[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <634aa365-1f51-8684-24ae-3b68aba1e12a@redhat.com>
Date: Mon, 23 Jan 2023 10:28:23 +0100
From: David Hildenbrand <david@...hat.com>
To: Rick Edgecombe <rick.p.edgecombe@...el.com>, x86@...nel.org,
"H . Peter Anvin" <hpa@...or.com>,
Thomas Gleixner <tglx@...utronix.de>,
Ingo Molnar <mingo@...hat.com>, linux-kernel@...r.kernel.org,
linux-doc@...r.kernel.org, linux-mm@...ck.org,
linux-arch@...r.kernel.org, linux-api@...r.kernel.org,
Arnd Bergmann <arnd@...db.de>,
Andy Lutomirski <luto@...nel.org>,
Balbir Singh <bsingharora@...il.com>,
Borislav Petkov <bp@...en8.de>,
Cyrill Gorcunov <gorcunov@...il.com>,
Dave Hansen <dave.hansen@...ux.intel.com>,
Eugene Syromiatnikov <esyr@...hat.com>,
Florian Weimer <fweimer@...hat.com>,
"H . J . Lu" <hjl.tools@...il.com>, Jann Horn <jannh@...gle.com>,
Jonathan Corbet <corbet@....net>,
Kees Cook <keescook@...omium.org>,
Mike Kravetz <mike.kravetz@...cle.com>,
Nadav Amit <nadav.amit@...il.com>,
Oleg Nesterov <oleg@...hat.com>, Pavel Machek <pavel@....cz>,
Peter Zijlstra <peterz@...radead.org>,
Randy Dunlap <rdunlap@...radead.org>,
Weijiang Yang <weijiang.yang@...el.com>,
"Kirill A . Shutemov" <kirill.shutemov@...ux.intel.com>,
John Allen <john.allen@....com>, kcc@...gle.com,
eranian@...gle.com, rppt@...nel.org, jamorris@...ux.microsoft.com,
dethoma@...rosoft.com, akpm@...ux-foundation.org,
Andrew.Cooper3@...rix.com, christina.schimpe@...el.com
Cc: Yu-cheng Yu <yu-cheng.yu@...el.com>
Subject: Re: [PATCH v5 10/39] x86/mm: Introduce _PAGE_COW
On 19.01.23 22:22, Rick Edgecombe wrote:
> Some OSes have a greater dependence on software available bits in PTEs than
> Linux. That left the hardware architects looking for a way to represent a
> new memory type (shadow stack) within the existing bits. They chose to
> repurpose a lightly-used state: Write=0,Dirty=1. So in order to support
> shadow stack memory, Linux should avoid creating memory with this PTE bit
> combination unless it intends for it to be shadow stack.
>
> The reason it's lightly used is that Dirty=1 is normally set by HW
> _before_ a write. A write with a Write=0 PTE would typically only generate
> a fault, not set Dirty=1. Hardware can (rarely) both set Dirty=1 *and*
> generate the fault, resulting in a Write=0,Dirty=1 PTE. Hardware which
> supports shadow stacks will no longer exhibit this oddity.
>
> So that leaves Write=0,Dirty=1 PTEs created in software. To achieve this,
> in places where Linux normally creates Write=0,Dirty=1, it can use the
> software-defined _PAGE_COW in place of the hardware _PAGE_DIRTY. In other
> words, whenever Linux needs to create Write=0,Dirty=1, it instead creates
> Write=0,Cow=1 except for shadow stack, which is Write=0,Dirty=1.
> Further differentiated by VMA flags, these PTE bit combinations would be
> set as follows for various types of memory:
>
> (Write=0,Cow=1,Dirty=0):
> - A modified, copy-on-write (COW) page. Previously when a typical
> anonymous writable mapping was made COW via fork(), the kernel would
> mark it Write=0,Dirty=1. Now it will instead use the Cow bit. This
> happens in copy_present_pte().
> - A R/O page that has been COW'ed. The user page is in a R/O VMA,
> and get_user_pages(FOLL_FORCE) needs a writable copy. The page fault
> handler creates a copy of the page and sets the new copy's PTE as
> Write=0 and Cow=1.
