage in uV for number of steps read from fuse array
>> + * @init_voltage_width: Bit-width of the voltage read from the fuse array
>> + * @sensor_range_start: First sensor ID used by a thread
>> + * @sensor_range_end: Last sensor ID used by a thread
>> + * @num_fuse_corners: Number of valid entries in fuse_corner_data
>> + * @step_quot_init_min: Minimum achievable step quotient for this corner
>> + * @step_quot_init_max: Maximum achievable step quotient for this corner
>> + * @fuse_corner_data: Parameters for calculation of each fuse corner
>> + */
>> +struct cpr_thread_desc {
>> + u8 controller_id;
>> + u8 hw_tid;
>> + const int (*ro_scaling_factor)[CPR3_RO_COUNT];
>> + int ro_avail_corners;
>> + int init_voltage_step;
>> + int init_voltage_width;
>> + u8 sensor_range_start;
>> + u8 sensor_range_end;
>> + u8 step_quot_init_min;
>> + u8 step_quot_init_max;
>> + unsigned int num_fuse_corners;
>> + struct fuse_corner_data *fuse_corner_data;
>> +};
>> +
>> +/*
>> + * struct cpr_desc - Driver instance-wide CPR parameters
>> + *
>> + * @cpr_type: Type (base version) of the CPR controller
>> + * @num_threads: Max. number of threads supported by this controller
>> + * @timer_delay_us: Loop delay time in uS
>> + * @timer_updn_delay_us: Voltage after-up/before-down delay time in uS
>> + * @timer_cons_up: Wait between consecutive up requests in uS
>> + * @timer_cons_down: Wait between consecutive down requests in uS
>> + * @up_threshold: Generic corner up threshold
>> + * @down_threshold: Generic corner down threshold
>> + * @idle_clocks: CPR Sensor: idle timer in cpr clocks unit
>> + * @count_mode: CPR Sensor: counting mode
>> + * @count_repeat: CPR Sensor: number of times to repeat reading
>> + * @gcnt_us: CPR measurement interval in uS
>> + * @vreg_step_fixed: Regulator voltage per step (if vreg unusable)
>> + * @vreg_step_up_limit: Num. of steps up at once before re-measuring sensors
>> + * @vreg_step_down_limit: Num. of steps dn at once before re-measuring sensors
>> + * @vdd_settle_time_us: Settling timer to account for one VDD supply step
>> + * @corner_settle_time_us: Settle time for corner switch request
>> + * @mem_acc_threshold: Memory Accelerator (MEM-ACC) voltage threshold
>> + * @apm_threshold: Array Power Mux (APM) voltage threshold
>> + * @apm_crossover: Array Power Mux (APM) corner crossover voltage
>> + * @apm_hysteresis: Hysteresis for APM V-threshold related calculations
>> + * @cpr_base_voltage: Safety: Absolute minimum voltage (uV) on this CPR
>> + * @cpr_max_voltage: Safety: Absolute maximum voltage (uV) on this CPR
>> + * @pd_throttle_val: CPR Power Domain throttle during voltage switch
>> + * @threads: Array containing "CPR Thread" specific parameters
>> + * @reduce_to_fuse_uV: Reduce corner max volts (if higher) to fuse ceiling
>> + * @reduce_to_corner_uV: Reduce corner max volts (if higher) to corner ceil.
>> + * @hw_closed_loop_en: Enable CPR HW Closed-Loop voltage auto-adjustment
>> + */
>> +struct cpr_desc {
>> + enum cpr_type cpr_type;
>> + unsigned int num_threads;
>> + unsigned int timer_delay_us;
>> + u8 timer_updn_delay_us;
>> + u8 timer_cons_up;
>> + u8 timer_cons_down;
>> + u8 up_threshold;
>> + u8 down_threshold;
>> + u8 idle_clocks;
>> + u8 count_mode;
>> + u8 count_repeat;
>> + u8 gcnt_us;
>> + u16 vreg_step_fixed;
>> + u8 vreg_step_up_limit;
>> + u8 vreg_step_down_limit;
>> + u8 vdd_settle_time_us;
>> + u8 corner_settle_time_us;
>> + int mem_acc_threshold;
>> + int apm_threshold;
>> + int apm_crossover;
>> + int apm_hysteresis;
>> + u32 cpr_base_voltage;
>> + u32 cpr_max_voltage;
>> + u32 pd_throttle_val;
>> +
>> + const struct cpr_thread_desc **threads;
>> + bool reduce_to_fuse_uV;
>> + bool reduce_to_corner_uV;
>> + bool hw_closed_loop_en;
>> +};
>> +
>> +struct cpr_drv;
>> +struct cpr_thread {
>> + int num_corners;
>> + int id;
>> + bool enabled;
>> + void __iomem *base;
>> + struct clk *cpu_clk;
>> + struct corner *corner;
>> + struct corner *corners;
>> + struct fuse_corner *fuse_corners;
>> + struct cpr_drv *drv;
>> + struct cpr_ext_data ext_data;
>> + struct generic_pm_domain pd;
>> + struct device *attached_cpu_dev;
>> + struct work_struct restart_work;
>> + bool restarting;
>> +
>> + const struct cpr_fuse *cpr_fuses;
>> + const struct cpr_thread_desc *desc;
>> +};
>> +
>> +struct cpr_drv {
>> + int irq;
>> + unsigned int ref_clk_khz;
>> + struct device *dev;
>> + struct mutex lock;
>> + struct regulator *vreg;
>> + struct regmap *tcsr;
>> + u32 gcnt;
>> + u32 speed_bin;
>> + u32 fusing_rev;
>> + u32 last_uV;
>> + u32 cpr_hw_rev;
>> + u32 reg_corner;
>> + u32 reg_corner_tid;
>> + u32 reg_ctl;
>> + u32 reg_status;
>> + int fuse_level_set;
>> + int extra_corners;
>> + unsigned int vreg_step;
>> + bool enabled;
>> +
>> + struct cpr_thread *threads;
>> + struct genpd_onecell_data cell_data;
>> +
>> + const struct cpr_desc *desc;
>> + const struct acc_desc *acc_desc;
>> + struct dentry *debugfs;
>> +};
>> +
>> +/**
>> + * cpr_get_corner_post_vadj() - Get corner post-voltage adjustment values
>> + * @opp: Pointer to the corresponding OPP struct
>> + * @tid: CPR thread ID
>> + * @open_loop: Pointer to the closed-loop adjustment value
>> + * @closed_loop: Pointer to the open-loop adjustment value
>> + */
>> +void cpr_get_corner_post_vadj(struct dev_pm_opp *opp, u32 tid,
>> + s32 *open_loop, s32 *closed_loop)
>> +{
>> + struct device_node *np;
>> +
>> + /*
>> + * There is no of_property_read_s32_index, so we just store the
>> + * result into a s32 variable. After all, the OF API is doing
>> + * the exact same for of_property_read_s32...
>> + */
>> + np = dev_pm_opp_get_of_node(opp);
>> + if (of_property_read_u32_index(np, "qcom,opp-oloop-vadj", tid, open_loop))
>> + *open_loop = 0;
>> +
>> + if (of_property_read_u32_index(np, "qcom,opp-cloop-vadj", tid, closed_loop))
>> + *closed_loop = 0;
>> +
>> + of_node_put(np);
>> +}
>> +
>> +/**
>> + * cpr_get_ro_factor() - Get fuse corner ring oscillator factor
>> + * @tdesc: CPR Thread-specific parameters
>> + * @fnum: Fuse corner
>> + * @ro_idx: Ring Oscillator fuse number
>> + *
>> + * Not all threads have different scaling factors for each
>> + * Fuse Corner: if the RO factors are the same for all corners,
>> + * then only one is specified, instead of uselessly repeating
>> + * the same array for FC-times.
>> + * This function checks for the same and gives back the right
>> + * factor for the requested ring oscillator.
>> + *
>> + * Return: Ring oscillator factor
>> + */
>> +static int cpr_get_ro_factor(const struct cpr_thread_desc *tdesc,
>> + int fnum, int ro_idx)
>> +{
>> + int ro_fnum;
>> +
>> + if (tdesc->ro_avail_corners == tdesc->num_fuse_corners)
>> + ro_fnum = fnum;
>> + else
>> + ro_fnum = 0;
>> +
>> + return tdesc->ro_scaling_factor[ro_fnum][ro_idx];
>> +}
>> +
>> +static void cpr_write(struct cpr_thread *thread, u32 offset, u32 value)
>> +{
>> + writel(value, thread->base + offset);
>> +}
>> +
>> +static u32 cpr_read(struct cpr_thread *thread, u32 offset)
>> +{
>> + return readl(thread->base + offset);
>> +}
>> +
>> +static void
>> +cpr_masked_write(struct cpr_thread *thread, u32 offset, u32 mask, u32 value)
>> +{
>> + u32 val;
>> +
>> + val = readl(thread->base + offset);
>> + val &= ~mask;
>> + val |= value & mask;
>> + writel(val, thread->base + offset);
>> +}
>> +
>> +static void cpr_irq_clr(struct cpr_thread *thread)
>> +{
>> + cpr_write(thread, CPR3_REG_IRQ_CLEAR, CPR3_IRQ_ALL);
>> +}
>> +
>> +static void cpr_irq_clr_nack(struct cpr_thread *thread)
>> +{
>> + cpr_irq_clr(thread);
>> + cpr_write(thread, CPR3_REG_CONT_CMD, CPR3_CONT_CMD_NACK);
>> +}
>> +
>> +static void cpr_irq_clr_ack(struct cpr_thread *thread)
>> +{
>> + cpr_irq_clr(thread);
>> + cpr_write(thread, CPR3_REG_CONT_CMD, CPR3_CONT_CMD_ACK);
>> +}
>> +
>> +static void cpr_irq_set(struct cpr_thread *thread, u32 int_bits)
>> +{
>> + /* On CPR-hardened, interrupts are managed by and on firmware */
>> + if (thread->drv->desc->cpr_type == CTRL_TYPE_CPRH)
>> + return;
>> +
>> + cpr_write(thread, CPR3_REG_IRQ_EN, int_bits);
>> +}
>> +
>> +/**
>> + * cpr_ctl_enable() - Enable CPR thread
>> + * @thread: Structure holding CPR thread-specific parameters
>> + */
>> +static void cpr_ctl_enable(struct cpr_thread *thread)
>> +{
>> + if (thread->drv->enabled && !thread->restarting) {
>> + cpr_masked_write(thread, CPR3_REG_CPR_CTL,
>> + CPR3_CPR_CTL_LOOP_EN_MASK,
>> + CPR3_CPR_CTL_LOOP_EN_MASK);
>> + }
>> +}
>> +
>> +/**
>> + * cpr_ctl_disable() - Disable CPR thread
>> + * @thread: Structure holding CPR thread-specific parameters
>> + */
>> +static void cpr_ctl_disable(struct cpr_thread *thread)
>> +{
>> + const struct cpr_desc *desc = thread->drv->desc;
>> +
>> + if (desc->cpr_type != CTRL_TYPE_CPRH) {
>> + cpr_irq_set(thread, 0);
>> + cpr_irq_clr(thread);
>> + }
>> +
>> + cpr_masked_write(thread, CPR3_REG_CPR_CTL,
>> + CPR3_CPR_CTL_LOOP_EN_MASK, 0);
>> +}
>> +
>> +/**
>> + * cpr_ctl_is_enabled() - Check if thread is enabled
>> + * @thread: Structure holding CPR thread-specific parameters
>> + *
>> + * Return: true if the CPR is enabled, false if it is disabled.
>> + */
>> +static bool cpr_ctl_is_enabled(struct cpr_thread *thread)
>> +{
>> + u32 reg_val;
>> +
>> + reg_val = cpr_read(thread, CPR3_REG_CPR_CTL);
>> + return reg_val & CPR3_CPR_CTL_LOOP_EN_MASK;
>> +}
>> +
>> +/**
>> + * cpr_check_any_thread_busy() - Check if HW is done processing
>> + * @thread: Structure holding CPR thread-specific parameters
>> + *
>> + * Return: true if the CPR is busy, false if it is ready.
>> + */
>> +static bool cpr_check_any_thread_busy(struct cpr_thread *thread)
>> +{
>> + int i;
>> +
>> + for (i = 0; i < thread->drv->desc->num_threads; i++)
>> + if (cpr_read(thread, CPR3_REG_RESULT0(i)) &
>> + CPR3_RESULT0_BUSY_MASK)
>> + return true;
>> +
>> + return false;
>> +}
>> +
>> +static void cpr_restart_worker(struct work_struct *work)
>> +{
>> + struct cpr_thread *thread = container_of(work, struct cpr_thread,
>> + restart_work);
>> + struct cpr_drv *drv = thread->drv;
>> + int i;
>> +
>> + mutex_lock(&drv->lock);
>> +
>> + thread->restarting = true;
>> + cpr_ctl_disable(thread);
>> + disable_irq(drv->irq);
>> +
>> + mutex_unlock(&drv->lock);
>> +
>> + for (i = 0; i < 20; i++) {
>> + u32 cpr_status = cpr_read(thread, CPR3_REG_CPR_STATUS);
>> + u32 ctl = cpr_read(thread, CPR3_REG_CPR_CTL);
>> +
>> + if ((cpr_status & CPR3_CPR_STATUS_BUSY_MASK) &&
>> + !(ctl & CPR3_CPR_CTL_LOOP_EN_MASK))
>> + break;
>> +
>> + udelay(10);
>> + }
>> +
>> + cpr_irq_clr(thread);
>> +
>> + for (i = 0; i < 20; i++) {
>> + u32 status = cpr_read(thread, CPR3_REG_IRQ_STATUS);
>> +
>> + if (!(status & CPR3_IRQ_ALL))
>> + break;
>> + udelay(10);
>> + }
>> +
>> + mutex_lock(&drv->lock);
>> +
>> + thread->restarting = false;
>> + enable_irq(drv->irq);
>> + cpr_ctl_enable(thread);
>> +
>> + mutex_unlock(&drv->lock);
>> +}
>> +
>> +/**
>> + * cpr_corner_restore() - Restore saved corner level
>> + * @thread: Structure holding CPR thread-specific parameters
>> + * @corner: Structure holding the saved corner level
>> + */
>> +static void cpr_corner_restore(struct cpr_thread *thread,
>> + struct corner *corner)
>> +{
>> + struct cpr_drv *drv = thread->drv;
>> + struct fuse_corner *fuse = corner->fuse_corner;
>> + const struct cpr_thread_desc *tdesc = thread->desc;
>> + u32 ro_sel = fuse->ring_osc_idx;
>> +
>> + cpr_write(thread, CPR3_REG_GCNT(ro_sel), drv->gcnt);
>> +
>> + cpr_write(thread, CPR3_REG_RO_MASK(tdesc->hw_tid),
>> + CPR3_RO_MASK & ~BIT(ro_sel));
>> +
>> + cpr_write(thread, CPR3_REG_TARGET_QUOT(tdesc->hw_tid, ro_sel),
>> + fuse->quot - corner->quot_adjust);
>> +
>> + if (drv->desc->cpr_type == CTRL_TYPE_CPR4)
>> + cpr_masked_write(thread,
>> + CPR4_REG_CPR_MASK_THREAD(tdesc->hw_tid),
>> + CPR4_CPR_MASK_THREAD_DISABLE_THREAD |
>> + CPR4_CPR_MASK_THREAD_RO_MASK4THREAD_MASK, 0);
>> +
>> + thread->corner = corner;
>> + corner->last_uV = corner->uV;
>> +}
>> +
>> +/**
>> + * cpr_set_acc() - Set fuse level to the mem-acc
>> + * @drv: Main driver structure
>> + * @f: Fuse level
>> + */
>> +static void cpr_set_acc(struct cpr_drv *drv, int f)
>> +{
>> + const struct acc_desc *desc = drv->acc_desc;
>> + struct reg_sequence *s = desc->settings;
>> + int n = desc->num_regs_per_fuse;
>> +
>> + if (!s || f == drv->fuse_level_set)
>> + return;
>> +
>> + regmap_multi_reg_write(drv->tcsr, s + (n * f), n);
>> + drv->fuse_level_set = f;
>> +}
>> +
>> +/**
>> + * cpr_pre_voltage() - Actions to execute before setting voltage
>> + * @thread: Structure holding CPR thread-specific parameters
>> + * @dir: Enumeration for voltage change direction
>> + * @fuse_level: Fuse corner for mem-acc, if supported.
