[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <ZLAzG+Ue3JqDM/F3@smile.fi.intel.com>
Date: Thu, 13 Jul 2023 20:23:39 +0300
From: Andy Shevchenko <andriy.shevchenko@...ux.intel.com>
To: Alexander Potapenko <glider@...gle.com>
Cc: catalin.marinas@....com, will@...nel.org, pcc@...gle.com,
andreyknvl@...il.com, linux@...musvillemoes.dk,
yury.norov@...il.com, linux-kernel@...r.kernel.org,
linux-arm-kernel@...ts.infradead.org, eugenis@...gle.com
Subject: Re: [v2 3/5] arm64: mte: implement CONFIG_ARM64_MTE_COMP
On Thu, Jul 13, 2023 at 02:57:03PM +0200, Alexander Potapenko wrote:
> The config implements the EA0 algorithm suggested by Evgenii Stepanov
> to compress the memory tags for ARM MTE during swapping.
>
> The algorithm is based on RLE and specifically targets 128-byte buffers
> of tags corresponding to a single page. In the common case a buffer
> can be compressed into 63 bits, making it possible to store it without
> additional memory allocation.
...
> +/*
> + * EA0 stands for "Evgenii's Algorithm 0", as the initial proposal contained two
> + * compression algorithms.
> + *
> + * The algorithm attempts to compress a 128-byte (MTE_GRANULES_PER_PAGE / 2)
> + * array of tags into a smaller byte sequence that can be stored in a
> + * 16-, 32-, or 64-byte buffer. A special case is storing the tags inline in
> + * an 8-byte pointer.
> + *
> + * We encapsulate tag storage memory management in this module, because it is
> + * tightly coupled with the pointer representation.
> + * ea0_compress(*tags) takes a 128-byte buffer and returns an opaque value
> + * that can be stored in Xarray
> + * ea_decompress(*ptr, *tags) takes the opaque value and loads the tags into
> + * the provided 128-byte buffer.
> + *
> + *
> + *
Isn't a bit too many blank lines?
> + * The compression algorithm works as follows.
> + *
> + * 1. The input array of 128 bytes is transformed into tag ranges (two arrays:
> + * @r_tags containing tag values and @r_sizes containing range lengths) by
> + * ea0_tags_to_ranges(). Note that @r_sizes sums up to 256.
> + *
> + * 2. Depending on the number N of ranges, the following storage class is picked:
> + * N <= 6: 8 bytes (inline case, no allocation required);
> + * 6 < N <= 11: 16 bytes
> + * 11 < N <= 23: 32 bytes
> + * 23 < N <= 46: 64 bytes
> + * 46 < N: 128 bytes (no compression will be performed)
> + *
> + * 3. The number of the largest element of @r_sizes is stored in @largest_idx.
> + * The element itself is thrown away from @r_sizes, because it can be
> + * reconstructed from the sum of the remaining elements. Note that now none
> + * of the remaining @r_sizes elements is greater than 127.
> + *
> + * 4. For the inline case, the following values are stored in the 8-byte handle:
> + * largest_idx : i4
> + * r_tags[0..5] : i4 x 6
> + * r_sizes[0..4] : i7 x 5
> + * (if N is less than 6, @r_tags and @r_sizes are padded up with zero values)
> + *
> + * Because @largest_idx is <= 5, bit 63 of the handle is always 0 (so it can
> + * be stored in the Xarray), and bits 62..60 cannot all be 1, so it can be
> + * distinguished from a kernel pointer.
> + *
> + * 5. For the out-of-line case, the storage is allocated from one of the
> + * "mte-tags-{16,32,64,128}" kmem caches. The resulting pointer is aligned
> + * on 8 bytes, so its bits 2..0 can be used to store the size class:
> + * - 0 for 128 bytes
> + * - 1 for 16
> + * - 2 for 32
> + * - 4 for 64.
> + * Bit 63 of the pointer is zeroed out, so that it can be stored in Xarray.
> + *
> + * 6. The data layout in the allocated storage is as follows:
> + * largest_idx : i6
> + * r_tags[0..N] : i4 x N
> + * r_sizes[0..N-1] : i7 x (N-1)
> + *
> + *
> + *
Ditto.
> + * The decompression algorithm performs the steps below.
> + *
> + * 1. Decide if data is stored inline (bits 62..60 of the handle != 0b111) or
> + * out-of line.
> + *
> + * 2. For the inline case, treat the handle itself as the input buffer.
> + *
> + * 3. For the out-of-line case, look at bits 2..0 of the handle to understand
> + * the input buffer length. To obtain the pointer to the input buffer, unset
> + * bits 2..0 of the handle and set bit 63.
> + *
> + * 4. If the input buffer is 128 byte long, copy its contents to the output
> + * buffer.
> + *
> + * 5. Otherwise, read @largest_idx, @r_tags and @r_sizes from the input buffer.
> + * Calculate the removed largest element of @r_sizes:
> + * largest = 256 - sum(r_sizes)
> + * and insert it into @r_sizes at position @largest_idx.
> + *
> + * 6. While @r_sizes[i] > 0, add a 4-bit value @r_tags[i] to the output buffer
> + * @r_sizes[i] times.
> + */
...
> +#include <linux/bitmap.h>
> +#include <linux/gfp.h>
> +#include <linux/module.h>
> +#include <asm/mtecomp.h>
> +#include <linux/slab.h>
> +#include <linux/swab.h>
> +#include <linux/string.h>
> +#include <linux/types.h>
Please, keep linux/* and asm/* separated like
linux/*
...blank line...
asm/*
...
