[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <b50f9460-ac54-e997-f9b9-3c47a9b87aae@alu.unizg.hr>
Date: Tue, 28 Mar 2023 14:44:08 +0200
From: Mirsad Todorovac <mirsad.todorovac@....unizg.hr>
To: Greg Kroah-Hartman <gregkh@...uxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@...nel.org>,
linux-kernel@...r.kernel.org, Hans de Goede <hdegoede@...hat.com>,
Mark Gross <markgross@...nel.org>,
platform-driver-x86@...r.kernel.org
Subject: Re: [BUG] systemd-devd triggers kernel memleak apparently in
drivers/core/dd.c: driver_register()
On 3/28/23 14:17, Greg Kroah-Hartman wrote:
> On Tue, Mar 28, 2023 at 02:08:06PM +0200, Mirsad Todorovac wrote:
>> On 3/28/23 13:59, Mirsad Todorovac wrote:
>>
>>> On 3/28/23 13:28, Greg Kroah-Hartman wrote:
>>>> On Tue, Mar 28, 2023 at 01:13:33PM +0200, Mirsad Todorovac wrote:
>>>>> Hi all,
>>>>>
>>>>> Here is another kernel memory leak report, just as I thought we have done with
>>>>> them by the xhci patch by Mathias.
>>>>>
>>>>> The memory leaks were caught on an AlmaLinux 8.7 (CentOS) fork system, running
>>>>> on a Lenovo desktop box (see lshw.txt) and the newest Linux kernel 6.3-rc4 commit
>>>>> g3a93e40326c8 with Mathias' patch for a xhci systemd-devd triggered leak.
>>>>>
>>>>> See: <20230327095019.1017159-1-mathias.nyman@...ux.intel.com> on LKML.
>>>>>
>>>>> This leak is also systemd-devd triggered, except for the memstick_check() leaks
>>>>> which I was unable to bisect due to the box not booting older kernels (work in
>>>>> progress).
>>>>>
>>>>> unreferenced object 0xffff88ad12392710 (size 96):
>>>>> comm "systemd-udevd", pid 735, jiffies 4294896759 (age 2257.568s)
>>>>> hex dump (first 32 bytes):
>>>>> 53 65 72 69 61 6c 50 6f 72 74 31 41 64 64 72 65 SerialPort1Addre
>>>>> 73 73 2c 33 46 38 2f 49 52 51 34 3b 5b 4f 70 74 ss,3F8/IRQ4;[Opt
>>>>> backtrace:
>>>>> [<ffffffffae8fb26c>] slab_post_alloc_hook+0x8c/0x3e0
>>>>> [<ffffffffae902b49>] __kmem_cache_alloc_node+0x1d9/0x2a0
>>>>> [<ffffffffae8773c9>] __kmalloc_node_track_caller+0x59/0x180
>>>>> [<ffffffffae866a1a>] kstrdup+0x3a/0x70
>>>>> [<ffffffffc0d839aa>] tlmi_extract_output_string.isra.0+0x2a/0x60 [think_lmi]
>>>>> [<ffffffffc0d83b64>] tlmi_setting.constprop.4+0x54/0x90 [think_lmi]
>>>>> [<ffffffffc0d842b1>] tlmi_probe+0x591/0xba0 [think_lmi]
>>>>> [<ffffffffc051dc53>] wmi_dev_probe+0x163/0x230 [wmi]
>>>>
>>>> Why aren't you looking at the wmi.c driver? That should be where the
>>>> issue is, not the driver core, right?
>>>>
>>>> thanks,
>>>>
>>>> greg k-h
>>>
>>> Hi, Mr. Greg,
>>>
>>> Thanks for the quick reply.
>>>
>>> I have added CC: for additional developers per drivers/platform/x86/wmi.c,
>>> however, this seems to me like hieroglyphs. There is nothing obvious, but
>>> I had not noticed it with v6.3-rc3?
