[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <CAMj1kXEhrPo18dwAuzpn7R7ZGpOxr2pwuoAfGRtWwzgSF+mTsA@mail.gmail.com>
Date: Tue, 9 Apr 2024 11:12:11 +0200
From: Ard Biesheuvel <ardb@...nel.org>
To: Eric Biggers <ebiggers@...nel.org>
Cc: linux-crypto@...r.kernel.org, x86@...nel.org, linux-kernel@...r.kernel.org,
"Chang S . Bae" <chang.seok.bae@...el.com>, Stefan Kanthak <stefan.kanthak@...go.de>
Subject: Re: [PATCH] crypto: x86/aes-xts - access round keys using single-byte offsets
On Tue, 9 Apr 2024 at 02:02, Eric Biggers <ebiggers@...nel.org> wrote:
>
> From: Eric Biggers <ebiggers@...gle.com>
>
> Access the AES round keys using offsets -7*16 through 7*16, instead of
> 0*16 through 14*16. This allows VEX-encoded instructions to address all
> round keys using 1-byte offsets, whereas before some needed 4-byte
> offsets. This decreases the code size of aes-xts-avx-x86_64.o by 4.2%.
>
> Signed-off-by: Eric Biggers <ebiggers@...gle.com>
Nice optimization!
Do you think we might be able to macrofy this a bit so we can use zero
based indexing for the round keys, and hide the arithmetic?
> ---
> arch/x86/crypto/aes-xts-avx-x86_64.S | 81 +++++++++++++++-------------
> 1 file changed, 44 insertions(+), 37 deletions(-)
>
> diff --git a/arch/x86/crypto/aes-xts-avx-x86_64.S b/arch/x86/crypto/aes-xts-avx-x86_64.S
> index fcaf64a2f8c6..95e412e7601d 100644
> --- a/arch/x86/crypto/aes-xts-avx-x86_64.S
> +++ b/arch/x86/crypto/aes-xts-avx-x86_64.S
> @@ -80,11 +80,11 @@
> .byte 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80
> .text
>
> // Function parameters
> .set KEY, %rdi // Initially points to crypto_aes_ctx, then is
> - // advanced to point directly to the round keys
> + // advanced to point directly to 7th round key
> .set SRC, %rsi // Pointer to next source data
> .set DST, %rdx // Pointer to next destination data
> .set LEN, %rcx // Remaining length in bytes
> .set TWEAK, %r8 // Pointer to next tweak
>
> @@ -406,28 +406,28 @@
> .endif
> .endm
>
> // Load the round keys: just the first one if !USE_AVX10, otherwise all of them.
> .macro _load_round_keys
> - _vbroadcast128 0*16(KEY), KEY0
> + _vbroadcast128 -7*16(KEY), KEY0
> .if USE_AVX10
> - _vbroadcast128 1*16(KEY), KEY1
> - _vbroadcast128 2*16(KEY), KEY2
> - _vbroadcast128 3*16(KEY), KEY3
> - _vbroadcast128 4*16(KEY), KEY4
> - _vbroadcast128 5*16(KEY), KEY5
> - _vbroadcast128 6*16(KEY), KEY6
> - _vbroadcast128 7*16(KEY), KEY7
> - _vbroadcast128 8*16(KEY), KEY8
> - _vbroadcast128 9*16(KEY), KEY9
> - _vbroadcast128 10*16(KEY), KEY10
> + _vbroadcast128 -6*16(KEY), KEY1
> + _vbroadcast128 -5*16(KEY), KEY2
> + _vbroadcast128 -4*16(KEY), KEY3
> + _vbroadcast128 -3*16(KEY), KEY4
> + _vbroadcast128 -2*16(KEY), KEY5
> + _vbroadcast128 -1*16(KEY), KEY6
> + _vbroadcast128 0*16(KEY), KEY7
> + _vbroadcast128 1*16(KEY), KEY8
> + _vbroadcast128 2*16(KEY), KEY9
> + _vbroadcast128 3*16(KEY), KEY10
> // Note: if it's AES-128 or AES-192, the last several round keys won't
> // be used. We do the loads anyway to save a conditional jump.
