[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <20231025093847.3740104-4-zengheng4@huawei.com>
Date: Wed, 25 Oct 2023 17:38:47 +0800
From: Zeng Heng <zengheng4@...wei.com>
To: <broonie@...nel.org>, <joey.gouly@....com>, <will@...nel.org>,
<amit.kachhap@....com>, <rafael@...nel.org>,
<catalin.marinas@....com>, <james.morse@....com>,
<mark.rutland@....com>, <maz@...nel.org>,
<viresh.kumar@...aro.org>, <sumitg@...dia.com>,
<yang@...amperecomputing.com>
CC: <linux-kernel@...r.kernel.org>, <linux-pm@...r.kernel.org>,
<linux-arm-kernel@...ts.infradead.org>,
<wangxiongfeng2@...wei.com>, <xiexiuqi@...wei.com>
Subject: [PATCH 3/3] cpufreq: CPPC: Eliminate the impact of cpc_read() latency error
We have found significant differences in the latency of cpc_read() between
regular scenarios and scenarios with high memory access pressure. Ignoring
this error can result in getting rate interface occasionally returning
absurd values.
Here provides a high memory access sample test by stress-ng. My local
testing platform includes 160 CPUs, the CPC registers is accessed by mmio
method, and the cpuidle feature is disabled (the AMU always works online):
~~~
./stress-ng --memrate 160 --timeout 180
~~~
The following data is sourced from ftrace statistics towards
cppc_get_perf_ctrs():
Regular scenarios || High memory access pressure scenarios
104) | cppc_get_perf_ctrs() { || 133) | cppc_get_perf_ctrs() {
104) 0.800 us | cpc_read.isra.0(); || 133) 4.580 us | cpc_read.isra.0();
104) 0.640 us | cpc_read.isra.0(); || 133) 7.780 us | cpc_read.isra.0();
104) 0.450 us | cpc_read.isra.0(); || 133) 2.550 us | cpc_read.isra.0();
104) 0.430 us | cpc_read.isra.0(); || 133) 0.570 us | cpc_read.isra.0();
104) 4.610 us | } || 133) ! 157.610 us | }
104) | cppc_get_perf_ctrs() { || 133) | cppc_get_perf_ctrs() {
104) 0.720 us | cpc_read.isra.0(); || 133) 0.760 us | cpc_read.isra.0();
104) 0.720 us | cpc_read.isra.0(); || 133) 4.480 us | cpc_read.isra.0();
104) 0.510 us | cpc_read.isra.0(); || 133) 0.520 us | cpc_read.isra.0();
104) 0.500 us | cpc_read.isra.0(); || 133) + 10.100 us | cpc_read.isra.0();
104) 3.460 us | } || 133) ! 120.850 us | }
108) | cppc_get_perf_ctrs() { || 87) | cppc_get_perf_ctrs() {
108) 0.820 us | cpc_read.isra.0(); || 87) ! 255.200 us | cpc_read.isra.0();
108) 0.850 us | cpc_read.isra.0(); || 87) 2.910 us | cpc_read.isra.0();
108) 0.590 us | cpc_read.isra.0(); || 87) 5.160 us | cpc_read.isra.0();
108) 0.610 us | cpc_read.isra.0(); || 87) 4.340 us | cpc_read.isra.0();
108) 5.080 us | } || 87) ! 315.790 us | }
108) | cppc_get_perf_ctrs() { || 87) | cppc_get_perf_ctrs() {
108) 0.630 us | cpc_read.isra.0(); || 87) 0.800 us | cpc_read.isra.0();
108) 0.630 us | cpc_read.isra.0(); || 87) 6.310 us | cpc_read.isra.0();
108) 0.420 us | cpc_read.isra.0(); || 87) 1.190 us | cpc_read.isra.0();
108) 0.430 us | cpc_read.isra.0(); || 87) + 11.620 us | cpc_read.isra.0();
108) 3.780 us | } || 87) ! 207.010 us | }
My local testing platform works under 3000000hz, but the cpuinfo_cur_freq
interface returns values that are not even close to the actual frequency:
[root@...alhost ~]# cd /sys/devices/system/cpu
[root@...alhost cpu]# for i in {0..159}; do cat cpu$i/cpufreq/cpuinfo_cur_freq; done
5127812
2952127
3069001
3496183
922989768
2419194
3427042
2331869
3594611
8238499
...
The reason is when under heavy memory access pressure, the execution of
cpc_read() delay has increased from sub-microsecond to several hundred
microseconds. Moving the cpc_read function into a critical section by irq
disable/enable has minimal impact on the result.
cppc_get_perf_ctrs()[0] cppc_get_perf_ctrs()[1]
/ \ / \
cpc_read cpc_read cpc_read cpc_read
ref[0] delivered[0] ref[1] delivered[1]
| | | |
v v v v
-----------------------------------------------------------------------> time
<--delta[0]--> <------sample_period------> <-----delta[1]----->
Since that,
freq = ref_freq * (delivered[1] - delivered[0]) / (ref[1] - ref[0])
and
delivered[1] - delivered[0] = freq * (delta[1] + sample_period),
ref[1] - ref[0] = ref_freq * (delta[0] + sample_period)
To eliminate the impact of system memory access latency, setting a
sampling period of 2us is far from sufficient. Consequently, we suggest
cppc_cpufreq_get_rate() only can be called in the process context, and
adopt a longer sampling period to neutralize the impact of random latency.
Here we call the cond_resched() function instead of sleep-like functions
to ensure that `taskset -c $i cat cpu$i/cpufreq/cpuinfo_cur_freq` could
work when cpuidle feature is enabled.
Reported-by: Yang Shi <yang@...amperecomputing.com>
Link: https://lore.kernel.org/all/20230328193846.8757-1-yang@os.amperecomputing.com/
Signed-off-by: Zeng Heng <zengheng4@...wei.com>
---
drivers/cpufreq/cppc_cpufreq.c | 16 +++++++++++++++-
1 file changed, 15 insertions(+), 1 deletion(-)
diff --git a/drivers/cpufreq/cppc_cpufreq.c b/drivers/cpufreq/cppc_cpufreq.c
index 321a9dc9484d..a7c5418bcda7 100644
--- a/drivers/cpufreq/cppc_cpufreq.c
+++ b/drivers/cpufreq/cppc_cpufreq.c
@@ -851,12 +851,26 @@ static int cppc_get_perf_ctrs_pair(void *val)
struct fb_ctr_pair *fb_ctrs = val;
int cpu = fb_ctrs->cpu;
int ret;
+ unsigned long timeout;
ret = cppc_get_perf_ctrs(cpu, &fb_ctrs->fb_ctrs_t0);
if (ret)
return ret;
- udelay(2); /* 2usec delay between sampling */
+ if (likely(!irqs_disabled())) {
+ /*
+ * Set 1ms as sampling interval, but never schedule
+ * to the idle task to prevent the AMU counters from
+ * stopping working.
+ */
+ timeout = jiffies + msecs_to_jiffies(1);
+ while (!time_after(jiffies, timeout))
+ cond_resched();
+
+ } else {
+ pr_warn_once("CPU%d: Get rate in atomic context", cpu);
+ udelay(2); /* 2usec delay between sampling */
+ }
return cppc_get_perf_ctrs(cpu, &fb_ctrs->fb_ctrs_t1);
}
--
2.25.1
Powered by blists - more mailing lists