>> + *
>> + * Return: Zero for success or negative number on errors.
>> + */
>> +static int cpr_pre_voltage(struct cpr_thread *thread,
>> + enum voltage_change_dir dir,
>> + int fuse_level)
>> +{
>> + struct cpr_drv *drv = thread->drv;
>> +
>> + if (drv->desc->cpr_type == CTRL_TYPE_CPR3 &&
>> + drv->desc->pd_throttle_val)
>> + cpr_write(thread, CPR3_REG_PD_THROTTLE,
>> + drv->desc->pd_throttle_val);
>> +
>> + if (drv->tcsr && dir == DOWN)
>> + cpr_set_acc(drv, fuse_level);
>> +
>> + return 0;
>> +}
>> +
>> +/**
>> + * cpr_post_voltage() - Actions to execute after setting voltage
>> + * @thread: Structure holding CPR thread-specific parameters
>> + * @dir: Enumeration for voltage change direction
>> + * @fuse_level: Fuse corner for mem-acc, if supported.
>> + *
>> + * Return: Zero for success or negative number on errors.
>> + */
>> +static int cpr_post_voltage(struct cpr_thread *thread,
>> + enum voltage_change_dir dir,
>> + int fuse_level)
>> +{
>> + struct cpr_drv *drv = thread->drv;
>> +
>> + if (drv->tcsr && dir == UP)
>> + cpr_set_acc(drv, fuse_level);
>> +
>> + if (drv->desc->cpr_type == CTRL_TYPE_CPR3)
>> + cpr_write(thread, CPR3_REG_PD_THROTTLE, 0);
>> +
>> + return 0;
>> +}
>> +
>> +/**
>> + * cpr_commit_state() - Set the newly requested voltage
>> + * @thread: Structure holding CPR thread-specific parameters
>> + *
>> + * Return: IRQ_SUCCESS for success, IRQ_NONE if the CPR is disabled.
>> + */
>> +static int cpr_commit_state(struct cpr_thread *thread)
>> +{
>> + struct cpr_drv *drv = thread->drv;
>> + int min_uV = 0, max_uV = 0, new_uV = 0, fuse_level = 0;
>> + enum voltage_change_dir dir;
>> + u32 next_irqmask = 0;
>> + int ret, i;
>> +
>> + /* On CPRhardened, control states are managed in firmware */
>> + if (drv->desc->cpr_type == CTRL_TYPE_CPRH)
>> + return 0;
>> +
>> + for (i = 0; i < drv->desc->num_threads; i++) {
>> + struct cpr_thread *thread = &drv->threads[i];
>> +
>> + if (!thread->corner)
>> + continue;
>> +
>> + fuse_level = max(fuse_level,
>> + (int) (thread->corner->fuse_corner -
>> + &thread->fuse_corners[0]));
>> +
>> + max_uV = max(max_uV, thread->corner->max_uV);
>> + min_uV = max(min_uV, thread->corner->min_uV);
>> + new_uV = max(new_uV, thread->corner->last_uV);
>> + }
>> + dev_vdbg(drv->dev, "%s: new uV: %d, last uV: %d\n",
>> + __func__, new_uV, drv->last_uV);
>> +
>> + /*
>> + * Safety measure: if the voltage is out of the globally allowed
>> + * range, then go out and warn the user.
>> + * This should *never* happen.
>> + */
>> + if (new_uV > drv->desc->cpr_max_voltage ||
>> + new_uV < drv->desc->cpr_base_voltage) {
>> + dev_warn(drv->dev, "Voltage (%u uV) out of range.", new_uV);
>> + return -EINVAL;
>> + }
>> +
>> + if (new_uV == drv->last_uV || fuse_level == drv->fuse_level_set)
>> + goto out;
>> +
>> + if (fuse_level > drv->fuse_level_set)
>> + dir = UP;
>> + else
>> + dir = DOWN;
>> +
>> + ret = cpr_pre_voltage(thread, fuse_level, dir);
>> + if (ret)
>> + return ret;
>> +
>> + dev_vdbg(drv->dev, "setting voltage: %d\n", new_uV);
>> +
>> + ret = regulator_set_voltage(drv->vreg, new_uV, new_uV);
>> + if (ret) {
>> + dev_err_ratelimited(drv->dev, "failed to set voltage %d: %d\n", new_uV, ret);
>> + return ret;
>> + }
>> +
>> + ret = cpr_post_voltage(thread, fuse_level, dir);
>> + if (ret)
>> + return ret;
>> +
>> + drv->last_uV = new_uV;
>> +out:
>> + if (new_uV > min_uV)
>> + next_irqmask |= CPR3_IRQ_DOWN;
>> + if (new_uV < max_uV)
>> + next_irqmask |= CPR3_IRQ_UP;
>> +
>> + cpr_irq_set(thread, next_irqmask);
>> +
>> + return 0;
>> +}
>> +
>> +static unsigned int cpr_get_cur_perf_state(struct cpr_thread *thread)
>> +{
>> + return thread->corner ? thread->corner - thread->corners + 1 : 0;
>> +}
>> +
>> +/**
>> + * cpr_scale() - Calculate new voltage for the received direction
>> + * @thread: Structure holding CPR thread-specific parameters
>> + * @dir: Enumeration for voltage change direction
>> + *
>> + * The CPR scales one by one: this function calculates the new
>> + * voltage to set when a voltage-UP or voltage-DOWN request comes
>> + * and stores it into the per-thread structure that gets passed.
>> + */
>> +static void cpr_scale(struct cpr_thread *thread, enum voltage_change_dir dir)
>> +{
>> + struct cpr_drv *drv = thread->drv;
>> + const struct cpr_thread_desc *tdesc = thread->desc;
>> + u32 val, error_steps;
>> + int last_uV, new_uV;
>> + struct corner *corner;
>> +
>> + if (dir != UP && dir != DOWN)
>> + return;
>> +
>> + corner = thread->corner;
>> + val = cpr_read(thread, CPR3_REG_RESULT0(tdesc->hw_tid));
>> + error_steps = val >> CPR3_RESULT0_ERROR_STEPS_SHIFT;
>> + error_steps &= CPR3_RESULT0_ERROR_STEPS_MASK;
>> +
>> + last_uV = corner->last_uV;
>> +
>> + if (dir == UP) {
>> + if (!(val & CPR3_RESULT0_STEP_UP_MASK))
>> + return;
>> +
>> + /* Calculate new voltage */
>> + new_uV = last_uV + drv->vreg_step;
>> + new_uV = min(new_uV, corner->max_uV);
>> +
>> + dev_vdbg(drv->dev, "[T%u] UP - new_uV=%d last_uV=%d p-state=%u st=%u\n",
>> + thread->id, new_uV, last_uV,
>> + cpr_get_cur_perf_state(thread), error_steps);
>> + } else {
>> + if (!(val & CPR3_RESULT0_STEP_DN_MASK))
>> + return;
>> +
>> + /* Calculate new voltage */
>> + new_uV = last_uV - drv->vreg_step;
>> + new_uV = max(new_uV, corner->min_uV);
>> + dev_vdbg(drv->dev, "[T%u] DOWN - new_uV=%d last_uV=%d p-state=%u st=%u\n",
>> + thread->id, new_uV, last_uV,
>> + cpr_get_cur_perf_state(thread), error_steps);
>> + }
>> + corner->last_uV = new_uV;
>> +}
>> +
>> +/**
>> + * cpr_irq_handler() - Handle CPR3/CPR4 status interrupts
>> + * @irq: Number of the interrupt
>> + * @dev: Pointer to the cpr_thread structure
>> + *
>> + * Handle the interrupts coming from non-hardened CPR HW as to get
>> + * an ok to scale voltages immediately, or to pass error status to
>> + * the hardware (either success/ACK or failure/NACK).
>> + *
>> + * Return: IRQ_SUCCESS for success, IRQ_NONE if the CPR is disabled.
>> + */
>> +static irqreturn_t cpr_irq_handler(int irq, void *dev)
>> +{
>> + struct cpr_thread *thread = dev;
>> + struct cpr_drv *drv = thread->drv;
>> + irqreturn_t ret = IRQ_HANDLED;
>> + int i, rc;
>> + enum voltage_change_dir dir = NO_CHANGE;
>> + u32 val;
>> +
>> + mutex_lock(&drv->lock);
>> +
>> + val = cpr_read(thread, CPR3_REG_IRQ_STATUS);
>> +
>> + dev_vdbg(drv->dev, "IRQ_STATUS = %#02x\n", val);
>> +
>> + if (!cpr_ctl_is_enabled(thread)) {
>> + dev_vdbg(drv->dev, "CPR is disabled\n");
>> + ret = IRQ_NONE;
>> + } else if (cpr_check_any_thread_busy(thread)) {
>> + cpr_irq_clr_nack(thread);
>> + dev_dbg(drv->dev, "CPR measurement is not ready\n");
>> + } else {
>> + /*
>> + * Following sequence of handling is as per each IRQ's
>> + * priority
>> + */
>> + if (val & CPR3_IRQ_UP)
>> + dir = UP;
>> + else if (val & CPR3_IRQ_DOWN)
>> + dir = DOWN;
>> +
>> + if (dir != NO_CHANGE) {
>> + for (i = 0; i < drv->desc->num_threads; i++) {
>> + thread = &drv->threads[i];
>> + cpr_scale(thread, dir);
>> + }
>> +
>> + rc = cpr_commit_state(thread);
>> + if (rc)
>> + cpr_irq_clr_nack(thread);
>> + else
>> + cpr_irq_clr_ack(thread);
>> + } else if (val & CPR3_IRQ_MID) {
>> + dev_dbg(drv->dev, "IRQ occurred for Mid Flag\n");
>> + } else {
>> + dev_warn(drv->dev, "IRQ occurred for unknown flag (%#08x)\n", val);
>> + schedule_work(&thread->restart_work);
>> + }
>> + }
>> +
>> + mutex_unlock(&drv->lock);
>> +
>> + return ret;
>> +}
>> +
>> +static int cpr_switch(struct cpr_drv *drv)
>> +{
>> + int i, ret;
>> + bool enabled = false;
>> +
>> + if (drv->desc->cpr_type == CTRL_TYPE_CPRH)
>> + return 0;
>> +
>> + for (i = 0; i < drv->desc->num_threads && !enabled; i++)
>> + enabled = drv->threads[i].enabled;
>> +
>> + dev_vdbg(drv->dev, "%s: enabled = %d\n", __func__, enabled);
>> +
>> + if (enabled == drv->enabled)
>> + return 0;
>> +
>> + if (enabled) {
>> + ret = regulator_enable(drv->vreg);
>> + if (ret)
>> + return ret;
>> +
>> + drv->enabled = enabled;
>> +
>> + for (i = 0; i < drv->desc->num_threads; i++)
>> + if (drv->threads[i].corner)
>> + break;
>> +
>> + if (i < drv->desc->num_threads) {
>> + cpr_irq_clr(&drv->threads[i]);
>> +
>> + cpr_commit_state(&drv->threads[i]);
>> + cpr_ctl_enable(&drv->threads[i]);
>> + }
>> + } else {
>> + for (i = 0; i < drv->desc->num_threads && !enabled; i++)
>> + cpr_ctl_disable(&drv->threads[i]);
>> +
>> + drv->enabled = enabled;
>> +
>> + ret = regulator_disable(drv->vreg);
>> + if (ret < 0)
>> + return ret;
>> + }
>> +
>> + return 0;
>> +}
>> +
>> +/**
>> + * cpr_enable() - Enables a CPR thread
>> + * @thread: Structure holding CPR thread-specific parameters
>> + *
>> + * Return: Zero for success or negative number on errors.
>> + */
>> +static int cpr_enable(struct cpr_thread *thread)
>> +{
>> + struct cpr_drv *drv = thread->drv;
>> + int ret;
>> +
>> + dev_dbg(drv->dev, "Enabling thread %d\n", thread->id);
>> +
>> + mutex_lock(&drv->lock);
>> +
>> + thread->enabled = true;
>> + ret = cpr_switch(thread->drv);
>> +
>> + mutex_unlock(&drv->lock);
>> +
>> + return ret;
>> +}
>> +
>> +/**
>> + * cpr_disable() - Disables a CPR thread
>> + * @thread: Structure holding CPR thread-specific parameters
>> + *
>> + * Return: Zero for success or negative number on errors.