> - A shared shadow stack PTE. When a shadow stack page is being shared
> among processes (this happens at fork()), its PTE is made Dirty=0, so
> the next shadow stack access causes a fault, and the page is
> duplicated and Dirty=1 is set again. This is the COW equivalent for
> shadow stack pages, even though it's copy-on-access rather than
> copy-on-write.
>
> (Write=0,Cow=0,Dirty=1):
> - A shadow stack PTE.
> - A Cow PTE created when a processor without shadow stack support set
> Dirty=1.
>
> There are six bits left available to software in the 64-bit PTE after
> consuming a bit for _PAGE_COW. No space is consumed in 32-bit kernels
> because shadow stacks are not enabled there.
>
> Implement only the infrastructure for _PAGE_COW. Changes to start
> creating _PAGE_COW PTEs will follow once other pieces are in place.
>
> Tested-by: Pengfei Xu <pengfei.xu@...el.com>
> Tested-by: John Allen <john.allen@....com>
> Co-developed-by: Yu-cheng Yu <yu-cheng.yu@...el.com>
> Signed-off-by: Yu-cheng Yu <yu-cheng.yu@...el.com>
> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@...el.com>
> ---
>
> v5:
> - Fix log, comments and whitespace (Boris)
> - Remove capitalization on shadow stack (Boris)
>
> v4:
> - Teach pte_flags_need_flush() about _PAGE_COW bit
> - Break apart patch for better bisectability
>
> v3:
> - Add comment around _PAGE_TABLE in response to comment
> from (Andrew Cooper)
> - Check for PSE in pmd_shstk (Andrew Cooper)
> - Get to the point quicker in commit log (Andrew Cooper)
> - Clarify and reorder commit log for why the PTE bit examples have
> multiple entries. Apply same changes for comment. (peterz)
> - Fix comment that implied dirty bit for COW was a specific x86 thing
> (peterz)
> - Fix swapping of Write/Dirty (PeterZ)
>
> v2:
> - Update commit log with comments (Dave Hansen)
> - Add comments in code to explain pte modification code better (Dave)
> - Clarify info on the meaning of various Write,Cow,Dirty combinations
>
> arch/x86/include/asm/pgtable.h | 78 ++++++++++++++++++++++++++++
> arch/x86/include/asm/pgtable_types.h | 59 +++++++++++++++++++--
> arch/x86/include/asm/tlbflush.h | 3 +-
> 3 files changed, 134 insertions(+), 6 deletions(-)
>
> diff --git a/arch/x86/include/asm/pgtable.h b/arch/x86/include/asm/pgtable.h
> index b39f16c0d507..6d2f612c04b5 100644
> --- a/arch/x86/include/asm/pgtable.h
> +++ b/arch/x86/include/asm/pgtable.h
> @@ -301,6 +301,44 @@ static inline pte_t pte_clear_flags(pte_t pte, pteval_t clear)
> return native_make_pte(v & ~clear);
> }
>
> +/*
> + * Normally COW memory can result in Dirty=1,Write=0 PTEs. But in the case
> + * of X86_FEATURE_USER_SHSTK, the software COW bit is used, since the
> + * Dirty=1,Write=0 will result in the memory being treated as shadow stack
> + * by the HW. So when creating COW memory, a software bit is used
> + * _PAGE_BIT_COW. The following functions pte_mkcow() and pte_clear_cow()
> + * take a PTE marked conventionally COW (Dirty=1) and transition it to the
> + * shadow stack compatible version of COW (Cow=1).
> + */
TBH, I find that all highly confusing.
Dirty=1,Write=0 does not indicate a COW page reliably. You could have
both, false negatives and false positives.
False negative: fork() on a clean anon page.
False positives: wrpotect() of a dirty anon page.
I wonder if it really has to be that complicated: what you really want
to achieve is to disallow "Dirty=1,Write=0" if it's not a shadow stack
page, correct?
--
Thanks,
David / dhildenb
Powered by blists - more mailing lists