> +#define HANDLE_MASK ~(BIT_ULL(63))
GENMASK_ULL(62, 0)
...
> +/* Out-of-line handles have 0b111 in bits 62..60. */
> +#define NOINLINE_MASK (BIT_ULL(62) | BIT_ULL(61) | BIT_ULL(60))
GENMASK_ULL()?
...
> +/* Cache index is stored in the lowest pointer bits. */
> +#define CACHE_ID_MASK (BIT_ULL(2) | BIT_ULL(1) | BIT_ULL(0))
Ditto.
...
> +/* Translate allocation size into mtecomp_caches[] index. */
> +static int ea0_size_to_cache_id(int len)
> +{
> + switch (len) {
> + case 16:
> + return 1;
> + case 32:
> + return 2;
> + case 64:
> + return 3;
> + default:
> + return 0;
> + }
> +}
> +
> +/* Translate mtecomp_caches[] index into allocation size. */
> +static int ea0_cache_id_to_size(int id)
> +{
> + switch (id) {
> + case 1:
> + return 16;
> + case 2:
> + return 32;
> + case 3:
> + return 64;
> + default:
> + return 128;
> + }
> +}
Not sure why fls() / BIT() can't be used directly instead of these functions,
but okay, they are not too ugly.
...
> +void ea0_tags_to_ranges(u8 *tags, u8 *out_tags, short *out_sizes, int *out_len)
> +{
> + u8 prev_tag = 0xff;
GENMASK()? U8_MAX? ((u8)-1)? What is this?
> + int cur_idx = -1;
> + u8 cur_tag;
> + int i;
> +
> + memset(out_tags, 0, *out_len * sizeof(*out_tags));
> + memset(out_sizes, 0, *out_len * sizeof(*out_sizes));
array_size() ?
> + for (i = 0; i < MTE_GRANULES_PER_PAGE; i++) {
> + cur_tag = tags[i / 2];
> + if (i % 2)
> + cur_tag = cur_tag % 16;
> + else
> + cur_tag = cur_tag / 16;
> + if (cur_tag == prev_tag) {
> + out_sizes[cur_idx]++;
> + } else {
> + cur_idx++;
> + prev_tag = cur_tag;
> + out_tags[cur_idx] = prev_tag;
> + out_sizes[cur_idx] = 1;
> + }
Perhaps instead of doing those % 2, / 2 we simply can go twice less outer loops
and introduce an inner loop of 2 iterations?
> + }
> + *out_len = cur_idx + 1;
> +}
> +void ea0_ranges_to_tags(u8 *r_tags, short *r_sizes, int r_len, u8 *tags)
> +{
> + int i, j, pos = 0;
> + u8 prev;
> +
> + for (i = 0; i < r_len; i++) {
> + for (j = 0; j < r_sizes[i]; j++) {
> + if (pos % 2 == 0)
Would be better to keep this aligned with above?
if (pos % 2)
...
else
...
> + prev = r_tags[i];
> + else
> + tags[pos / 2] = (prev << 4) | r_tags[i];
> + pos++;
> + }
> + }
> +}
...
> +EXPORT_SYMBOL(ea0_storage_size);
Btw, can we go to the namespaced export from day 1?
...
> + for (i = 0; i < len; i++) {
> + if (i == len)
> + break;
Interesting dead code. What was the idea behind this?
> + if (sizes[i] > largest) {
> + largest = sizes[i];
> + largest_idx = i;
> + }
(alas max_array() can't be used here)
...
> + bitmap_set_value_unaligned((unsigned long *)buf, largest_idx,
> + bit_pos, 4);
> + bitmap_set_value_unaligned((unsigned long *)buf, largest_idx,
> + bit_pos, 6);
> + bitmap_set_value_unaligned((unsigned long *)buf, tags[i],
> + bit_pos, 4);
> + bitmap_set_value_unaligned((unsigned long *)buf, 0, bit_pos, 4);
> + bitmap_set_value_unaligned((unsigned long *)buf, sizes[i],
> + bit_pos, 7);
> + largest_idx = bitmap_get_value_unaligned((unsigned long *)buf, bit_pos,
> + l_bits);
> + r_tags[i] = bitmap_get_value_unaligned((unsigned long *)buf,
> + bit_pos, 4);
> + r_sizes[i] = bitmap_get_value_unaligned((unsigned long *)buf,
> + bit_pos, 7);
These castings is a red flag. bitmap API shouldn't be used like this. Something
is not okay here.
...
> +void ea0_release_handle(u64 handle)
> +{
> + void *storage = ea0_storage(handle);
> + int size = ea0_storage_size(handle);
> + struct kmem_cache *c;
> + if (!handle || !storage)
> + return;
You use handle before this check. Haven't you run static analysers?
...
> +static int mtecomp_init(void)
> +{
> + char name[16];
> + int size;
> + int i;
> +
> + for (i = 0; i < NUM_CACHES; i++) {
> + size = ea0_cache_id_to_size(i);
> + snprintf(name, ARRAY_SIZE(name), "mte-tags-%d", size);
> + mtecomp_caches[i] =
> + kmem_cache_create(name, size, size, 0, NULL);
> + }
> + return 0;
> +}
> +
Unneeded blank line.
> +module_init(mtecomp_init);
--
With Best Regards,
Andy Shevchenko
Powered by blists - more mailing lists