>> + */
>> +static int cpr_disable(struct cpr_thread *thread)
>> +{
>> + struct cpr_drv *drv = thread->drv;
>> + int ret;
>> +
>> + dev_dbg(drv->dev, "Disabling thread %d\n", thread->id);
>> +
>> + mutex_lock(&drv->lock);
>> +
>> + thread->enabled = false;
>> + ret = cpr_switch(thread->drv);
>> +
>> + mutex_unlock(&drv->lock);
>> +
>> + return ret;
>> +}
>> +
>> +/**
>> + * cpr_configure() - Configure main HW parameters
>> + * @thread: Structure holding CPR thread-specific parameters
>> + *
>> + * This function configures the main CPR hardware parameters, such as
>> + * internal timers (and delays), sensor ownerships, activates and/or
>> + * deactivates cpr-threads and others, as one sequence for all of the
>> + * versions supported in this driver. By design, the function may
>> + * return a success earlier if the sequence for "a previous version"
>> + * has ended.
>> + *
>> + * Context: The CPR must be clocked before calling this function!
>> + *
>> + * Return: Zero for success or negative number on errors.
>> + */
>> +static int cpr_configure(struct cpr_thread *thread)
>> +{
>> + struct cpr_drv *drv = thread->drv;
>> + const struct cpr_desc *desc = drv->desc;
>> + const struct cpr_thread_desc *tdesc = thread->desc;
>> + u32 val;
>> + int i;
>> +
>> + /* Disable interrupt and CPR */
>> + cpr_irq_set(thread, 0);
>> + cpr_write(thread, CPR3_REG_CPR_CTL, 0);
>> +
>> + /* Init and save gcnt */
>> + drv->gcnt = drv->ref_clk_khz * desc->gcnt_us;
>> + do_div(drv->gcnt, 1000);
>> +
>> + /* Program the delay count for the timer */
>> + val = drv->ref_clk_khz * desc->timer_delay_us;
>> + do_div(val, 1000);
>> + if (desc->cpr_type == CTRL_TYPE_CPR3) {
>> + cpr_write(thread, CPR3_REG_CPR_TIMER_MID_CONT, val);
>> +
>> + val = drv->ref_clk_khz * desc->timer_updn_delay_us;
>> + do_div(val, 1000);
>> + cpr_write(thread, CPR3_REG_CPR_TIMER_UP_DN_CONT, val);
>> + } else {
>> + cpr_write(thread, CPR3_REG_CPR_TIMER_AUTO_CONT, val);
>> + }
>> + dev_dbg(drv->dev, "Timer count: %#0x (for %d us)\n", val,
>> + desc->timer_delay_us);
>> +
>> + /* Program the control register */
>> + val = desc->idle_clocks << CPR3_CPR_CTL_IDLE_CLOCKS_SHIFT;
>> + val |= desc->count_mode << CPR3_CPR_CTL_COUNT_MODE_SHIFT;
>> + val |= desc->count_repeat << CPR3_CPR_CTL_COUNT_REPEAT_SHIFT;
>> + cpr_write(thread, CPR3_REG_CPR_CTL, val);
>> +
>> + /* Configure CPR default step quotients */
>> + val = tdesc->step_quot_init_min << CPR3_CPR_STEP_QUOT_MIN_SHIFT;
>> + val |= tdesc->step_quot_init_max << CPR3_CPR_STEP_QUOT_MAX_SHIFT;
>> +
>> + cpr_write(thread, CPR3_REG_CPR_STEP_QUOT, val);
>> +
>> + /*
>> + * Configure the CPR sensor ownership always on thread 0
>> + * TODO: SDM845 has different ownership for sensors!!
>> + */
>> + for (i = tdesc->sensor_range_start; i < tdesc->sensor_range_end; i++)
>> + cpr_write(thread, CPR3_REG_SENSOR_OWNER(i), 0);
>> +
>> + /* Program Consecutive Up & Down */
>> + val = desc->timer_cons_up << CPR3_THRESH_CONS_UP_SHIFT;
>> + val |= desc->timer_cons_down << CPR3_THRESH_CONS_DOWN_SHIFT;
>> + val |= desc->up_threshold << CPR3_THRESH_UP_THRESH_SHIFT;
>> + val |= desc->down_threshold << CPR3_THRESH_DOWN_THRESH_SHIFT;
>> + cpr_write(thread, CPR3_REG_THRESH(tdesc->hw_tid), val);
>> +
>> + /* Mask all ring oscillators for all threads initially */
>> + cpr_write(thread, CPR3_REG_RO_MASK(tdesc->hw_tid), CPR3_RO_MASK);
>> +
>> + /* HW Closed-loop control */
>> + if (desc->cpr_type == CTRL_TYPE_CPR3) {
>> + cpr_write(thread, CPR3_REG_HW_CLOSED_LOOP_DISABLED,
>> + !desc->hw_closed_loop_en);
>> + } else {
>> + cpr_masked_write(thread, CPR4_REG_MARGIN_ADJ_CTL,
>> + CPR4_MARGIN_ADJ_HW_CLOSED_LOOP_EN,
>> + desc->hw_closed_loop_en ?
>> + CPR4_MARGIN_ADJ_HW_CLOSED_LOOP_EN : 0);
>> + }
>> +
>> + /* Additional configuration for CPR4 and beyond */
>> + if (desc->cpr_type < CTRL_TYPE_CPR4)
>> + return 0;
>> +
>> + /* Disable threads initially only on non-hardened CPR4 */
>> + if (desc->cpr_type == CTRL_TYPE_CPR4)
>> + cpr_masked_write(thread, CPR4_REG_CPR_MASK_THREAD(1),
>> + CPR4_CPR_MASK_THREAD_DISABLE_THREAD |
>> + CPR4_CPR_MASK_THREAD_RO_MASK4THREAD_MASK,
>> + CPR4_CPR_MASK_THREAD_DISABLE_THREAD |
>> + CPR4_CPR_MASK_THREAD_RO_MASK4THREAD_MASK);
>> +
>> + if (tdesc->hw_tid > 0)
>> + cpr_masked_write(thread, CPR4_REG_MISC,
>> + CPR4_MISC_RESET_STEP_QUOT_LOOP_EN |
>> + CPR4_MISC_THREAD_HAS_ALWAYS_VOTE_EN,
>> + CPR4_MISC_RESET_STEP_QUOT_LOOP_EN |
>> + CPR4_MISC_THREAD_HAS_ALWAYS_VOTE_EN);
>> +
>> + val = drv->vreg_step;
>> + do_div(val, 1000);
>> + cpr_masked_write(thread, CPR4_REG_MARGIN_ADJ_CTL,
>> + CPR4_MARGIN_ADJ_PMIC_STEP_SIZE_MASK,
>> + val << CPR4_MARGIN_ADJ_PMIC_STEP_SIZE_SHIFT);
>> +
>> + cpr_masked_write(thread, CPR4_REG_SAW_ERROR_STEP_LIMIT,
>> + CPR4_SAW_ERROR_STEP_LIMIT_DN_MASK,
>> + desc->vreg_step_down_limit <<
>> + CPR4_SAW_ERROR_STEP_LIMIT_DN_SHIFT);
>> +
>> + cpr_masked_write(thread, CPR4_REG_SAW_ERROR_STEP_LIMIT,
>> + CPR4_SAW_ERROR_STEP_LIMIT_UP_MASK,
>> + desc->vreg_step_up_limit <<
>> + CPR4_SAW_ERROR_STEP_LIMIT_UP_SHIFT);
>> +
>> + cpr_masked_write(thread, CPR4_REG_MARGIN_ADJ_CTL,
>> + CPR4_MARGIN_ADJ_PER_RO_KV_MARGIN_EN,
>> + CPR4_MARGIN_ADJ_PER_RO_KV_MARGIN_EN);
>> +
>> + if (tdesc->hw_tid > 0)
>> + cpr_masked_write(thread, CPR4_REG_CPR_TIMER_CLAMP,
>> + CPR4_CPR_TIMER_CLAMP_THREAD_AGGREGATION_EN,
>> + CPR4_CPR_TIMER_CLAMP_THREAD_AGGREGATION_EN);
>> +
>> + /* Settling timer to account for one VDD supply step */
>> + if (desc->vdd_settle_time_us > 0) {
>> + u32 m = CPR4_MARGIN_TEMP_CORE_TIMERS_SETTLE_VOLTAGE_COUNT_MASK;
>> + u32 s = CPR4_MARGIN_TEMP_CORE_TIMERS_SETTLE_VOLTAGE_COUNT_SHFT;
>> +
>> + cpr_masked_write(thread, CPR4_REG_MARGIN_TEMP_CORE_TIMERS,
>> + m, desc->vdd_settle_time_us << s);
>> + }
>> +
>> + /* Additional configuration for CPR-hardened */
>> + if (desc->cpr_type < CTRL_TYPE_CPRH)
>> + return 0;
>> +
>> + /* Settling timer to account for one corner-switch request */
>> + if (desc->corner_settle_time_us > 0)
>> + cpr_masked_write(thread, drv->reg_ctl,
>> + CPRH_CTL_MODE_SWITCH_DELAY_MASK,
>> + desc->corner_settle_time_us <<
>> + CPRH_CTL_MODE_SWITCH_DELAY_SHIFT);
>> +
>> + /* Base voltage and multiplier values for CPRh internal calculations */
>> + cpr_masked_write(thread, drv->reg_ctl,
>> + CPRH_CTL_BASE_VOLTAGE_MASK,
>> + (DIV_ROUND_UP(desc->cpr_base_voltage,
>> + drv->vreg_step) <<
>> + CPRH_CTL_BASE_VOLTAGE_SHIFT));
>> +
>> + cpr_masked_write(thread, drv->reg_ctl,
>> + CPRH_CTL_VOLTAGE_MULTIPLIER_MASK,
>> + DIV_ROUND_UP(drv->vreg_step, 1000) <<
>> + CPRH_CTL_VOLTAGE_MULTIPLIER_SHIFT);
>> +
>> + return 0;
>> +}
>> +
>> +static int cprh_dummy_set_performance_state(struct generic_pm_domain *domain,
>> + unsigned int state)
>> +{
>> + return 0;
>> +}
>> +
>> +static int cpr_set_performance_state(struct generic_pm_domain *domain,
>> + unsigned int state)
>> +{
>> + struct cpr_thread *thread = container_of(domain, struct cpr_thread, pd);
>> + struct cpr_drv *drv = thread->drv;
>> + struct corner *corner, *end;
>> + int ret = 0;
>> +
>> + mutex_lock(&drv->lock);
>> +
>> + dev_dbg(drv->dev, "setting perf state: %u (prev state: %u thread: %u)\n",
>> + state, cpr_get_cur_perf_state(thread), thread->id);
>> +
>> + /*
>> + * Determine new corner we're going to.
>> + * Remove one since lowest performance state is 1.
>> + */
>> + corner = thread->corners + state - 1;
>> + end = &thread->corners[thread->num_corners - 1];
>> + if (corner > end || corner < thread->corners) {
>> + ret = -EINVAL;
>> + goto unlock;
>> + }
>> +
>> + cpr_ctl_disable(thread);
>> +
>> + cpr_irq_clr(thread);
>> + if (thread->corner != corner)
>> + cpr_corner_restore(thread, corner);
>> +
>> + ret = cpr_commit_state(thread);
>> + if (ret)
>> + goto unlock;
>> +
>> + cpr_ctl_enable(thread);
>> +unlock:
>> + mutex_unlock(&drv->lock);
>> +
>> + dev_dbg(drv->dev, "set perf state %u on thread %u\n", state, thread->id);
>> +
>> + return ret;
>> +}
>> +
>> +/**
>> + * cpr3_adjust_quot - Adjust the closed-loop quotients
>> + * @ring_osc_factor: Ring oscillator adjustment factor
>> + * @volt_closed_loop: Closed-loop voltage adjustment factor
>> + *
>> + * Calculates the quotient adjustment factor based on closed-loop
>> + * quotients and ring oscillator factor.
>> + *
>> + * Return: Adjusted quotient
>> + */
>> +static int cpr3_adjust_quot(int ring_osc_factor, int volt_closed_loop)
>> +{
>> + s64 temp;
>> +
>> + if (ring_osc_factor == 0 || volt_closed_loop == 0)
>> + return 0;
>> +
>> + temp = (s64)(ring_osc_factor * volt_closed_loop);
>> + return (int)div_s64(temp, 1000000);
>> +}
>> +
>> +/**
>> + * cpr_fuse_corner_init() - Calculate fuse corner table
>> + * @thread: Structure holding CPR thread-specific parameters
>> + *
>> + * This function populates the fuse corners table by reading the
>> + * values from the fuses, eventually adjusting them with a fixed
>> + * per-corner offset and doing basic checks about them being
>> + * supported by the regulator that is assigned to this CPR - if
>> + * it is available (on CPR-Hardened, there is no usable vreg, as
>> + * that is protected by the hypervisor).
>> + *
>> + * Return: Zero for success, negative number on error
>> + */
>> +static int cpr_fuse_corner_init(struct cpr_thread *thread)
>> +{
>> + struct cpr_drv *drv = thread->drv;
>> + const struct cpr_thread_desc *desc = thread->desc;
>> + const struct cpr_fuse *cpr_fuse = thread->cpr_fuses;
>> + struct fuse_corner_data *fdata;
>> + struct fuse_corner *fuse, *prev_fuse, *end;
>> + int i, ret;
>> +
>> + /* Populate fuse_corner members */
>> + fuse = thread->fuse_corners;
>> + prev_fuse = &fuse[0];
>> + end = &fuse[desc->num_fuse_corners - 1];
>> + fdata = desc->fuse_corner_data;
>> +
>> + for (i = 0; fuse <= end; fuse++, cpr_fuse++, i++, fdata++) {
>> + int factor = cpr_get_ro_factor(desc, i, fuse->ring_osc_idx);
>> +
>> + ret = cpr_populate_fuse_common(drv->dev, fdata, cpr_fuse,
>> + fuse, drv->vreg_step,
>> + desc->init_voltage_width,
>> + desc->init_voltage_step);
>> + if (ret)
>> + return ret;
>> +
>> + /*
>> + * Adjust the fuse quot with per-fuse-corner closed-loop
>> + * voltage adjustment parameters.
