lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [<thread-prev] [day] [month] [year] [list]
Message-ID: <ee9d2d01-96f7-2032-7b12-7e2748829bf9@linux.intel.com>
Date:   Wed, 9 Aug 2023 14:31:07 +0300
From:   Tero Kristo <tero.kristo@...ux.intel.com>
To:     Alexei Starovoitov <alexei.starovoitov@...il.com>
Cc:     John Fastabend <john.fastabend@...il.com>,
        Shuah Khan <shuah@...nel.org>,
        Thomas Gleixner <tglx@...utronix.de>, X86 ML <x86@...nel.org>,
        Borislav Petkov <bp@...en8.de>,
        Dave Hansen <dave.hansen@...ux.intel.com>,
        Ingo Molnar <mingo@...hat.com>,
        Alexei Starovoitov <ast@...nel.org>,
        "open list:KERNEL SELFTEST FRAMEWORK" 
        <linux-kselftest@...r.kernel.org>,
        LKML <linux-kernel@...r.kernel.org>,
        Andrii Nakryiko <andrii@...nel.org>,
        Daniel Borkmann <daniel@...earbox.net>,
        bpf <bpf@...r.kernel.org>
Subject: Re: [PATCH 1/2] x86/tsc: Add new BPF helper call bpf_rdtsc

Hi,

Coming back to this bit late, I was on vacation for a few weeks.

