lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <d9f96152-e48e-7a1f-cd00-b7d508c5560f@suse.cz>
Date:   Fri, 14 Jul 2023 10:26:07 +0200
From:   Vlastimil Babka <vbabka@...e.cz>
To:     "GONG, Ruiqi" <gongruiqi@...weicloud.com>,
        Andrew Morton <akpm@...ux-foundation.org>,
        Joonsoo Kim <iamjoonsoo.kim@....com>,
        David Rientjes <rientjes@...gle.com>,
        Pekka Enberg <penberg@...nel.org>,
        Christoph Lameter <cl@...ux.com>, Tejun Heo <tj@...nel.org>,
        Dennis Zhou <dennis@...nel.org>,
        Alexander Potapenko <glider@...gle.com>,
        Marco Elver <elver@...gle.com>,
        Kees Cook <keescook@...omium.org>, Jann Horn <jannh@...gle.com>
Cc:     Roman Gushchin <roman.gushchin@...ux.dev>,
        Hyeonggon Yoo <42.hyeyoo@...il.com>,
        Dmitry Vyukov <dvyukov@...gle.com>,
        Alexander Lobakin <aleksander.lobakin@...el.com>,
        Pedro Falcato <pedro.falcato@...il.com>,
        Paul Moore <paul@...l-moore.com>,
        James Morris <jmorris@...ei.org>,
        "Serge E . Hallyn" <serge@...lyn.com>,
        Wang Weiyang <wangweiyang2@...wei.com>,
        Xiu Jianfeng <xiujianfeng@...wei.com>, linux-mm@...ck.org,
        linux-hardening@...r.kernel.org, linux-kernel@...r.kernel.org,
        gongruiqi1@...wei.com
Subject: Re: [PATCH v5] Randomized slab caches for kmalloc()

On 7/14/23 08:44, GONG, Ruiqi wrote:
> When exploiting memory vulnerabilities, "heap spraying" is a common
> technique targeting those related to dynamic memory allocation (i.e. the
> "heap"), and it plays an important role in a successful exploitation.
> Basically, it is to overwrite the memory area of vulnerable object by
> triggering allocation in other subsystems or modules and therefore
> getting a reference to the targeted memory location. It's usable on
> various types of vulnerablity including use after free (UAF), heap out-
> of-bound write and etc.
> 
> There are (at least) two reasons why the heap can be sprayed: 1) generic
> slab caches are shared among different subsystems and modules, and
> 2) dedicated slab caches could be merged with the generic ones.
> Currently these two factors cannot be prevented at a low cost: the first
> one is a widely used memory allocation mechanism, and shutting down slab
> merging completely via `slub_nomerge` would be overkill.
> 
> To efficiently prevent heap spraying, we propose the following approach:
> to create multiple copies of generic slab caches that will never be
> merged, and random one of them will be used at allocation. The random
> selection is based on the address of code that calls `kmalloc()`, which
> means it is static at runtime (rather than dynamically determined at
> each time of allocation, which could be bypassed by repeatedly spraying
> in brute force). In other words, the randomness of cache selection will
> be with respect to the code address rather than time, i.e. allocations
> in different code paths would most likely pick different caches,
> although kmalloc() at each place would use the same cache copy whenever
> it is executed. In this way, the vulnerable object and memory allocated
> in other subsystems and modules will (most probably) be on different
> slab caches, which prevents the object from being sprayed.
> 
> Meanwhile, the static random selection is further enhanced with a
> per-boot random seed, which prevents the attacker from finding a usable
> kmalloc that happens to pick the same cache with the vulnerable
> subsystem/module by analyzing the open source code. In other words, with
> the per-boot seed, the random selection is static during each time the
> system starts and runs, but not across different system startups.
> 
> The overhead of performance has been tested on a 40-core x86 server by
> comparing the results of `perf bench all` between the kernels with and
> without this patch based on the latest linux-next kernel, which shows
> minor difference. A subset of benchmarks are listed below:
> 
>                 sched/  sched/  syscall/       mem/       mem/
>              messaging    pipe     basic     memcpy     memset
>                  (sec)   (sec)     (sec)   (GB/sec)   (GB/sec)
> 
> control1         0.019   5.459     0.733  15.258789  51.398026
> control2         0.019   5.439     0.730  16.009221  48.828125
> control3         0.019   5.282     0.735  16.009221  48.828125
> control_avg      0.019   5.393     0.733  15.759077  49.684759
> 
> experiment1      0.019   5.374     0.741  15.500992  46.502976
> experiment2      0.019   5.440     0.746  16.276042  51.398026
> experiment3      0.019   5.242     0.752  15.258789  51.398026
> experiment_avg   0.019   5.352     0.746  15.678608  49.766343
> 
> The overhead of memory usage was measured by executing `free` after boot
> on a QEMU VM with 1GB total memory, and as expected, it's positively
> correlated with # of cache copies:
> 
>            control  4 copies  8 copies  16 copies
> 
> total       969.8M    968.2M    968.2M     968.2M
> used         20.0M     21.9M     24.1M      26.7M
> free        936.9M    933.6M    931.4M     928.6M
> available   932.2M    928.8M    926.6M     923.9M
> 
> Co-developed-by: Xiu Jianfeng <xiujianfeng@...wei.com>
> Signed-off-by: Xiu Jianfeng <xiujianfeng@...wei.com>
> Signed-off-by: GONG, Ruiqi <gongruiqi@...weicloud.com>
> Reviewed-by: Kees Cook <keescook@...omium.org>

Thanks! Pushed to slab/for-6.6/random_kmalloc and for-next.


Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