>> + */
>> + fuse->quot += cpr3_adjust_quot(factor, fdata->volt_cloop_adjust);
>> +
>> + /* CPRh: no regulator access... */
>> + if (drv->desc->cpr_type == CTRL_TYPE_CPRH)
>> + goto skip_pvs_restrict;
>> +
>> + /* Re-check if corner voltage range is supported by regulator */
>> + ret = cpr_check_vreg_constraints(drv->dev, drv->vreg, fuse);
>> + if (ret)
>> + return ret;
>> +
>> +skip_pvs_restrict:
>> + if (fuse->uV < prev_fuse->uV)
>> + fuse->uV = prev_fuse->uV;
>> + prev_fuse = fuse;
>> + dev_dbg(drv->dev, "fuse corner %d: [%d %d %d] RO%hhu quot %d\n",
>> + i, fuse->min_uV, fuse->uV, fuse->max_uV,
>> + fuse->ring_osc_idx, fuse->quot);
>> +
>> + /* Check if constraints are valid */
>> + if (fuse->uV < fuse->min_uV || fuse->uV > fuse->max_uV) {
>> + dev_err(drv->dev, "fuse corner %d: Bad voltage range.\n", i);
>> + return -EINVAL;
>> + }
>> + }
>> +
>> + return 0;
>> +}
>> +
>> +static void cpr3_restrict_corner(struct corner *corner, int threshold,
>> + int hysteresis, int step)
>> +{
>> + if (threshold > corner->min_uV && threshold <= corner->max_uV) {
>> + if (corner->uV >= threshold) {
>> + corner->min_uV = max(corner->min_uV,
>> + threshold - hysteresis);
>> + if (corner->min_uV > corner->uV)
>> + corner->uV = corner->min_uV;
>> + } else {
>> + corner->max_uV = threshold;
>> + corner->max_uV -= step;
>> + }
>> + }
>> +}
>> +
>> +/*
>> + * cprh_corner_adjust_opps() - Set voltage on each CPU OPP table entry
>> + *
>> + * On CPR-Hardened, the voltage level is controlled internally through
>> + * the OSM hardware: in order to initialize the latter, we have to
>> + * communicate the voltage to its driver, so that it will be able to
>> + * write the right parameters (as they have to be set both on the CPRh
>> + * and on the OSM) on it.
>> + * This function is called only for CPRh.
>> + *
>> + * Return: Zero for success, negative number for error.
>> + */
>> +static int cprh_corner_adjust_opps(struct cpr_thread *thread)
>> +{
>> + struct corner *corner = thread->corners;
>> + struct cpr_drv *drv = thread->drv;
>> + int i, ret;
>> +
>> + for (i = 0; i < thread->num_corners; i++) {
>> + ret = dev_pm_opp_adjust_voltage(thread->attached_cpu_dev,
>> + corner[i].freq,
>> + corner[i].uV,
>> + corner[i].min_uV,
>> + corner[i].max_uV);
>> + if (ret)
>> + break;
>> +
>> + dev_dbg(drv->dev, "OPP voltage adjusted for %lu kHz, %d uV\n",
>> + corner[i].freq, corner[i].uV);
>> + }
>> +
>> + /* If we couldn't adjust voltage for all corners, something went wrong */
>> + if (i < thread->num_corners)
>> + return -EINVAL;
>> +
>> + return ret;
>> +}
>> +
>> +/**
>> + * cpr3_corner_init() - Calculate and set-up corners for the CPR HW
>> + * @thread: Structure holding CPR thread-specific parameters
>> + *
>> + * This function calculates all the corner parameters by comparing
>> + * and interpolating the values read from the various set-points
>> + * read from the fuses (also called "fuse corners") to generate and
>> + * program to the CPR a lookup table that describes each voltage
>> + * step, mapped to a performance level (or corner number).
>> + *
>> + * It also programs other essential parameters on the CPR and - if
>> + * we are dealing with CPR-Hardened, it will also enable the internal
>> + * interface between the Operating State Manager (OSM) and the CPRh
>> + * in order to achieve CPU DVFS.
>> + *
>> + * Return: Zero for success, negative number on error
>> + */
>> +static int cpr3_corner_init(struct cpr_thread *thread)
>> +{
>> + struct cpr_drv *drv = thread->drv;
>> + const struct cpr_desc *desc = drv->desc;
>> + const struct cpr_thread_desc *tdesc = thread->desc;
>> + const struct cpr_fuse *fuses = thread->cpr_fuses;
>> + int i, ret, total_corners, extra_corners, level, scaling = 0;
>> + unsigned int fnum, fc;
>> + const char *quot_offset;
>> + const struct fuse_corner_data *fdata;
>> + struct fuse_corner *fuse, *prev_fuse;
>> + struct corner *corner, *prev_corner, *end;
>> + struct corner_data *cdata;
>> + struct dev_pm_opp *opp;
>> + unsigned long freq;
>> + u32 ring_osc_mask = CPR3_RO_MASK, min_quotient = U32_MAX;
>> +
>> + corner = thread->corners;
>> + prev_corner = &thread->corners[0];
>> + end = &corner[thread->num_corners - 1];
>> +
>> + cdata = devm_kcalloc(drv->dev, thread->num_corners + drv->extra_corners,
>> + sizeof(struct corner_data), GFP_KERNEL);
>> + if (!cdata)
>> + return -ENOMEM;
>> +
>> + for (level = 1; level <= thread->num_corners; level++) {
>> + opp = dev_pm_opp_find_level_exact(&thread->pd.dev, level);
>> + if (IS_ERR(opp))
>> + return -EINVAL;
>> +
>> + /*
>> + * If there is only one specified qcom,opp-fuse-level, then
>> + * it is assumed that this only one is global and valid for
>> + * all IDs, so try to get the specific one but, on failure,
>> + * go for the global one.
>> + */
>> + fc = cpr_get_fuse_corner(opp, thread->id);
>> + if (fc == 0) {
>> + fc = cpr_get_fuse_corner(opp, 0);
>> + if (fc == 0) {
>> + dev_err(drv->dev, "qcom,opp-fuse-level is missing!\n");
>> + dev_pm_opp_put(opp);
>> + return -EINVAL;
>> + }
>> + }
>> + fnum = fc - 1;
>> +
>> + freq = cpr_get_opp_hz_for_req(opp, thread->attached_cpu_dev);
>> + if (!freq) {
>> + thread->num_corners = max(level - 1, 0);
>> + end = &thread->corners[thread->num_corners - 1];
>> + break;
>> + }
>> +
>> + /*
>> + * If any post-vadj (open/closed loop) is not specified, then
>> + * it's zero, meaning that it is not required for this corner.
>> + */
>> + cpr_get_corner_post_vadj(opp, thread->id,
>> + &cdata[level - 1].oloop_vadj,
>> + &cdata[level - 1].cloop_vadj);
>> + cdata[level - 1].fuse_corner = fnum;
>> + cdata[level - 1].freq = freq;
>> +
>> + fuse = &thread->fuse_corners[fnum];
>> + dev_dbg(drv->dev, "freq: %lu level: %u fuse level: %u\n",
>> + freq, dev_pm_opp_get_level(opp) - 1, fnum);
>> + if (freq > fuse->max_freq)
>> + fuse->max_freq = freq;
>> + dev_pm_opp_put(opp);
>> +
>> + /*
>> + * Make sure that the frequencies in the table are in ascending
>> + * order, as this is critical for the algorithm to work.
>> + */
>> + if (cdata[level - 2].freq > freq) {
>> + dev_err(drv->dev, "Frequency table not in ascending order.\n");
>> + return -EINVAL;
>> + }
>> + }
>> +
>> + if (thread->num_corners < 2) {
>> + dev_err(drv->dev, "need at least 2 OPPs to use CPR\n");
>> + return -EINVAL;
>> + }
>> +
>> + /*
>> + * Get the quotient adjustment scaling factor, according to:
>> + *
>> + * scaling = min(1000 * (QUOT(corner_N) - QUOT(corner_N-1))
>> + * / (freq(corner_N) - freq(corner_N-1)), max_factor)
>> + *
>> + * QUOT(corner_N): quotient read from fuse for fuse corner N
>> + * QUOT(corner_N-1): quotient read from fuse for fuse corner (N - 1)
>> + * freq(corner_N): max frequency in MHz supported by fuse corner N
>> + * freq(corner_N-1): max frequency in MHz supported by fuse corner
>> + * (N - 1)
>> + *
>> + * Then walk through the corners mapped to each fuse corner
>> + * and calculate the quotient adjustment for each one using the
>> + * following formula:
>> + *
>> + * quot_adjust = (freq_max - freq_corner) * scaling / 1000
>> + *
>> + * freq_max: max frequency in MHz supported by the fuse corner
>> + * freq_corner: frequency in MHz corresponding to the corner
>> + * scaling: calculated from above equation
>> + *
>> + *
>> + * + +
>> + * | v |
>> + * q | f c o | f c
>> + * u | c l | c
>> + * o | f t | f
>> + * t | c a | c
>> + * | c f g | c f
>> + * | e |
>> + * +--------------- +----------------
>> + * 0 1 2 3 4 5 6 0 1 2 3 4 5 6
>> + * corner corner
>> + *
>> + * c = corner
>> + * f = fuse corner
>> + *
>> + */
>> + for (i = 0; corner <= end; corner++, i++) {
>> + unsigned long freq_diff_mhz;
>> + int ro_fac, vadj, prev_quot;
>> +
>> + fnum = cdata[i].fuse_corner;
>> + fdata = &tdesc->fuse_corner_data[fnum];
>> + quot_offset = fuses[fnum].quotient_offset;
>> + fuse = &thread->fuse_corners[fnum];
>> + ring_osc_mask &= (u16)(~BIT(fuse->ring_osc_idx));
>> + if (fnum)
>> + prev_fuse = &thread->fuse_corners[fnum - 1];
>> + else
>> + prev_fuse = NULL;
>> +
>> + corner->fuse_corner = fuse;
>> + corner->freq = cdata[i].freq;
>> + corner->uV = fuse->uV;
>> +
>> + if (prev_fuse) {
>> + if (prev_fuse->ring_osc_idx == fuse->ring_osc_idx)
>> + quot_offset = NULL;
>> +
>> + scaling = cpr_calculate_scaling(drv->dev, quot_offset,
>> + fdata, corner);
>> + if (scaling < 0)
>> + return scaling;
>> +
>> + freq_diff_mhz = fuse->max_freq - corner->freq;
>> + do_div(freq_diff_mhz, 1000000); /* now in MHz */
>> +
>> + corner->quot_adjust = scaling * freq_diff_mhz;
>> + do_div(corner->quot_adjust, 1000);
>> +
>> + /* Fine-tune QUOT (closed-loop) based on fixed values */
>> + ro_fac = cpr_get_ro_factor(tdesc, fnum, fuse->ring_osc_idx);
>> + vadj = cdata[i].cloop_vadj;
>> + corner->quot_adjust -= cpr3_adjust_quot(ro_fac, vadj);
>> + dev_vdbg(drv->dev, "Quot fine-tuning to %d for post-vadj=%d\n",
>> + corner->quot_adjust, vadj);
>> +
>> + /*
>> + * Make sure that we scale (up) monotonically.
>> + * P.S.: Fuse quots can never be descending.
>> + */
>> + prev_quot = prev_corner->fuse_corner->quot;
>> + prev_quot -= prev_corner->quot_adjust;
>> + if (fuse->quot - corner->quot_adjust < prev_quot) {
>> + int new_adj = prev_corner->fuse_corner->quot;
>> +
>> + new_adj -= fuse->quot;
>> + dev_vdbg(drv->dev, "Monotonic increase forced: %d->%d\n",
>> + corner->quot_adjust, new_adj);
>> + corner->quot_adjust = new_adj;
>> + }
>> +
>> + corner->uV = cpr_interpolate(corner,
>> + drv->vreg_step, fdata);
>> + }
>> + /* Negative fuse quotients are nonsense. */
>> + if (fuse->quot < corner->quot_adjust)
>> + return -EINVAL;
>> +
>> + min_quotient = min(min_quotient,
>> + (u32)(fuse->quot - corner->quot_adjust));
>> +
>> + /* Fine-tune voltages (open-loop) based on fixed values */
>> + corner->uV += cdata[i].oloop_vadj;
>> + dev_dbg(drv->dev, "Voltage fine-tuning to %d for post-vadj=%d\n",
>> + corner->uV, cdata[i].oloop_vadj);
>> +
>> + corner->max_uV = fuse->max_uV;
>> + corner->min_uV = fuse->min_uV;
>> + corner->uV = clamp(corner->uV, corner->min_uV, corner->max_uV);
>> + dev_vdbg(drv->dev, "Clamped after interpolation: [%d %d %d]\n",
>> + corner->min_uV, corner->uV, corner->max_uV);
>> +
>> + /* Make sure that we scale monotonically here, too. */
>> + if (corner->uV < prev_corner->uV)
>> + corner->uV = prev_corner->uV;
>> +
>> + corner->last_uV = corner->uV;
>> +
>> + /* Reduce the ceiling voltage if needed */
>> + if (desc->reduce_to_corner_uV && corner->uV < corner->max_uV)
>> + corner->max_uV = corner->uV;
>> + else if (desc->reduce_to_fuse_uV && fuse->uV < corner->max_uV)
>> + corner->max_uV = max(corner->min_uV, fuse->uV);
>> +
>> + corner->min_uV = max(corner->max_uV - fdata->range_uV,
>> + corner->min_uV);
>> +
>> + /*
>> + * Adjust per-corner floor and ceiling voltages so that
>> + * they do not overlap the memory Array Power Mux (APM)
>> + * nor the Memory Accelerator (MEM-ACC) threshold voltages.
