[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <CAKfTPtA+eyRBMU=-ccuPDkAQKQpz5z1inTGz9SW=cEMjB-6p+A@mail.gmail.com>
Date: Mon, 5 Jun 2023 14:31:29 +0200
From: Vincent Guittot <vincent.guittot@...aro.org>
To: Dietmar Eggemann <dietmar.eggemann@....com>
Cc: Ingo Molnar <mingo@...nel.org>,
Peter Zijlstra <peterz@...radead.org>,
Qais Yousef <qyousef@...alina.io>,
Kajetan Puchalski <kajetan.puchalski@....com>,
Morten Rasmussen <morten.rasmussen@....com>,
Vincent Donnefort <vdonnefort@...gle.com>,
Quentin Perret <qperret@...gle.com>,
Abhijeet Dharmapurikar <adharmap@...cinc.com>,
linux-kernel@...r.kernel.org
Subject: Re: [PATCH v3 2/2] sched/fair, cpufreq: Introduce 'runnable boosting'
On Mon, 15 May 2023 at 13:57, Dietmar Eggemann <dietmar.eggemann@....com> wrote:
>
> The responsiveness of the Per Entity Load Tracking (PELT) util_avg in
> mobile devices is still considered too low for utilization changes
> during task ramp-up.
>
> In Android this manifests in the fact that the first frames of a UI
> activity are very prone to be jankframes (a frame which doesn't meet
> the required frame rendering time, e.g. 16ms@...z) since the CPU
> frequency is normally low at this point and has to ramp up quickly.
>
> The beginning of an UI activity is also characterized by the occurrence
> of CPU contention, especially on little CPUs. Current little CPUs can
> have an original CPU capacity of only ~ 150 which means that the actual
> CPU capacity at lower frequency can even be much smaller.
>
> Schedutil maps CPU util_avg into CPU frequency request via:
>
> util = effective_cpu_util(..., cpu_util_cfs(cpu), ...) ->
> util = map_util_perf(util) -> freq = map_util_freq(util, ...)
>
> CPU contention for CFS tasks can be detected by 'CPU runnable > CPU
> utililization' in cpu_util_cfs_boost() -> cpu_util(..., boost = 1).
> Schedutil uses 'runnable boosting' by calling cpu_util_cfs_boost().
>
> To be in sync with schedutil's CPU frequency selection, Energy Aware
> Scheduling (EAS) also calls cpu_util(..., boost = 1) during max util
> detection.
>
> Moreover, 'runnable boosting' is also used in load-balance for busiest
> CPU selection when the migration type is 'migrate_util', i.e. only at
> sched domains which don't have the SD_SHARE_PKG_RESOURCES flag set.
>
> Suggested-by: Vincent Guittot <vincent.guittot@...aro.org>
> Signed-off-by: Dietmar Eggemann <dietmar.eggemann@....com>
Reviewed-by: Vincent Guittot <vincent.guittot@...aro.org>
> ---
> kernel/sched/cpufreq_schedutil.c | 3 ++-
> kernel/sched/fair.c | 38 +++++++++++++++++++++++++-------
> kernel/sched/sched.h | 1 +
> 3 files changed, 33 insertions(+), 9 deletions(-)
>
> diff --git a/kernel/sched/cpufreq_schedutil.c b/kernel/sched/cpufreq_schedutil.c
> index e3211455b203..4492608b7d7f 100644
> --- a/kernel/sched/cpufreq_schedutil.c
> +++ b/kernel/sched/cpufreq_schedutil.c
> @@ -155,10 +155,11 @@ static unsigned int get_next_freq(struct sugov_policy *sg_policy,
>
> static void sugov_get_util(struct sugov_cpu *sg_cpu)
> {
> + unsigned long util = cpu_util_cfs_boost(sg_cpu->cpu);
> struct rq *rq = cpu_rq(sg_cpu->cpu);
>
> sg_cpu->bw_dl = cpu_bw_dl(rq);
> - sg_cpu->util = effective_cpu_util(sg_cpu->cpu, cpu_util_cfs(sg_cpu->cpu),
> + sg_cpu->util = effective_cpu_util(sg_cpu->cpu, util,
> FREQUENCY_UTIL, NULL);
> }
>
> diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c
> index 9874e28d5e38..3b5b6186f2b9 100644
> --- a/kernel/sched/fair.c
> +++ b/kernel/sched/fair.c
> @@ -7150,6 +7150,7 @@ static int select_idle_sibling(struct task_struct *p, int prev, int target)
> * @cpu: the CPU to get the utilization for
> * @p: task for which the CPU utilization should be predicted or NULL
> * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL
> + * @boost: 1 to enable boosting, otherwise 0
> *
> * The unit of the return value must be the same as the one of CPU capacity
> * so that CPU utilization can be compared with CPU capacity.