>>>
>>> Maybe, there seems to be something off:
>>>
>>> 949 static int wmi_dev_probe(struct device *dev)
>>> 950 {
>>> 951 struct wmi_block *wblock = dev_to_wblock(dev);
>>> 952 struct wmi_driver *wdriver = drv_to_wdrv(dev->driver);
>>> 953 int ret = 0;
>>> 954 char *buf;
>>> 955
>>> 956 if (ACPI_FAILURE(wmi_method_enable(wblock, true)))
>>> 957 dev_warn(dev, "failed to enable device -- probing anyway\n");
>>> 958
>>> 959 if (wdriver->probe) {
>>> 960 ret = wdriver->probe(dev_to_wdev(dev),
>>> 961 find_guid_context(wblock, wdriver));
>>> 962 if (ret != 0)
>>> 963 goto probe_failure;
>>> 964 }
>>> 965
>>> 966 /* driver wants a character device made */
>>> 967 if (wdriver->filter_callback) {
>>> 968 /* check that required buffer size declared by driver or MOF */
>>> 969 if (!wblock->req_buf_size) {
>>> 970 dev_err(&wblock->dev.dev,
>>> 971 "Required buffer size not set\n");
>>> 972 ret = -EINVAL;
>>> 973 goto probe_failure;
>>> 974 }
>>> 975
>>> 976 wblock->handler_data = kmalloc(wblock->req_buf_size,
>>> 977 GFP_KERNEL);
>>> 978 if (!wblock->handler_data) {
>>> 979 ret = -ENOMEM;
>>> 980 goto probe_failure;
>>> 981 }
>>> 982
>>> 983 buf = kasprintf(GFP_KERNEL, "wmi/%s", wdriver->driver.name);
>>> 984 if (!buf) {
>>> 985 ret = -ENOMEM;
>>> 986 goto probe_string_failure;
>>> 987 }
>>> 988 wblock->char_dev.minor = MISC_DYNAMIC_MINOR;
>>> 989 wblock->char_dev.name = buf;
>>> 990 wblock->char_dev.fops = &wmi_fops;
>>> 991 wblock->char_dev.mode = 0444;
>>> 992 ret = misc_register(&wblock->char_dev);
>>> 993 if (ret) {
>>> 994 dev_warn(dev, "failed to register char dev: %d\n", ret);
>>> 995 ret = -ENOMEM;
>>> 996 goto probe_misc_failure;
>>> 997 }
>>> 998 }
>>> 999
>>> 1000 set_bit(WMI_PROBED, &wblock->flags);
>>> 1001 return 0;
>>> 1002
>>> 1003 probe_misc_failure:
>>> 1004 kfree(buf);
>>> 1005 probe_string_failure:
>>> 1006 kfree(wblock->handler_data);
>>> 1007 probe_failure:
>>> 1008 if (ACPI_FAILURE(wmi_method_enable(wblock, false)))
>>> 1009 dev_warn(dev, "failed to disable device\n");
>>>
>>>
>>> char *buf is passed to kfree(buf) uninitialised if wdriver->filter_callback
>>> is not set.
>>>
>>> It seems like a logical error per se, but I don't believe this is the cause
>>> of the leak?
>>
>> CORRECTION:
>>
>> I overlooked the "return 0" in line 1001.
>
> Yeah, and the memory looks to be freed properly in the wmi_dev_remove()
> callback, right?
It would appear so. To verify that:
Alloc:
976 wblock->handler_data = kmalloc(wblock->req_buf_size,
GFP_KERNEL);
<check>
983 buf = kasprintf(GFP_KERNEL, "wmi/%s", wdriver->driver.name);
<check>
989 wblock->char_dev.name = buf;
In lines 1022-1023:
1022 kfree(wblock->char_dev.name);
1023 kfree(wblock->handler_data);
>> This is why I don't think things should be rushed, but analysed with clear and
>> cold head. And with as many eyes as possible :)
>>
>> The driver stuff is my long-term research interest. To state the obvious,
>> the printing and multimedia education and industry in general would benefit from
>> the open-source drivers for many instruments that still work, but are obsoleted
>> by the producer and require unsupported versions of the OS.
>>
>> Thank you again for reviewing the bug report, however, ATM I do not think I have
>> what it takes to hunt down the memleak. :-/
>
> Do you have a reproducer that you can use to show the problem better?
Unfortunately, the problem doesn't seem to appear during the run of a particular
test, but immediately on startup of the OS. This makes it awkward to pinpoint the
exact service that triggered memory leaks. But they would appear to have to do
with the initialisation of the USB devices, wouldn't they?
There seem to be strings:
"USBPortAccess,Enabled;[Optional:"
"USBBIOSSupport,Enabled;[Optional"
"USBEnumerationDelay,Disabled;[Op"
This seems to be happening during USB initialisation and before any services.
But I might as well be wrong.
> Or can you test kernel patches to verify the problem is fixed or not if
> we send you patches to test?
Certainly, Lord willing, I can test the patches in the same environment that
mainfeted the bug (or memleak).
Best regards,
Mirsad
--
Mirsad Goran Todorovac
Sistem inženjer
Grafički fakultet | Akademija likovnih umjetnosti
Sveučilište u Zagrebu
System engineer
Faculty of Graphic Arts | Academy of Fine Arts
University of Zagreb, Republic of Croatia
"What’s this thing suddenly coming towards me very fast? Very very fast.
... I wonder if it will be friends with me?"
Powered by blists - more mailing lists