>> + */
>> + if (desc->apm_threshold)
>> + cpr3_restrict_corner(corner, desc->apm_threshold,
>> + desc->apm_hysteresis,
>> + drv->vreg_step);
>> + if (desc->mem_acc_threshold)
>> + cpr3_restrict_corner(corner, desc->mem_acc_threshold,
>> + 0, drv->vreg_step);
>> +
>> + prev_corner = corner;
>> + dev_dbg(drv->dev, "corner %d: [%d %d %d] scaling %d quot %d\n", i,
>> + corner->min_uV, corner->uV, corner->max_uV, scaling,
>> + fuse->quot - corner->quot_adjust);
>> + }
>> +
>> + /* Additional setup for CPRh only */
>> + if (desc->cpr_type < CTRL_TYPE_CPRH)
>> + return 0;
>> +
>> + /* If the OPPs can't be adjusted, programming the CPRh is useless */
>> + ret = cprh_corner_adjust_opps(thread);
>> + if (ret) {
>> + dev_err(drv->dev, "Cannot adjust CPU OPP voltages: %d\n", ret);
>> + return ret;
>> + }
>> +
>> + total_corners = thread->num_corners;
>> + extra_corners = drv->extra_corners;
>> +
>> + /* If the APM extra corner exists, add it now. */
>> + if (desc->apm_crossover && desc->apm_threshold && extra_corners) {
>> + /* Program the APM crossover corner on the CPR-Hardened */
>> + thread->corners[total_corners].uV = desc->apm_crossover;
>> + thread->corners[total_corners].min_uV = desc->apm_crossover;
>> + thread->corners[total_corners].max_uV = desc->apm_crossover;
>> + thread->corners[total_corners].is_open_loop = true;
>> +
>> + /*
>> + * We have calculated the APM parameters for this clock plan:
>> + * make the APM *threshold* available to external callers.
>> + * The crossover is used only internally in the CPR.
>> + */
>> + thread->ext_data.apm_threshold_uV = desc->apm_threshold;
>> +
>> + dev_dbg(drv->dev, "corner %d (APM): [%d %d %d] Open-Loop\n",
>> + total_corners, desc->apm_crossover,
>> + desc->apm_crossover, desc->apm_crossover);
>> +
>> + total_corners++;
>> + extra_corners--;
>> + }
>> +
>> + if (desc->mem_acc_threshold && extra_corners) {
>> + /* Program the Memory Accelerator threshold corner to CPRh */
>> + thread->corners[total_corners].uV = desc->mem_acc_threshold;
>> + thread->corners[total_corners].min_uV = desc->mem_acc_threshold;
>> + thread->corners[total_corners].max_uV = desc->mem_acc_threshold;
>> + thread->corners[total_corners].is_open_loop = true;
>> +
>> + /*
>> + * We have calculated a mem-acc threshold for this clock plan:
>> + * make it available to external callers.
>> + */
>> + thread->ext_data.mem_acc_threshold_uV = desc->mem_acc_threshold;
>> +
>> + dev_dbg(drv->dev, "corner %d (MEMACC): [%d %d %d] Open-Loop\n",
>> + total_corners, desc->mem_acc_threshold,
>> + desc->mem_acc_threshold, desc->mem_acc_threshold);
>> +
>> + total_corners++;
>> + extra_corners--;
>> + }
>> +
>> + /*
>> + * If there are any extra corners left, it means that even though we
>> + * expect to fill in both APM and MEM-ACC crossovers, one couldn't
>> + * satisfy requirements, which means that the specified parameters
>> + * are wrong: in this case, inform the user and bail out, otherwise
>> + * if we go on writing the (invalid) table to the CPR-Hardened, the
>> + * hardware (in this case, the CPU) will surely freeze and crash.
>> + */
>> + if (unlikely(extra_corners)) {
>> + dev_err(drv->dev, "APM/MEM-ACC corners: bad parameters.\n");
>> + return -EINVAL;
>> + }
>> + /* Reassign extra_corners, as we have to exclude delta_quot for them */
>> + extra_corners = drv->extra_corners;
>> +
>> + /* Disable the interface between OSM and CPRh */
>> + cpr_masked_write(thread, drv->reg_ctl,
>> + CPRH_CTL_OSM_ENABLED, 0);
>> +
>> + /* Program the GCNT before unmasking ring oscillator(s) */
>> + for (i = 0; i < CPR3_RO_COUNT; i++) {
>> + if (!(ring_osc_mask & BIT(i))) {
>> + cpr_write(thread, CPR3_REG_GCNT(i), drv->gcnt);
>> + dev_vdbg(drv->dev, "RO%d gcnt=%d\n", i, drv->gcnt);
>> + }
>> + }
>> +
>> + /*
>> + * Unmask the ring oscillator(s) that we're going to use: it seems
>> + * to be mandatory to do this *before* sending the rest of the
>> + * CPRhardened specific configuration.
>> + */
>> + dev_dbg(drv->dev, "Unmasking ring oscillators with mask 0x%x\n", ring_osc_mask);
>> + cpr_write(thread, CPR3_REG_RO_MASK(tdesc->hw_tid), ring_osc_mask);
>> +
>> + /* Setup minimum quotients for ring oscillators */
>> + for (i = 0; i < CPR3_RO_COUNT; i++) {
>> + u32 tgt_quot_reg = CPR3_REG_TARGET_QUOT(tdesc->hw_tid, i);
>> + u32 tgt_quot_val = 0;
>> +
>> + if (!(ring_osc_mask & BIT(i)))
>> + tgt_quot_val = min_quotient;
>> +
>> + cpr_write(thread, tgt_quot_reg, tgt_quot_val);
>> + dev_vdbg(drv->dev, "Programmed min quotient %u for Ring Oscillator %d\n",
>> + tgt_quot_val, tgt_quot_reg);
>> + }
>> +
>> + for (i = 0; i < total_corners; i++) {
>> + int volt_oloop_steps, volt_floor_steps, delta_quot_steps;
>> + int ring_osc;
>> + u32 val;
>> +
>> + fnum = cdata[i].fuse_corner;
>> + fuse = &thread->fuse_corners[fnum];
>> +
>> + val = thread->corners[i].uV - desc->cpr_base_voltage;
>> + volt_oloop_steps = DIV_ROUND_UP(val, drv->vreg_step);
>> +
>> + val = thread->corners[i].min_uV - desc->cpr_base_voltage;
>> + volt_floor_steps = DIV_ROUND_UP(val, drv->vreg_step);
>> +
>> + /*
>> + * If we are accessing corners that are not used as
>> + * an active DCVS set-point, then always select RO 0
>> + * and zero out the delta quotient.
>> + */
>> + if (i >= thread->num_corners) {
>> + ring_osc = 0;
>> + delta_quot_steps = 0;
>> + } else {
>> + ring_osc = fuse->ring_osc_idx;
>> + val = fuse->quot - thread->corners[i].quot_adjust;
>> + val -= min_quotient;
>> + delta_quot_steps = DIV_ROUND_UP(val,
>> + CPRH_DELTA_QUOT_STEP_FACTOR);
>> + }
>> +
>> + if (volt_oloop_steps > CPRH_CORNER_INIT_VOLTAGE_MAX_VALUE ||
>> + volt_floor_steps > CPRH_CORNER_FLOOR_VOLTAGE_MAX_VALUE ||
>> + delta_quot_steps > CPRH_CORNER_QUOT_DELTA_MAX_VALUE) {
>> + dev_err(drv->dev, "Invalid cfg: oloop=%d, floor=%d, delta=%d\n",
>> + volt_oloop_steps, volt_floor_steps,
>> + delta_quot_steps);
>> + return -EINVAL;
>> + }
>> + /* Green light: Go, Go, Go! */
>> +
>> + /* Set number of open-loop steps */
>> + val = volt_oloop_steps << CPRH_CORNER_INIT_VOLTAGE_SHIFT;
>> + val &= CPRH_CORNER_INIT_VOLTAGE_MASK;
>> +
>> + /* Set number of floor voltage steps */
>> + val |= (volt_floor_steps << CPRH_CORNER_FLOOR_VOLTAGE_SHIFT) &
>> + CPRH_CORNER_FLOOR_VOLTAGE_MASK;
>> +
>> + /* Set number of target quotient delta steps */
>> + val |= (delta_quot_steps << CPRH_CORNER_QUOT_DELTA_SHIFT) &
>> + CPRH_CORNER_QUOT_DELTA_MASK;
>> +
>> + /* Select ring oscillator for this corner */
>> + val |= (ring_osc << CPRH_CORNER_RO_SEL_SHIFT) &
>> + CPRH_CORNER_RO_SEL_MASK;
>> +
>> + /* Open loop corner is usually APM/ACC crossover */
>> + if (thread->corners[i].is_open_loop) {
>> + dev_dbg(drv->dev, "Disabling Closed-Loop on corner %d\n", i);
>> + val |= CPRH_CORNER_CPR_CL_DISABLE;
>> + }
>> + cpr_write(thread, CPRH_REG_CORNER(drv, tdesc->hw_tid, i), val);
>> +
>> + dev_dbg(drv->dev, "steps [%d]: open-loop %d, floor %d, delta_quot %d\n",
>> + i, volt_oloop_steps, volt_floor_steps,
>> + delta_quot_steps);
>> + }
>> +
>> + /* YAY! Setup is done! Enable the internal loop to start CPR. */
>> + cpr_masked_write(thread, CPR3_REG_CPR_CTL,
>> + CPR3_CPR_CTL_LOOP_EN_MASK,
>> + CPR3_CPR_CTL_LOOP_EN_MASK);
>> +
>> + /*
>> + * All the writes are going through before enabling internal
>> + * communication between the OSM and the CPRh controllers
>> + * because we are never using relaxed accessors, but should
>> + * we use them, it would be critical to issue a barrier here,
>> + * otherwise there is a high risk of hardware lockups due to
>> + * under-voltage for the selected CPU clock.
>> + *
>> + * Please note that the CPR-hardened gets set-up in Linux but
>> + * then gets actually used in firmware (and only by the OSM);
>> + * after handing it off we will have no more control on it.
>> + */
>> +
>> + /* Enable the interface between OSM and CPRh */
>> + cpr_masked_write(thread, drv->reg_ctl,
>> + CPRH_CTL_OSM_ENABLED,
>> + CPRH_CTL_OSM_ENABLED);
>> +
>> + /* On success, free cdata manually */
>> + devm_kfree(drv->dev, cdata);
>> + return 0;
>> +}
>> +
>> +/**
>> + * cpr3_init_parameters() - Initialize CPR global parameters
>> + * @drv: Main driver structure
>> + *
>> + * Initial "integrity" checks and setup for the thread-independent parameters.
>> + *
>> + * Return: Zero for success, negative number on error
>> + */
>> +static int cpr3_init_parameters(struct cpr_drv *drv)
>> +{
>> + const struct cpr_desc *desc = drv->desc;
>> + struct clk *clk;
>> +
>> + clk = devm_clk_get(drv->dev, "ref");
>> + if (IS_ERR(clk))
>> + return PTR_ERR(clk);
>> +
>> + drv->ref_clk_khz = clk_get_rate(clk);
>> + do_div(drv->ref_clk_khz, 1000);
>> +
>> + /* On CPRh this clock is not always-on... */
>> + if (desc->cpr_type == CTRL_TYPE_CPRH)
>> + clk_prepare_enable(clk);
>> + else
>> + devm_clk_put(drv->dev, clk);
>> +
>> + if (desc->timer_cons_up > CPR3_THRESH_CONS_UP_MASK ||
>> + desc->timer_cons_down > CPR3_THRESH_CONS_DOWN_MASK ||
>> + desc->up_threshold > CPR3_THRESH_UP_THRESH_MASK ||
>> + desc->down_threshold > CPR3_THRESH_DOWN_THRESH_MASK ||
>> + desc->idle_clocks > CPR3_CPR_CTL_IDLE_CLOCKS_MASK ||
>> + desc->count_mode > CPR3_CPR_CTL_COUNT_MODE_MASK ||
>> + desc->count_repeat > CPR3_CPR_CTL_COUNT_REPEAT_MASK)
>> + return -EINVAL;
>> +
>> + /*
>> + * Read the CPR version register only from CPR3 onwards:
>> + * this is needed to get the additional register offsets.
>> + *
>> + * Note: When threaded, even if multi-controller, there
>> + * is no chance to have different versions at the
>> + * same time in the same domain, so it is safe to
>> + * check this only on the first controller/thread.
>> + */
>> + drv->cpr_hw_rev = cpr_read(&drv->threads[0],
>> + CPR3_REG_CPR_VERSION);
>> + dev_dbg(drv->dev, "CPR hardware revision: 0x%x\n", drv->cpr_hw_rev);
>> +
>> + if (drv->cpr_hw_rev >= CPRH_CPR_VERSION_4P5) {
>> + drv->reg_corner = 0x3500;
>> + drv->reg_corner_tid = 0xa0;
>> + drv->reg_ctl = 0x3a80;
>> + drv->reg_status = 0x3a84;
>> + } else {
>> + drv->reg_corner = 0x3a00;
>> + drv->reg_corner_tid = 0;
>> + drv->reg_ctl = 0x3aa0;
>> + drv->reg_status = 0x3aa4;
>> + }
>> +
>> + dev_dbg(drv->dev, "up threshold = %u, down threshold = %u\n",
>> + desc->up_threshold, desc->down_threshold);
>> +
>> + return 0;
>> +}
>> +
>> +/**
>> + * cpr3_find_initial_corner() - Finds boot-up p-state and enables CPR
>> + * @thread: Structure holding CPR thread-specific parameters
>> + *
>> + * Differently from CPRv1, from CPRv3 onwards when we successfully find
>> + * the target boot-up performance state, we must refresh the HW
>> + * immediately to guarantee system stability and to avoid overheating
>> + * during the boot process, thing that would more likely happen without
>> + * this driver doing its job.