> @@ -7167,6 +7168,12 @@ static int select_idle_sibling(struct task_struct *p, int prev, int target)
> * be when a long-sleeping task wakes up. The contribution to CPU utilization
> * of such a task would be significantly decayed at this point of time.
> *
> + * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization).
> + * CPU contention for CFS tasks can be detected by CPU runnable > CPU
> + * utilization. Boosting is implemented in cpu_util() so that internal
> + * users (e.g. EAS) can use it next to external users (e.g. schedutil),
> + * latter via cpu_util_cfs_boost().
> + *
> * CPU utilization can be higher than the current CPU capacity
> * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because
> * of rounding errors as well as task migrations or wakeups of new tasks.
> @@ -7177,12 +7184,19 @@ static int select_idle_sibling(struct task_struct *p, int prev, int target)
> * though since this is useful for predicting the CPU capacity required
> * after task migrations (scheduler-driven DVFS).
> *
> - * Return: (Estimated) utilization for the specified CPU.
> + * Return: (Boosted) (estimated) utilization for the specified CPU.
> */
> -static unsigned long cpu_util(int cpu, struct task_struct *p, int dst_cpu)
> +static unsigned long
> +cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost)
> {
> struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
> unsigned long util = READ_ONCE(cfs_rq->avg.util_avg);
> + unsigned long runnable;
> +
> + if (boost) {
> + runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
> + util = max(util, runnable);
> + }
>
> /*
> * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its
> @@ -7200,6 +7214,9 @@ static unsigned long cpu_util(int cpu, struct task_struct *p, int dst_cpu)
>
> util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
>
> + if (boost)
> + util_est = max(util_est, runnable);
> +
> /*
> * During wake-up @p isn't enqueued yet and doesn't contribute
> * to any cpu_rq(cpu)->cfs.avg.util_est.enqueued.
> @@ -7239,7 +7256,12 @@ static unsigned long cpu_util(int cpu, struct task_struct *p, int dst_cpu)
>
> unsigned long cpu_util_cfs(int cpu)
> {
> - return cpu_util(cpu, NULL, -1);
> + return cpu_util(cpu, NULL, -1, 0);
> +}
> +
> +unsigned long cpu_util_cfs_boost(int cpu)
> +{
> + return cpu_util(cpu, NULL, -1, 1);
> }
>
> /*
> @@ -7261,7 +7283,7 @@ static unsigned long cpu_util_without(int cpu, struct task_struct *p)
> if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
> p = NULL;
>
> - return cpu_util(cpu, p, -1);
> + return cpu_util(cpu, p, -1, 0);
> }
>
> /*
> @@ -7329,7 +7351,7 @@ static inline void eenv_pd_busy_time(struct energy_env *eenv,
> int cpu;
>
> for_each_cpu(cpu, pd_cpus) {
> - unsigned long util = cpu_util(cpu, p, -1);
> + unsigned long util = cpu_util(cpu, p, -1, 0);
>
> busy_time += effective_cpu_util(cpu, util, ENERGY_UTIL, NULL);
> }
> @@ -7353,7 +7375,7 @@ eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus,
>
> for_each_cpu(cpu, pd_cpus) {
> struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL;
> - unsigned long util = cpu_util(cpu, p, dst_cpu);
> + unsigned long util = cpu_util(cpu, p, dst_cpu, 1);
> unsigned long cpu_util;
>
> /*
> @@ -7499,7 +7521,7 @@ static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
> if (!cpumask_test_cpu(cpu, p->cpus_ptr))
> continue;
>
> - util = cpu_util(cpu, p, cpu);
> + util = cpu_util(cpu, p, cpu, 0);
> cpu_cap = capacity_of(cpu);
>
> /*
> @@ -10559,7 +10581,7 @@ static struct rq *find_busiest_queue(struct lb_env *env,
> break;
>
> case migrate_util:
> - util = cpu_util_cfs(i);
> + util = cpu_util_cfs_boost(i);
>
> /*
> * Don't try to pull utilization from a CPU with one
> diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h
> index f78c0f85cc76..5861e236adc6 100644
> --- a/kernel/sched/sched.h
> +++ b/kernel/sched/sched.h
> @@ -2948,6 +2948,7 @@ static inline unsigned long cpu_util_dl(struct rq *rq)
>
>
> extern unsigned long cpu_util_cfs(int cpu);
> +extern unsigned long cpu_util_cfs_boost(int cpu);
>
> static inline unsigned long cpu_util_rt(struct rq *rq)
> {
> --
> 2.25.1
>
Powered by blists - more mailing lists