On 07/07/2023 17:42, Alexei Starovoitov wrote:
> On Fri, Jul 7, 2023 at 1:28 AM Tero Kristo <tero.kristo@...ux.intel.com> wrote:
>>
>> On 07/07/2023 08:41, John Fastabend wrote:
>>> Alexei Starovoitov wrote:
>>>> On Thu, Jul 6, 2023 at 4:59 AM Tero Kristo <tero.kristo@...ux.intel.com> wrote:
>>>>> On 06/07/2023 08:16, John Fastabend wrote:
>>>>>> Alexei Starovoitov wrote:
>>>>>>> On Mon, Jul 3, 2023 at 3:58 AM Tero Kristo <tero.kristo@...ux.intel.com> wrote:
>>>>>>>> Currently the raw TSC counter can be read within kernel via rdtsc_ordered()
>>>>>>>> and friends, and additionally even userspace has access to it via the
>>>>>>>> RDTSC assembly instruction. BPF programs on the other hand don't have
>>>>>>>> direct access to the TSC counter, but alternatively must go through the
>>>>>>>> performance subsystem (bpf_perf_event_read), which only provides relative
>>>>>>>> value compared to the start point of the program, and is also much slower
>>>>>>>> than the direct read. Add a new BPF helper definition for bpf_rdtsc() which
>>>>>>>> can be used for any accurate profiling needs.
>>>>>>>>
>>>>>>>> A use-case for the new API is for example wakeup latency tracing via
>>>>>>>> eBPF on Intel architecture, where it is extremely beneficial to be able
>>>>>>>> to get raw TSC timestamps and compare these directly to the value
>>>>>>>> programmed to the MSR_IA32_TSC_DEADLINE register. This way a direct
>>>>>>>> latency value from the hardware interrupt to the execution of the
>>>>>>>> interrupt handler can be calculated. Having the functionality within
>>>>>>>> eBPF also has added benefits of allowing to filter any other relevant
>>>>>>>> data like C-state residency values, and also to drop any irrelevant
>>>>>>>> data points directly in the kernel context, without passing all the
>>>>>>>> data to userspace for post-processing.
>>>>>>>>
>>>>>>>> Signed-off-by: Tero Kristo <tero.kristo@...ux.intel.com>
>>>>>>>> ---
>>>>>>>>     arch/x86/include/asm/msr.h |  1 +
>>>>>>>>     arch/x86/kernel/tsc.c      | 23 +++++++++++++++++++++++
>>>>>>>>     2 files changed, 24 insertions(+)
>>>>>>>>
>>>>>>>> diff --git a/arch/x86/include/asm/msr.h b/arch/x86/include/asm/msr.h
>>>>>>>> index 65ec1965cd28..3dde673cb563 100644
>>>>>>>> --- a/arch/x86/include/asm/msr.h
>>>>>>>> +++ b/arch/x86/include/asm/msr.h
>>>>>>>> @@ -309,6 +309,7 @@ struct msr *msrs_alloc(void);
>>>>>>>>     void msrs_free(struct msr *msrs);
>>>>>>>>     int msr_set_bit(u32 msr, u8 bit);
>>>>>>>>     int msr_clear_bit(u32 msr, u8 bit);
>>>>>>>> +u64 bpf_rdtsc(void);
>>>>>>>>
>>>>>>>>     #ifdef CONFIG_SMP
>>>>>>>>     int rdmsr_on_cpu(unsigned int cpu, u32 msr_no, u32 *l, u32 *h);
>>>>>>>> diff --git a/arch/x86/kernel/tsc.c b/arch/x86/kernel/tsc.c
>>>>>>>> index 344698852146..ded857abef81 100644
>>>>>>>> --- a/arch/x86/kernel/tsc.c
>>>>>>>> +++ b/arch/x86/kernel/tsc.c
>>>>>>>> @@ -15,6 +15,8 @@
>>>>>>>>     #include <linux/timex.h>
>>>>>>>>     #include <linux/static_key.h>
>>>>>>>>     #include <linux/static_call.h>
>>>>>>>> +#include <linux/btf.h>
>>>>>>>> +#include <linux/btf_ids.h>
>>>>>>>>
>>>>>>>>     #include <asm/hpet.h>
>>>>>>>>     #include <asm/timer.h>
>>>>>>>> @@ -29,6 +31,7 @@
>>>>>>>>     #include <asm/intel-family.h>
>>>>>>>>     #include <asm/i8259.h>
>>>>>>>>     #include <asm/uv/uv.h>
>>>>>>>> +#include <asm/tlbflush.h>
>>>>>>>>
>>>>>>>>     unsigned int __read_mostly cpu_khz;    /* TSC clocks / usec, not used here */
>>>>>>>>     EXPORT_SYMBOL(cpu_khz);
>>>>>>>> @@ -1551,6 +1554,24 @@ void __init tsc_early_init(void)
>>>>>>>>            tsc_enable_sched_clock();
>>>>>>>>     }
>>>>>>>>
>>>>>>>> +u64 bpf_rdtsc(void)
>>>>>>>> +{
>>>>>>>> +       /* Check if Time Stamp is enabled only in ring 0 */
>>>>>>>> +       if (cr4_read_shadow() & X86_CR4_TSD)
>>>>>>>> +               return 0;
>>>>>>> Why check this? It's always enabled in the kernel, no?
>>>>> It is always enabled, but there are certain syscalls that can be used to
>>>>> disable the TSC access for oneself. prctl(PR_SET_TSC, ...) and
>>>>> seccomp(SET_MODE_STRICT,...). Not having the check in place would in
>>>>> theory allow a restricted BPF program to circumvent this (if there ever
>>>>> was such a thing.) But yes, I do agree this part is a bit debatable
>>>>> whether it should be there at all.
>>>> What do you mean 'circumvent' ?
>>>> It's a tracing bpf prog running in the kernel loaded by root
>>>> and reading tsc for the purpose of the kernel.
>>>> There is no unprivileged access to tsc here.
>> This was based on some discussions with the security team at Intel, I
>> don't pretend to know anything about security myself. But I can drop the
>> check. It is probably not needed because of the fact that it is already
>> possible to read the TSC counter with the approach I mention in the
>> cover letter; via perf and bpf_core_read().
>>>>>>>> +
>>>>>>>> +       return rdtsc_ordered();
>>>>>>> Why _ordered? Why not just rdtsc ?
>>>>>>> Especially since you want to trace latency. Extra lfence will ruin
>>>>>>> the measurements.
>>>>>>>
>>>>>> If we used it as a fast way to order events on multiple CPUs I
>>>>>> guess we need the lfence? We use ktime_get_ns() now for things
>>>>>> like this when we just need an order counter. We have also
>>>>>> observed time going backwards with this and have heuristics
>>>>>> to correct it but its rare.
>>>>> Yeah, I think it is better to induce some extra latency instead of
>>>>> having some weird ordering issues with the timestamps.
>>>> lfence is not 'some extra latency'.
>>>> I suspect rdtsc_ordered() will be slower than bpf_ktime_get_ns().
>>>> What's the point of using it then?
>>> I would only use it if its faster then bpf_ktime_get_ns() and
>>> have already figured out how to handle rare unordered events
>>> so I think its OK to relax somewhat strict ordering.
>> I believe that on x86-arch using bpf_ktime_get_ns() also ends up calling
>> rdtsc_odered() under the hood.
>>
>> I just did some measurements on an Intel(R) Xeon(R) Platinum 8360Y CPU @
>> 2.40GHz, with a simple BPF code:
>>
>>           t1 = bpf_ktime_get_ns();
>>
>>           for (i = 0; i < NUM_CYC; i++) {
>>                   bpf_rdtsc(); // or bpf_ktime_get_ns() here
>>           }
>>
>>           t2 = bpf_ktime_get_ns();
>>
>> The results I got with the CPU locked at 2.4GHz (average execution times
>> per a call within the loop, this with some 10M executions):
>>
>> bpf_rdtsc() ordered : 45ns
>>
>> bpf_rdtsc() un-ordered : 23ns
>>
>> bpf_ktime_get_ns() : 49ns
> Thanks for crunching the numbers.
> Based on them it's hard to justify adding the ordered variant.
> We already have ktime_get_ns, ktime_get_boot_ns, ktime_get_coarse_ns,
> ktime_get_tai_ns with pretty close performance and different time
> constraints. rdtsc_ordered doesn't bring anything new to the table.
> bpf_rdtsc() would be justified if it's significantly faster
> than traditional ktime*() helpers.

The only other justification I can use here is that the TSC counter is 
useful if you are dealing with any other counters that use TSC as a 
reference; mainly the Intel power management residency counters use same 
time base / resolution as TSC.

Converting between the TSC / ktime can get cumbersome, and you would 
need to get the magic conversion factors from somewhere.

-Tero

>
>> Locking the CPU at 800MHz the results are:
>>
>> bpf_rdtsc() ordered : 55ns
>>
>> bpf_rdtsc() un-ordered : 33ns
>>
>> bpf_ktime_get_ns() : 71ns
>>
>> The bpf_rdtsc() in these results contains some extra latency caused by
>> conditional execution, I added a flag to the call to select whether it
>> should use _ordered() or not, and it also still contains the CR4_TSD
>> check in place.
>>
>> -Tero
>>
>>>>> Also, things like the ftrace also use rdtsc_ordered() as its underlying
>>>>> clock, if you use x86-tsc as the trace clock (see
>>>>> arch/x86/kernel/trace_clock.c.)
>>>>>
>>>>> -Tero
>>>>>

Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