>> + *
>> + * Return: Zero for success, negative number on error
>> + */
>> +static int cpr3_find_initial_corner(struct cpr_thread *thread)
>> +{
>> + struct cpr_drv *drv = thread->drv;
>> + struct corner *corner;
>> + int uV, idx;
>> +
>> + idx = cpr_find_initial_corner(drv->dev, thread->cpu_clk,
>> + thread->corners,
>> + thread->num_corners);
>> + if (idx < 0)
>> + return idx;
>> +
>> + cpr_ctl_disable(thread);
>> +
>> + corner = &thread->corners[idx];
>> + cpr_corner_restore(thread, corner);
>> +
>> + uV = regulator_get_voltage(drv->vreg);
>> + uV = clamp(uV, corner->min_uV, corner->max_uV);
>> +
>> + corner->last_uV = uV;
>> + if (!drv->last_uV)
>> + drv->last_uV = uV;
>> +
>> + cpr_commit_state(thread);
>> + thread->enabled = true;
>> + cpr_switch(drv);
>> +
>> + return 0;
>> +}
>> +
>> +static const int msm8998_gold_scaling_factor[][CPR3_RO_COUNT] = {
>> + /* Fuse Corner 0 */
>> + {
>> + 2857, 3057, 2828, 2952, 2699, 2798, 2446, 2631,
>> + 2629, 2578, 2244, 3344, 3289, 3137, 3164, 2655
>> + },
>> + /* Fuse Corner 1 */
>> + {
>> + 2857, 3057, 2828, 2952, 2699, 2798, 2446, 2631,
>> + 2629, 2578, 2244, 3344, 3289, 3137, 3164, 2655
>> + },
>> + /* Fuse Corner 2 */
>> + {
>> + 2603, 2755, 2676, 2777, 2573, 2685, 2465, 2610,
>> + 2312, 2423, 2243, 3104, 3022, 3036, 2740, 2303
>> + },
>> + /* Fuse Corner 3 */
>> + {
>> + 1901, 2016, 2096, 2228, 2034, 2161, 2077, 2188,
>> + 1565, 1870, 1925, 2235, 2205, 2413, 1762, 1478
>> + }
>> +};
>> +
>> +static const int msm8998_silver_scaling_factor[][CPR3_RO_COUNT] = {
>> + /* Fuse Corner 0 */
>> + {
>> + 2595, 2794, 2577, 2762, 2471, 2674, 2199, 2553,
>> + 3189, 3255, 3192, 2962, 3054, 2982, 2042, 2945
>> + },
>> + /* Fuse Corner 1 */
>> + {
>> + 2595, 2794, 2577, 2762, 2471, 2674, 2199, 2553,
>> + 3189, 3255, 3192, 2962, 3054, 2982, 2042, 2945
>> + },
>> + /* Fuse Corner 2 */
>> + {
>> + 2391, 2550, 2483, 2638, 2382, 2564, 2259, 2555,
>> + 2766, 3041, 2988, 2935, 2873, 2688, 2013, 2784
>> + },
>> + /* Fuse Corner 3 */
>> + {
>> + 2066, 2153, 2300, 2434, 2220, 2386, 2288, 2465,
>> + 2028, 2511, 2487, 2734, 2554, 2117, 1892, 2377
>> + }
>> +};
>> +
>> +static const struct cpr_thread_desc msm8998_thread_gold = {
>> + .controller_id = 1,
>> + .hw_tid = 0,
>> + .ro_scaling_factor = msm8998_gold_scaling_factor,
>> + .ro_avail_corners = ARRAY_SIZE(msm8998_gold_scaling_factor),
>> + .sensor_range_start = 0,
>> + .sensor_range_end = 9,
>> + .init_voltage_step = 10000,
>> + .init_voltage_width = 6,
>> + .step_quot_init_min = 9,
>> + .step_quot_init_max = 14,
>> + .num_fuse_corners = 4,
>> + .fuse_corner_data = (struct fuse_corner_data[]){
>> + /* fuse corner 0 */
>> + {
>> + .ref_uV = 756000,
>> + .max_uV = 828000,
>> + .min_uV = 568000,
>> + .range_uV = 32000,
>> + .volt_cloop_adjust = 0,
>> + .volt_oloop_adjust = 8000,
>> + .max_volt_scale = 4,
>> + .max_quot_scale = 10,
>> + .quot_offset = 0,
>> + .quot_scale = 1,
>> + .quot_adjust = 0,
>> + .quot_offset_scale = 5,
>> + .quot_offset_adjust = 0,
>> + },
>> + /* fuse corner 1 */
>> + {
>> + .ref_uV = 756000,
>> + .max_uV = 900000,
>> + .min_uV = 624000,
>> + .range_uV = 32000,
>> + .volt_cloop_adjust = 0,
>> + .volt_oloop_adjust = 0,
>> + .max_volt_scale = 320,
>> + .max_quot_scale = 350,
>> + .quot_offset = 0,
>> + .quot_scale = 1,
>> + .quot_adjust = 0,
>> + .quot_offset_scale = 5,
>> + .quot_offset_adjust = 0,
>> + },
>> + /* fuse corner 2 */
>> + {
>> + .ref_uV = 828000,
>> + .max_uV = 952000,
>> + .min_uV = 632000,
>> + .range_uV = 32000,
>> + .volt_cloop_adjust = 12000,
>> + .volt_oloop_adjust = 12000,
>> + .max_volt_scale = 620,
>> + .max_quot_scale = 750,
>> + .quot_offset = 0,
>> + .quot_scale = 1,
>> + .quot_adjust = 0,
>> + .quot_offset_scale = 5,
>> + .quot_offset_adjust = 0,
>> + },
>> + /* fuse corner 3 */
>> + {
>> + .ref_uV = 1056000,
>> + .max_uV = 1136000,
>> + .min_uV = 772000,
>> + .range_uV = 40000,
>> + .volt_cloop_adjust = 50000,
>> + .volt_oloop_adjust = 52000,
>> + .max_volt_scale = 580,
>> + .max_quot_scale = 1040,
>> + .quot_offset = 0,
>> + .quot_scale = 1,
>> + .quot_adjust = 0,
>> + .quot_offset_scale = 5,
>> + .quot_offset_adjust = 0,
>> + },
>> + },
>> +};
>> +
>> +static const struct cpr_thread_desc msm8998_thread_silver = {
>> + .controller_id = 0,
>> + .hw_tid = 0,
>> + .ro_scaling_factor = msm8998_silver_scaling_factor,
>> + .ro_avail_corners = ARRAY_SIZE(msm8998_silver_scaling_factor),
>> + .sensor_range_start = 0,
>> + .sensor_range_end = 6,
>> + .init_voltage_step = 10000,
>> + .init_voltage_width = 6,
>> + .step_quot_init_min = 11,
>> + .step_quot_init_max = 12,
>> + .num_fuse_corners = 4,
>> + .fuse_corner_data = (struct fuse_corner_data[]){
>> + /* fuse corner 0 */
>> + {
>> + .ref_uV = 688000,
>> + .max_uV = 828000,
>> + .min_uV = 568000,
>> + .range_uV = 32000,
>> + .volt_cloop_adjust = 20000,
>> + .volt_oloop_adjust = 40000,
>> + .max_volt_scale = 4,
>> + .max_quot_scale = 10,
>> + .quot_offset = 0,
>> + .quot_scale = 1,
>> + .quot_adjust = 0,
>> + .quot_offset_scale = 5,
>> + .quot_offset_adjust = 0,
>> + },
>> + /* fuse corner 1 */
>> + {
>> + .ref_uV = 756000,
>> + .max_uV = 900000,
>> + .min_uV = 632000,
>> + .range_uV = 32000,
>> + .volt_cloop_adjust = 26000,
>> + .volt_oloop_adjust = 24000,
>> + .max_volt_scale = 500,
>> + .max_quot_scale = 800,
>> + .quot_offset = 0,
>> + .quot_scale = 1,
>> + .quot_adjust = 0,
>> + .quot_offset_scale = 5,
>> + .quot_offset_adjust = 0,
>> + },
>> + /* fuse corner 2 */
>> + {
>> + .ref_uV = 828000,
>> + .max_uV = 952000,
>> + .min_uV = 664000,
>> + .range_uV = 32000,
>> + .volt_cloop_adjust = 12000,
>> + .volt_oloop_adjust = 12000,
>> + .max_volt_scale = 280,
>> + .max_quot_scale = 650,
>> + .quot_offset = 0,
>> + .quot_scale = 1,
>> + .quot_adjust = 0,
>> + .quot_offset_scale = 5,
>> + .quot_offset_adjust = 0,
>> +
>> + },
>> + /* fuse corner 3 */
>> + {
>> + .ref_uV = 1056000,
>> + .max_uV = 1056000,
>> + .min_uV = 772000,
>> + .range_uV = 40000,
>> + .volt_cloop_adjust = 30000,
>> + .volt_oloop_adjust = 30000,
>> + .max_volt_scale = 430,
>> + .max_quot_scale = 800,
>> + .quot_offset = 0,
>> + .quot_scale = 1,
>> + .quot_adjust = 0,
>> + .quot_offset_scale = 5,
>> + .quot_offset_adjust = 0,
>> + },
>> + },
>> +};
>> +
>> +static const struct cpr_desc msm8998_cpr_desc = {
>> + .cpr_type = CTRL_TYPE_CPRH,
>> + .num_threads = 2,
>> + .mem_acc_threshold = 852000,
>> + .apm_threshold = 800000,
>> + .apm_crossover = 880000,
>> + .apm_hysteresis = 0,
>> + .cpr_base_voltage = 352000,
>> + .cpr_max_voltage = 1200000,
>> + .timer_delay_us = 5000,
>> + .timer_cons_up = 0,
>> + .timer_cons_down = 2,
>> + .up_threshold = 2,
>> + .down_threshold = 2,
>> + .idle_clocks = 15,
>> + .count_mode = CPR3_CPR_CTL_COUNT_MODE_ALL_AT_ONCE_MIN,
>> + .count_repeat = 14,
>> + .gcnt_us = 1,
>> + .vreg_step_fixed = 4000,
>> + .vreg_step_up_limit = 1,
>> + .vreg_step_down_limit = 1,
>> + .vdd_settle_time_us = 34,
>> + .corner_settle_time_us = 6,
>> + .reduce_to_corner_uV = true,
>> + .hw_closed_loop_en = true,
>> + .threads = (const struct cpr_thread_desc *[]) {
>> + &msm8998_thread_silver,
>> + &msm8998_thread_gold,
>> + },
>> +};
>> +
>> +static const struct cpr_acc_desc msm8998_cpr_acc_desc = {
>> + .cpr_desc = &msm8998_cpr_desc,
>> +};
>> +
>> +static const int sdm630_gold_scaling_factor[][CPR3_RO_COUNT] = {
>> + /* Same RO factors for all fuse corners */
>> + {
>> + 4040, 3230, 0, 2210, 2560, 2450, 2230, 2220,
>> + 2410, 2300, 2560, 2470, 1600, 3120, 2620, 2280
>> + }
>> +};
>> +
>> +static const int sdm630_silver_scaling_factor[][CPR3_RO_COUNT] = {
>> + /* Same RO factors for all fuse corners */
>> + {
>> + 3600, 3600, 3830, 2430, 2520, 2700, 1790, 1760,
>> + 1970, 1880, 2110, 2010, 2510, 4900, 4370, 4780,
>> + }
>> +};
>> +
>> +static const struct cpr_thread_desc sdm630_thread_gold = {
>> + .controller_id = 0,
>> + .hw_tid = 0,
>> + .ro_scaling_factor = sdm630_gold_scaling_factor,
>> + .ro_avail_corners = ARRAY_SIZE(sdm630_gold_scaling_factor),
>> + .sensor_range_start = 0,
>> + .sensor_range_end = 6,
>> + .init_voltage_step = 10000,
>> + .init_voltage_width = 6,
>> + .step_quot_init_min = 12,
>> + .step_quot_init_max = 14,
>> + .num_fuse_corners = 5,
>> + .fuse_corner_data = (struct fuse_corner_data[]){
>> + /* fuse corner 0 */
>> + {
>> + .ref_uV = 644000,
>> + .max_uV = 724000,
>> + .min_uV = 588000,
>> + .range_uV = 40000,
>> + .volt_cloop_adjust = -30000,
>> + .volt_oloop_adjust = 15000,
>> + .max_volt_scale = 10,
>> + .max_quot_scale = 300,
>> + .quot_offset = 0,
>> + .quot_scale = 1,
>> + .quot_adjust = 0,
>> + .quot_offset_scale = 5,
>> + .quot_offset_adjust = 0,
>> + },
>> + /* fuse corner 1 */
>> + {
>> + .ref_uV = 788000,
>> + .max_uV = 788000,
>> + .min_uV = 652000,
>> + .range_uV = 40000,
>> + .volt_cloop_adjust = -30000,
>> + .volt_oloop_adjust = 5000,
>> + .max_volt_scale = 320,
>> + .max_quot_scale = 275,
>> + .quot_offset = 0,
>> + .quot_scale = 1,
>> + .quot_adjust = 0,
>> + .quot_offset_scale = 5,
>> + .quot_offset_adjust = 0,
>> + },
>> + /* fuse corner 2 */
>> + {
>> + .ref_uV = 868000,
>> + .max_uV = 868000,
>> + .min_uV = 712000,
>> + .range_uV = 40000,
>> + .volt_cloop_adjust = -30000,
>> + .volt_oloop_adjust = 5000,
>> + .max_volt_scale = 350,
>> + .max_quot_scale = 800,
>> + .quot_offset = 0,
>> + .quot_scale = 1,
>> + .quot_adjust = 0,
>> + .quot_offset_scale = 5,
>> + .quot_offset_adjust = 0,
>> + },
>> + /* fuse corner 3 */
>> + {
>> + .ref_uV = 988000,
>> + .max_uV = 988000,
>> + .min_uV = 784000,
>> + .range_uV = 66000,
>> + .volt_cloop_adjust = -30000,
>> + .volt_oloop_adjust = 0,
>> + .max_volt_scale = 868,
>> + .max_quot_scale = 980,
>> + .quot_offset = 0,
>> + .quot_scale = 1,
>> + .quot_adjust = 0,
>> + .quot_offset_scale = 5,
>> + .quot_offset_adjust = 0,
>> + },
>> + /* fuse corner 4 */
>> + {
>> + .ref_uV = 1068000,
>> + .max_uV = 1068000,
>> + .min_uV = 844000,
>> + .range_uV = 40000,
>> + .volt_cloop_adjust = -30000,
>> + .volt_oloop_adjust = 0,
>> + .max_volt_scale = 868,
>> + .max_quot_scale = 980,
>> + .quot_offset = 0,
>> + .quot_scale = 1,
>> + .quot_adjust = 0,
>> + .quot_offset_scale = 5,
>> + .quot_offset_adjust = 0,
>> + },
>> + },
>> +};
>> +
>> +static const struct cpr_thread_desc sdm630_thread_silver = {
>> + .controller_id = 1,
>> + .hw_tid = 0,
>> + .ro_scaling_factor = sdm630_silver_scaling_factor,
>> + .ro_avail_corners = ARRAY_SIZE(sdm630_silver_scaling_factor),
>> + .sensor_range_start = 0,
>> + .sensor_range_end = 6,
>> + .init_voltage_step = 10000,
>> + .init_voltage_width = 6,
>> + .step_quot_init_min = 12,
>> + .step_quot_init_max = 14,
>> + .num_fuse_corners = 3,
>> + .fuse_corner_data = (struct fuse_corner_data[]){
>> + /* fuse corner 0 */
>> + {
>> + .ref_uV = 644000,
>> + .max_uV = 724000,
