lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Date:   Tue, 16 May 2023 14:44:00 -0500
From:   Tom Lendacky <thomas.lendacky@....com>
To:     "Kirill A. Shutemov" <kirill.shutemov@...ux.intel.com>,
        Borislav Petkov <bp@...en8.de>,
        Andy Lutomirski <luto@...nel.org>,
        Dave Hansen <dave.hansen@...el.com>,
        Sean Christopherson <seanjc@...gle.com>,
        Andrew Morton <akpm@...ux-foundation.org>,
        Joerg Roedel <jroedel@...e.de>,
        Ard Biesheuvel <ardb@...nel.org>
Cc:     Andi Kleen <ak@...ux.intel.com>,
        Kuppuswamy Sathyanarayanan 
        <sathyanarayanan.kuppuswamy@...ux.intel.com>,
        David Rientjes <rientjes@...gle.com>,
        Vlastimil Babka <vbabka@...e.cz>,
        Thomas Gleixner <tglx@...utronix.de>,
        Peter Zijlstra <peterz@...radead.org>,
        Paolo Bonzini <pbonzini@...hat.com>,
        Ingo Molnar <mingo@...hat.com>,
        Dario Faggioli <dfaggioli@...e.com>,
        Mike Rapoport <rppt@...nel.org>,
        David Hildenbrand <david@...hat.com>,
        Mel Gorman <mgorman@...hsingularity.net>,
        marcelo.cerri@...onical.com, tim.gardner@...onical.com,
        khalid.elmously@...onical.com, philip.cox@...onical.com,
        aarcange@...hat.com, peterx@...hat.com, x86@...nel.org,
        linux-mm@...ck.org, linux-coco@...ts.linux.dev,
        linux-efi@...r.kernel.org, linux-kernel@...r.kernel.org,
        Mike Rapoport <rppt@...ux.ibm.com>
Subject: Re: [PATCHv11 1/9] mm: Add support for unaccepted memory

On 5/13/23 17:04, Kirill A. Shutemov wrote:
> UEFI Specification version 2.9 introduces the concept of memory
> acceptance. Some Virtual Machine platforms, such as Intel TDX or AMD
> SEV-SNP, require memory to be accepted before it can be used by the
> guest. Accepting happens via a protocol specific to the Virtual Machine
> platform.
> 
> There are several ways kernel can deal with unaccepted memory:
> 
>   1. Accept all the memory during the boot. It is easy to implement and
>      it doesn't have runtime cost once the system is booted. The downside
>      is very long boot time.
> 
>      Accept can be parallelized to multiple CPUs to keep it manageable
>      (i.e. via DEFERRED_STRUCT_PAGE_INIT), but it tends to saturate
>      memory bandwidth and does not scale beyond the point.
> 
>   2. Accept a block of memory on the first use. It requires more
>      infrastructure and changes in page allocator to make it work, but
>      it provides good boot time.
> 
>      On-demand memory accept means latency spikes every time kernel steps
>      onto a new memory block. The spikes will go away once workload data
>      set size gets stabilized or all memory gets accepted.
> 
>   3. Accept all memory in background. Introduce a thread (or multiple)
>      that gets memory accepted proactively. It will minimize time the
>      system experience latency spikes on memory allocation while keeping
>      low boot time.
> 
>      This approach cannot function on its own. It is an extension of #2:
>      background memory acceptance requires functional scheduler, but the
>      page allocator may need to tap into unaccepted memory before that.
> 
>      The downside of the approach is that these threads also steal CPU
>      cycles and memory bandwidth from the user's workload and may hurt
>      user experience.
> 
> The patch implements #1 and #2 for now. #2 is the default. Some
> workloads may want to use #1 with accept_memory=eager in kernel
> command line. #3 can be implemented later based on user's demands.
> 
> Support of unaccepted memory requires a few changes in core-mm code:
> 
>    - memblock has to accept memory on allocation;
> 
>    - page allocator has to accept memory on the first allocation of the
>      page;
> 
> Memblock change is trivial.
> 
> The page allocator is modified to accept pages. New memory gets accepted
> before putting pages on free lists. It is done lazily: only accept new
> pages when we run out of already accepted memory. The memory gets
> accepted until the high watermark is reached.
> 
> EFI code will provide two helpers if the platform supports unaccepted
> memory:
> 
>   - accept_memory() makes a range of physical addresses accepted.
> 
>   - range_contains_unaccepted_memory() checks anything within the range
>     of physical addresses requires acceptance.
> 
> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@...ux.intel.com>
> Acked-by: Mike Rapoport <rppt@...ux.ibm.com>	# memblock
> Reviewed-by: Vlastimil Babka <vbabka@...e.cz>
> ---
>   drivers/base/node.c    |   7 ++
>   fs/proc/meminfo.c      |   5 ++
>   include/linux/mm.h     |  19 +++++
>   include/linux/mmzone.h |   8 ++
>   mm/internal.h          |   1 +
>   mm/memblock.c          |   9 +++
>   mm/mm_init.c           |   7 ++
>   mm/page_alloc.c        | 173 +++++++++++++++++++++++++++++++++++++++++
>   mm/vmstat.c            |   3 +
>   9 files changed, 232 insertions(+)
> 

> diff --git a/mm/internal.h b/mm/internal.h
> index 68410c6d97ac..b1db7ba5f57d 100644
> --- a/mm/internal.h
> +++ b/mm/internal.h
> @@ -1099,4 +1099,5 @@ struct vma_prepare {
>   	struct vm_area_struct *remove;
>   	struct vm_area_struct *remove2;
>   };
> +

Looks like an unintentional change.

>   #endif	/* __MM_INTERNAL_H */
> diff --git a/mm/memblock.c b/mm/memblock.c
> index 3feafea06ab2..50b921119600 100644
> --- a/mm/memblock.c
> +++ b/mm/memblock.c
> @@ -1436,6 +1436,15 @@ phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
>   		 */
>   		kmemleak_alloc_phys(found, size, 0);
>   
> +	/*
> +	 * Some Virtual Machine platforms, such as Intel TDX or AMD SEV-SNP,
> +	 * require memory to be accepted before it can be used by the
> +	 * guest.
> +	 *
> +	 * Accept the memory of the allocated buffer.
> +	 */
> +	accept_memory(found, found + size);

I'm not an mm or memblock expert, but do we need to worry about freed 
memory from memblock_phys_free() being possibly doubly accepted? A double 
acceptance will trigger a guest termination on SNP.

Thanks,
Tom

> +
>   	return found;
>   }
>   

Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