>> + .min_uV = 588000,
>> + .range_uV = 32000,
>> + .volt_cloop_adjust = -30000,
>> + .volt_oloop_adjust = 0,
>> + .max_volt_scale = 10,
>> + .max_quot_scale = 360,
>> + .quot_offset = 0,
>> + .quot_scale = 1,
>> + .quot_adjust = 0,
>> + .quot_offset_scale = 5,
>> + .quot_offset_adjust = 0,
>> + },
>> + /* fuse corner 1 */
>> + {
>> + .ref_uV = 788000,
>> + .max_uV = 788000,
>> + .min_uV = 652000,
>> + .range_uV = 40000,
>> + .volt_cloop_adjust = -30000,
>> + .volt_oloop_adjust = 0,
>> + .max_volt_scale = 500,
>> + .max_quot_scale = 550,
>> + .quot_offset = 0,
>> + .quot_scale = 1,
>> + .quot_adjust = 0,
>> + .quot_offset_scale = 5,
>> + .quot_offset_adjust = 0,
>> + },
>> + /* fuse corner 2 */
>> + {
>> + .ref_uV = 1068000,
>> + .max_uV = 1068000,
>> + .min_uV = 800000,
>> + .range_uV = 40000,
>> + .volt_cloop_adjust = -30000,
>> + .volt_oloop_adjust = 0,
>> + .max_volt_scale = 2370,
>> + .max_quot_scale = 550,
>> + .quot_offset = 0,
>> + .quot_scale = 1,
>> + .quot_adjust = 0,
>> + .quot_offset_scale = 5,
>> + .quot_offset_adjust = 0,
>> + },
>> + },
>> +};
>> +
>> +static const struct cpr_desc sdm630_cpr_desc = {
>> + .cpr_type = CTRL_TYPE_CPRH,
>> + .num_threads = 2,
>> + .apm_threshold = 872000,
>> + .apm_crossover = 872000,
>> + .apm_hysteresis = 20000,
>> + .cpr_base_voltage = 400000,
>> + .cpr_max_voltage = 1300000,
>> + .timer_delay_us = 5000,
>> + .timer_cons_up = 0,
>> + .timer_cons_down = 2,
>> + .up_threshold = 2,
>> + .down_threshold = 2,
>> + .idle_clocks = 15,
>> + .count_mode = CPR3_CPR_CTL_COUNT_MODE_ALL_AT_ONCE_MIN,
>> + .count_repeat = 14,
>> + .gcnt_us = 1,
>> + .vreg_step_fixed = 4000,
>> + .vreg_step_up_limit = 1,
>> + .vreg_step_down_limit = 1,
>> + .vdd_settle_time_us = 34,
>> + .corner_settle_time_us = 5,
>> + .reduce_to_corner_uV = true,
>> + .hw_closed_loop_en = true,
>> + .threads = (const struct cpr_thread_desc *[]) {
>> + &sdm630_thread_gold,
>> + &sdm630_thread_silver,
>> + },
>> +};
>> +
>> +static const struct cpr_acc_desc sdm630_cpr_acc_desc = {
>> + .cpr_desc = &sdm630_cpr_desc,
>> +};
>> +
>> +static unsigned int cpr_get_performance_state(struct generic_pm_domain *genpd,
>> + struct dev_pm_opp *opp)
>> +{
>> + return dev_pm_opp_get_level(opp);
>> +}
>> +
>> +static int cpr_power_off(struct generic_pm_domain *domain)
>> +{
>> + struct cpr_thread *thread = container_of(domain, struct cpr_thread, pd);
>> +
>> + return cpr_disable(thread);
>> +}
>> +
>> +static int cpr_power_on(struct generic_pm_domain *domain)
>> +{
>> + struct cpr_thread *thread = container_of(domain, struct cpr_thread, pd);
>> +
>> + return cpr_enable(thread);
>> +}
>> +
>> +static void cpr_pd_detach_dev(struct generic_pm_domain *domain,
>> + struct device *dev)
>> +{
>> + struct cpr_thread *thread = container_of(domain, struct cpr_thread, pd);
>> + struct cpr_drv *drv = thread->drv;
>> +
>> + mutex_lock(&drv->lock);
>> +
>> + dev_dbg(drv->dev, "detach callback for: %s\n", dev_name(dev));
>> + thread->attached_cpu_dev = NULL;
>> +
>> + mutex_unlock(&drv->lock);
>> +}
>> +
>> +static int cpr_pd_attach_dev(struct generic_pm_domain *domain,
>> + struct device *dev)
>> +{
>> + struct cpr_thread *thread = container_of(domain, struct cpr_thread, pd);
>> + struct cpr_drv *drv = thread->drv;
>> + const struct acc_desc *acc_desc = drv->acc_desc;
>> + bool cprh_opp_remove_table = false;
>> + int ret = 0;
>> +
>> + mutex_lock(&drv->lock);
>> +
>> + dev_dbg(drv->dev, "attach callback for: %s\n", dev_name(dev));
>> +
>> + /*
>> + * This driver only supports scaling voltage for a CPU cluster
>> + * where all CPUs in the cluster share a single regulator.
>> + * Therefore, save the struct device pointer only for the first
>> + * CPU device that gets attached. There is no need to do any
>> + * additional initialization when further CPUs get attached.
>> + * This is not an error condition.
>> + */
>> + if (thread->attached_cpu_dev)
>> + goto unlock;
>> +
>> + /*
>> + * cpr_scale_voltage() requires the direction (if we are changing
>> + * to a higher or lower OPP). The first time
>> + * cpr_set_performance_state() is called, there is no previous
>> + * performance state defined. Therefore, we call
>> + * cpr_find_initial_corner() that gets the CPU clock frequency
>> + * set by the bootloader, so that we can determine the direction
>> + * the first time cpr_set_performance_state() is called.
>> + */
>> + thread->cpu_clk = devm_clk_get(dev, NULL);
>> + if (drv->desc->cpr_type < CTRL_TYPE_CPRH && IS_ERR(thread->cpu_clk)) {
>> + ret = PTR_ERR(thread->cpu_clk);
>> + if (ret != -EPROBE_DEFER)
>> + dev_err(drv->dev, "could not get cpu clk: %d\n", ret);
>> + goto unlock;
>> + }
>> + thread->attached_cpu_dev = dev;
>> +
>> + /*
>> + * We are exporting the APM and MEM-ACC thresholds to the caller;
>> + * while APM is necessary in the CPU CPR case, MEM-ACC may not be,
>> + * depending on the SoC and on fuses.
>> + * Initialize both to an invalid value, so that the caller can check
>> + * if they got calculated or read from fuses in this driver.
>> + */
>> + thread->ext_data.apm_threshold_uV = -1;
>> + thread->ext_data.mem_acc_threshold_uV = -1;
>> + dev_set_drvdata(thread->attached_cpu_dev, &thread->ext_data);
>> +
>> + dev_dbg(drv->dev, "using cpu clk from: %s\n",
>> + dev_name(thread->attached_cpu_dev));
>> +
>> + /*
>> + * Everything related to (virtual) corners has to be initialized
>> + * here, when attaching to the power domain, since we need to know
>> + * the maximum frequency for each fuse corner, and this is only
>> + * available after the cpufreq driver has attached to us.
>> + * The reason for this is that we need to know the highest
>> + * frequency associated with each fuse corner.
>> + */
>> + ret = dev_pm_opp_get_opp_count(&thread->pd.dev);
>> + if (ret < 0) {
>> + dev_err(drv->dev, "could not get OPP count\n");
>> + thread->attached_cpu_dev = NULL;
>> + goto unlock;
>> + }
>> + thread->num_corners = ret;
>> +
>> + thread->corners = devm_kcalloc(drv->dev,
>> + thread->num_corners +
>> + drv->extra_corners,
>> + sizeof(*thread->corners),
>> + GFP_KERNEL);
>> + if (!thread->corners) {
>> + ret = -ENOMEM;
>> + goto unlock;
>> + }
>> +
>> + /*
>> + * If we are on CPR-Hardened we have to make sure that the attached
>> + * device has a OPP table installed, as we're going to modify it here
>> + * with our calculations based on qfprom values.
>> + */
>> + if (drv->desc->cpr_type == CTRL_TYPE_CPRH) {
>> + ret = dev_pm_opp_of_add_table(dev);
>> + if (ret && ret != -EEXIST) {
>> + dev_err(drv->dev, "Cannot add table: %d\n", ret);
>> + goto unlock;
>> + }
>> + cprh_opp_remove_table = true;
>> + }
>> +
>> + ret = cpr3_corner_init(thread);
>> + if (ret)
>> + goto exit;
>> +
>> + if (drv->desc->cpr_type < CTRL_TYPE_CPRH) {
>> + ret = cpr3_find_initial_corner(thread);
>> + if (ret)
>> + goto exit;
>> +
>> + if (acc_desc->config)
>> + regmap_multi_reg_write(drv->tcsr, acc_desc->config,
>> + acc_desc->num_regs_per_fuse);
>> +
>> + /* Enable ACC if required */
>> + if (acc_desc->enable_mask)
>> + regmap_update_bits(drv->tcsr, acc_desc->enable_reg,
>> + acc_desc->enable_mask,
>> + acc_desc->enable_mask);
>> + }
>> + dev_info(drv->dev, "thread %d initialized with %u OPPs\n",
>> + thread->id, thread->num_corners);
>> +exit:
>> + /*
>> + * If we are on CPRh and we reached an error condition, we installed
>> + * the OPP table but we haven't done any setup on it, nor we ever will.
>> + * In order to leave a clean state, remove the table.
>> + */
>> + if (ret && cprh_opp_remove_table)
>> + dev_pm_opp_of_remove_table(thread->attached_cpu_dev);
>> +unlock:
>> + mutex_unlock(&drv->lock);
>> +
>> + return ret;
>> +}
>> +
>> +static int cpr3_debug_info_show(struct seq_file *s, void *unused)
>> +{
>> + u32 ro_sel, ctl, irq_status, reg, quot;
>> + struct cpr_thread *thread = s->private;
>> + struct corner *corner = thread->corners;
>> + struct fuse_corner *fuse = thread->fuse_corners;
>> + unsigned int i;
>> +
>> + const struct {
>> + const char *name;
>> + uint32_t mask;
>> + uint8_t shift;
>> + } result0_fields[] = {
>> + { "busy", 1, 0 },
>> + { "step_dn", 1, 1 },
>> + { "step_up", 1, 2 },
>> + { "error_steps", CPR3_RESULT0_ERROR_STEPS_MASK,
>> + CPR3_RESULT0_ERROR_STEPS_SHIFT },
>> + { "error", CPR3_RESULT0_ERROR_MASK, CPR3_RESULT0_ERROR_SHIFT },
>> + { "negative", 1, 20 },
>> + }, result1_fields[] = {
>> + { "quot_min", CPR3_RESULT1_QUOT_MIN_MASK,
>> + CPR3_RESULT1_QUOT_MIN_SHIFT },
>> + { "quot_max", CPR3_RESULT1_QUOT_MAX_MASK,
>> + CPR3_RESULT1_QUOT_MAX_SHIFT },
>> + { "ro_min", CPR3_RESULT1_RO_MIN_MASK,
>> + CPR3_RESULT1_RO_MIN_SHIFT },
>> + { "ro_max", CPR3_RESULT1_RO_MAX_MASK,
>> + CPR3_RESULT1_RO_MAX_SHIFT },
>> + }, result2_fields[] = {
>> + { "qout_step_min", CPR3_RESULT2_STEP_QUOT_MIN_MASK,
>> + CPR3_RESULT2_STEP_QUOT_MIN_SHIFT },
>> + { "qout_step_max", CPR3_RESULT2_STEP_QUOT_MAX_MASK,
>> + CPR3_RESULT2_STEP_QUOT_MAX_SHIFT },
>> + { "sensor_min", CPR3_RESULT2_SENSOR_MIN_MASK,
>> + CPR3_RESULT2_SENSOR_MIN_SHIFT },
>> + { "sensor_max", CPR3_RESULT2_SENSOR_MAX_MASK,
>> + CPR3_RESULT2_SENSOR_MAX_SHIFT },
>> + };
>> +
>> + if (thread->drv->desc->cpr_type < CTRL_TYPE_CPRH)
>> + seq_printf(s, "current_volt = %d uV\n", thread->drv->last_uV);
>> +
>> + irq_status = cpr_read(thread, CPR3_REG_IRQ_STATUS);
>> + seq_printf(s, "irq_status = %#02X\n", irq_status);
>> +
>> + ctl = cpr_read(thread, CPR3_REG_CPR_CTL);
>> + seq_printf(s, "cpr_ctl = %#02X\n", ctl);
>> +
>> + seq_printf(s, "thread %d - hw tid: %u - enabled: %d:\n",
>> + thread->id, thread->desc->hw_tid, thread->enabled);
>> + seq_printf(s, "%d corners, derived from %d fuse corners\n",
>> + thread->num_corners, thread->desc->num_fuse_corners);
>> +
>> + for (i = 0; i < thread->num_corners; i++, corner++)
>> + seq_printf(s, "corner %d - uV=[%d %d %d] quot=%d freq=%lu\n",
>> + i, corner->min_uV, corner->uV, corner->max_uV,
>> + corner->quot_adjust, corner->freq);
>> +
>> + for (i = 0; i < thread->desc->num_fuse_corners; i++, fuse++)
>> + seq_printf(s, "fuse %d - uV=[%d %d %d] quot=%d freq=%lu\n",
>> + i, fuse->min_uV, fuse->uV, fuse->max_uV,
>> + fuse->quot, corner->freq);
>> +
>> + seq_printf(s, "requested voltage: %d uV\n", thread->corner->last_uV);
>> +
>> + ro_sel = corner->fuse_corner->ring_osc_idx;
>> + quot = cpr_read(thread, CPR3_REG_TARGET_QUOT(i, ro_sel));
>> + seq_printf(s, "quot_target (%u) = %#02X\n", ro_sel, quot);
>> +
>> + reg = cpr_read(thread, CPR3_REG_RESULT0(i));
>> + seq_printf(s, "cpr_result_0 = %#02X\n [", reg);
>> + for (i = 0; i < ARRAY_SIZE(result0_fields); i++)
>> + seq_printf(s, "%s%s = %u",
>> + i ? ", " : "",
>> + result0_fields[i].name,
>> + (reg >> result0_fields[i].shift) &
>> + result0_fields[i].mask);
>> + seq_puts(s, "]\n");
>> + reg = cpr_read(thread, CPR3_REG_RESULT1(i));
>> + seq_printf(s, "cpr_result_1 = %#02X\n [", reg);
>> + for (i = 0; i < ARRAY_SIZE(result1_fields); i++)
>> + seq_printf(s, "%s%s = %u",
>> + i ? ", " : "",
>> + result1_fields[i].name,
>> + (reg >> result1_fields[i].shift) &
>> + result1_fields[i].mask);
>> + seq_puts(s, "]\n");
>> + reg = cpr_read(thread, CPR3_REG_RESULT2(i));
>> + seq_printf(s, "cpr_result_2 = %#02X\n [", reg);
>> + for (i = 0; i < ARRAY_SIZE(result2_fields); i++)
>> + seq_printf(s, "%s%s = %u",
>> + i ? ", " : "",
>> + result2_fields[i].name,
>> + (reg >> result2_fields[i].shift) &
>> + result2_fields[i].mask);
>> + seq_puts(s, "]\n");
>> +
>> + return 0;
>> +}
>> +DEFINE_SHOW_ATTRIBUTE(cpr3_debug_info);
>> +
>> +static void cpr3_debugfs_init(struct cpr_drv *drv)
>> +{
>> + int i;
>> +
>> + drv->debugfs = debugfs_create_dir("qcom_cpr3", NULL);
>> +
>> + for (i = 0; i < drv->desc->num_threads; i++) {
>> + char buf[50];
>> +
>> + snprintf(buf, sizeof(buf), "thread%d", i);
>> +
>> + debugfs_create_file(buf, 0444, drv->debugfs, &drv->threads[i],
>> + &cpr3_debug_info_fops);
>> + }
>> +}
>> +
>> +/**
>> + * cpr_thread_init() - Initialize CPR thread related parameters
>> + * @drv: Main driver structure
>> + * @tid: Thread ID
>> + *
>> + * Return: Zero for success, negative number on error
>> + */
>> +static int cpr_thread_init(struct cpr_drv *drv, int tid)
>> +{
>> + const struct cpr_desc *desc = drv->desc;
>> + const struct cpr_thread_desc *tdesc = desc->threads[tid];
>> + struct cpr_thread *thread = &drv->threads[tid];
>> + int ret;
>> +
>> + if (tdesc->step_quot_init_min > CPR3_CPR_STEP_QUOT_MIN_MASK ||
>> + tdesc->step_quot_init_max > CPR3_CPR_STEP_QUOT_MAX_MASK)
>> + return -EINVAL;
>> +
>> + thread->id = tid;
>> + thread->drv = drv;
>> + thread->desc = tdesc;
>> + thread->fuse_corners = devm_kcalloc(drv->dev,
>> + tdesc->num_fuse_corners +
>> + drv->extra_corners,
>> + sizeof(*thread->fuse_corners),
>> + GFP_KERNEL);
>> + if (!thread->fuse_corners)
>> + return -ENOMEM;
>> +
>> + thread->cpr_fuses = cpr_get_fuses(drv->dev, tid,
>> + tdesc->num_fuse_corners);
>> + if (IS_ERR(thread->cpr_fuses))
>> + return PTR_ERR(thread->cpr_fuses);
>> +
>> + ret = cpr_populate_ring_osc_idx(thread->drv->dev, thread->fuse_corners,
>> + thread->cpr_fuses,
>> + tdesc->num_fuse_corners);
>> + if (ret)
>> + return ret;
>> +
>> + ret = cpr_fuse_corner_init(thread);
>> + if (ret)
>> + return ret;
>> +
>> + thread->pd.name = devm_kasprintf(drv->dev, GFP_KERNEL,
>> + "%s_thread%d",
>> + drv->dev->of_node->full_name,
>> + thread->id);
>> + if (!thread->pd.name)
>> + return -EINVAL;
>> +
>> + thread->pd.power_off = cpr_power_off;
>> + thread->pd.power_on = cpr_power_on;
>> + thread->pd.opp_to_performance_state = cpr_get_performance_state;
>> + thread->pd.attach_dev = cpr_pd_attach_dev;
>> + thread->pd.detach_dev = cpr_pd_detach_dev;
>> +
>> + /* CPR-Hardened performance states are managed in firmware */
>> + if (desc->cpr_type == CTRL_TYPE_CPRH)
>> + thread->pd.set_performance_state = cprh_dummy_set_performance_state;
>> + else
>> + thread->pd.set_performance_state = cpr_set_performance_state;
>> +
>> + /* Anything later than CPR1 must be always-on for now */
>> + thread->pd.flags = GENPD_FLAG_ALWAYS_ON;
>> +
>> + drv->cell_data.domains[tid] = &thread->pd;
>> +
>> + ret = pm_genpd_init(&thread->pd, NULL, false);
>> + if (ret)
>> + return ret;
>> +
>> + /* On CPRhardened, the interrupts are managed in firmware */
>> + if (desc->cpr_type < CTRL_TYPE_CPRH) {
>> + INIT_WORK(&thread->restart_work, cpr_restart_worker);
>> +
>> + ret = devm_request_threaded_irq(drv->dev, drv->irq,
>> + NULL, cpr_irq_handler,
>> + IRQF_ONESHOT |
>> + IRQF_TRIGGER_RISING,
>> + "cpr", drv);
>> + if (ret)
>> + return ret;
>> + }
>> +
>> + return 0;
>> +}
>> +
>> +/**
>> + * cpr3_resources_init() - Initialize resources used by this driver
>> + * @pdev: Platform device
>> + * @drv: Main driver structure
>> + *
>> + * Return: Zero for success, negative number on error
>> + */
>> +static int cpr3_resources_init(struct platform_device *pdev,
>> + struct cpr_drv *drv)
>> +{
>> + const struct cpr_desc *desc = drv->desc;
>> + struct cpr_thread *threads = drv->threads;
>> + unsigned int i;
>> + u8 cid_mask = 0;
>> +
>> + /*
>> + * Here, we are accounting for the following usecases:
>> + * - One controller
>> + * - One or multiple threads on the same iospace
>> + *
>> + * - Multiple controllers
>> + * - Each controller has its own iospace and each
>> + * may have one or multiple threads in their
>> + * parent controller's iospace
>> + *
>> + * Then, to avoid complicating the code for no reason,
>> + * this also needs a mandatory order in the list of
>> + * threads which implies that all of them from the same
>> + * controllers are specified sequentially. As an example:
>> + *
>> + * C0-T0, C0-T1...C0-Tn, C1-T0, C1-T1...C1-Tn
>> + */
>> + for (i = 0; i < desc->num_threads; i++) {
>> + u8 cid = desc->threads[i]->controller_id;
>> +
>> + if (cid_mask & BIT(cid)) {
>> + if (desc->threads[i - 1]->controller_id != cid) {
>> + dev_err(drv->dev, "Bad threads order. Please fix!\n");
>> + return -EINVAL;
>> + }
>> + threads[i].base = threads[i - 1].base;
>> + continue;
>> + }
>> + threads[i].base = devm_platform_ioremap_resource(pdev, cid);
>> + if (IS_ERR(threads[i].base))
>> + return PTR_ERR(threads[i].base);
>> + cid_mask |= BIT(cid);
>> + }
>> + return 0;
>> +}
>> +
>> +static int cpr_probe(struct platform_device *pdev)
>> +{
>> + struct device *dev = &pdev->dev;
>> + struct cpr_drv *drv;
>> + const struct cpr_desc *desc;
>> + const struct cpr_acc_desc *data;
>> + struct device_node *np;
>> + unsigned int i;
>> + int ret;
>> +
>> + data = of_device_get_match_data(dev);
>> + if (!data || !data->cpr_desc)
>> + return -EINVAL;
>> +
>> + desc = data->cpr_desc;
>> +
>> + /* CPRh disallows MEM-ACC access from the HLOS */
>> + if (!data->acc_desc && desc->cpr_type < CTRL_TYPE_CPRH)
>> + return -EINVAL;
>> +
>> + drv = devm_kzalloc(dev, sizeof(*drv), GFP_KERNEL);
>> + if (!drv)
>> + return -ENOMEM;
>> +
>> + drv->dev = dev;
>> + drv->desc = desc;
>> + drv->threads = devm_kcalloc(dev, desc->num_threads,
>> + sizeof(*drv->threads), GFP_KERNEL);
>> + if (!drv->threads)
>> + return -ENOMEM;
>> +
>> + drv->cell_data.num_domains = desc->num_threads;
>> + drv->cell_data.domains = devm_kcalloc(drv->dev,
>> + drv->cell_data.num_domains,
>> + sizeof(*drv->cell_data.domains),
>> + GFP_KERNEL);
>> + if (!drv->cell_data.domains)
>> + return -ENOMEM;
>> +
>> + if (data->acc_desc)
>> + drv->acc_desc = data->acc_desc;
>> +
>> + mutex_init(&drv->lock);
>> +
>> + if (desc->cpr_type < CTRL_TYPE_CPRH) {
>> + np = of_parse_phandle(dev->of_node, "acc-syscon", 0);
>> + if (!np)
>> + return -ENODEV;
>> +
>> + drv->tcsr = syscon_node_to_regmap(np);
>> + of_node_put(np);
>> + if (IS_ERR(drv->tcsr))
>> + return PTR_ERR(drv->tcsr);
>> + }
>> +
>> + ret = cpr3_resources_init(pdev, drv);
>> + if (ret)
>> + return ret;
>> +
>> + drv->irq = platform_get_irq_optional(pdev, 0);
>> + if (desc->cpr_type != CTRL_TYPE_CPRH && drv->irq < 0)
>> + return -EINVAL;
>> +
>> + /* On CPRhardened, vreg access it not allowed */
>> + drv->vreg = devm_regulator_get_optional(dev, "vdd");
>> + if (desc->cpr_type != CTRL_TYPE_CPRH && IS_ERR(drv->vreg))
>> + return PTR_ERR(drv->vreg);
>> +
>> + /*
>> + * On at least CPRhardened, vreg is unaccessible and there is no
>> + * way to read linear step from that regulator, hence it is hardcoded
>> + * in the driver;
>> + * When the vreg_step is not declared in the cpr data (or is zero),
>> + * then having access to the vreg regulator is mandatory, as this
>> + * will be retrieved through the regulator API.
>> + */
>> + if (desc->vreg_step_fixed)
>> + drv->vreg_step = desc->vreg_step_fixed;
>> + else
>> + drv->vreg_step = regulator_get_linear_step(drv->vreg);
>> +
>> + if (!drv->vreg_step)
>> + return -EINVAL;
>> +
>> + /*
>> + * Initialize fuse corners, since it simply depends
>> + * on data in efuses.
>> + * Everything related to (virtual) corners has to be
>> + * initialized after attaching to the power domain,
>> + * since it depends on the CPU's OPP table.
>> + */
>> + ret = nvmem_cell_read_variable_le_u32(dev, "cpr_fuse_revision", &drv->fusing_rev);
>> + if (ret)
>> + return ret;
>> +
>> + ret = nvmem_cell_read_variable_le_u32(dev, "cpr_speed_bin", &drv->speed_bin);
>> + if (ret)
>> + return ret;
>> +
>> + /*
>> + * Some SoCs require extra corners for MEM-ACC or APM: if
>> + * the related parameters have been specified, then reserve
>> + * a corner for the APM and/or MEM-ACC crossover, used by
>> + * OSM and CPRh HW to set the supply voltage during the APM
>> + * and/or MEM-ACC switch routine.
>> + */
>> + if (desc->cpr_type == CTRL_TYPE_CPRH) {
>> + if (desc->apm_crossover && desc->apm_hysteresis >= 0)
>> + drv->extra_corners++;
>> +
>> + if (desc->mem_acc_threshold)
>> + drv->extra_corners++;
>> + }
>> +
>> + /* Initialize all threads */
>> + for (i = 0; i < desc->num_threads; i++) {
>> + ret = cpr_thread_init(drv, i);
>> + if (ret)
>> + return ret;
>> + }
>> +
>> + /* Initialize global parameters */
>> + ret = cpr3_init_parameters(drv);
>> + if (ret)
>> + return ret;
>> +
>> + /* Write initial configuration on all threads */
>> + for (i = 0; i < desc->num_threads; i++) {
>> + ret = cpr_configure(&drv->threads[i]);
>> + if (ret)
>> + return ret;
>> + }
>> +
>> + ret = of_genpd_add_provider_onecell(dev->of_node, &drv->cell_data);
>> + if (ret)
>> + return ret;
>> +
>> + platform_set_drvdata(pdev, drv);
>> + cpr3_debugfs_init(drv);
>> +
>> + return 0;
>> +}
>> +
>> +static int cpr_remove(struct platform_device *pdev)
>> +{
>> + struct cpr_drv *drv = platform_get_drvdata(pdev);
>> + int i;
>> +
>> + of_genpd_del_provider(pdev->dev.of_node);
>> +
>> + for (i = 0; i < drv->desc->num_threads; i++) {
>> + cpr_ctl_disable(&drv->threads[i]);
>> + cpr_irq_set(&drv->threads[i], 0);
>> + pm_genpd_remove(&drv->threads[i].pd);
>> + }
>> +
>> + debugfs_remove_recursive(drv->debugfs);
>> +
>> + return 0;
>> +}
>> +
>> +static const struct of_device_id cpr3_match_table[] = {
>> + { .compatible = "qcom,msm8998-cprh", .data = &msm8998_cpr_acc_desc },
>> + { .compatible = "qcom,sdm630-cprh", .data = &sdm630_cpr_acc_desc },
>> + { }
>> +};
>> +MODULE_DEVICE_TABLE(of, cpr3_match_table);
>> +
>> +static struct platform_driver cpr3_driver = {
>> + .probe = cpr_probe,
>> + .remove = cpr_remove,
>> + .driver = {
>> + .name = "qcom-cpr3",
>> + .of_match_table = cpr3_match_table,
>> + },
>> +};
>> +module_platform_driver(cpr3_driver)
>> +
>> +MODULE_DESCRIPTION("Core Power Reduction (CPR) v3/v4 driver");
>> +MODULE_LICENSE("GPL v2");
>> \ No newline at end of file
Powered by blists - more mailing lists