> - _vbroadcast128 11*16(KEY), KEY11
> - _vbroadcast128 12*16(KEY), KEY12
> - _vbroadcast128 13*16(KEY), KEY13
> - _vbroadcast128 14*16(KEY), KEY14
> + _vbroadcast128 4*16(KEY), KEY11
> + _vbroadcast128 5*16(KEY), KEY12
> + _vbroadcast128 6*16(KEY), KEY13
> + _vbroadcast128 7*16(KEY), KEY14
> .endif
> .endm
>
> // Do a single round of AES encryption (if \enc==1) or decryption (if \enc==0)
> // on the block(s) in \data using the round key(s) in \key. The register length
> @@ -454,13 +454,13 @@
> .macro _vaes_1x enc, last, i, xmm_suffix, data
> .if USE_AVX10
> _vaes \enc, \last, KEY\i\xmm_suffix, \data
> .else
> .ifnb \xmm_suffix
> - _vaes \enc, \last, \i*16(KEY), \data
> + _vaes \enc, \last, (\i-7)*16(KEY), \data
> .else
> - _vbroadcast128 \i*16(KEY), V4
> + _vbroadcast128 (\i-7)*16(KEY), V4
> _vaes \enc, \last, V4, \data
> .endif
> .endif
> .endm
>
> @@ -475,11 +475,11 @@
> _vaes \enc, \last, KEY\i, V1
> _tweak_step (2*(\i-1) + 1)
> _vaes \enc, \last, KEY\i, V2
> _vaes \enc, \last, KEY\i, V3
> .else
> - _vbroadcast128 \i*16(KEY), V4
> + _vbroadcast128 (\i-7)*16(KEY), V4
> _tweak_step (2*(\i-1))
> _vaes \enc, \last, V4, V0
> _vaes \enc, \last, V4, V1
> _tweak_step (2*(\i-1) + 1)
> _vaes \enc, \last, V4, V2
> @@ -526,13 +526,19 @@
> _define_aliases
>
> // Load the AES key length: 16 (AES-128), 24 (AES-192), or 32 (AES-256).
> movl 480(KEY), KEYLEN
>
> - // If decrypting, advance KEY to the decryption round keys.
> -.if !\enc
> - add $240, KEY
> + // Advance KEY to point to the 7th encryption round key (if encrypting)
> + // or the 7th decryption round key (if decrypting). This makes the
> + // offset to any round key be in the range [-112, 112], fitting in a
> + // signed byte. This shortens VEX-encoded instructions that access the
> + // 8th and later round keys which otherwise would need 4-byte offsets.
> +.if \enc
> + add $7*16, KEY
> +.else
> + add $(15+7)*16, KEY
> .endif
>
> // Check whether the data length is a multiple of the AES block length.
> test $15, LEN
> jnz .Lneed_cts\@
> @@ -751,40 +757,41 @@
>
> // void aes_xts_encrypt_iv(const struct crypto_aes_ctx *tweak_key,
> // u8 iv[AES_BLOCK_SIZE]);
> SYM_TYPED_FUNC_START(aes_xts_encrypt_iv)
> vmovdqu (%rsi), %xmm0
> - vpxor 0*16(%rdi), %xmm0, %xmm0
> + add $7*16, %rdi
> + vpxor -7*16(%rdi), %xmm0, %xmm0
> + vaesenc -6*16(%rdi), %xmm0, %xmm0
> + vaesenc -5*16(%rdi), %xmm0, %xmm0
> + vaesenc -4*16(%rdi), %xmm0, %xmm0
> + vaesenc -3*16(%rdi), %xmm0, %xmm0
> + vaesenc -2*16(%rdi), %xmm0, %xmm0
> + vaesenc -1*16(%rdi), %xmm0, %xmm0
> + vaesenc 0*16(%rdi), %xmm0, %xmm0
> vaesenc 1*16(%rdi), %xmm0, %xmm0
> vaesenc 2*16(%rdi), %xmm0, %xmm0
> + cmpl $24, 480-(7*16)(%rdi)
> + jle .Lencrypt_iv_aes_128_or_192
> vaesenc 3*16(%rdi), %xmm0, %xmm0
> vaesenc 4*16(%rdi), %xmm0, %xmm0
> vaesenc 5*16(%rdi), %xmm0, %xmm0
> vaesenc 6*16(%rdi), %xmm0, %xmm0
> - vaesenc 7*16(%rdi), %xmm0, %xmm0
> - vaesenc 8*16(%rdi), %xmm0, %xmm0
> - vaesenc 9*16(%rdi), %xmm0, %xmm0
> - cmpl $24, 480(%rdi)
> - jle .Lencrypt_iv_aes_128_or_192
> - vaesenc 10*16(%rdi), %xmm0, %xmm0
> - vaesenc 11*16(%rdi), %xmm0, %xmm0
> - vaesenc 12*16(%rdi), %xmm0, %xmm0
> - vaesenc 13*16(%rdi), %xmm0, %xmm0
> - vaesenclast 14*16(%rdi), %xmm0, %xmm0
> + vaesenclast 7*16(%rdi), %xmm0, %xmm0
> .Lencrypt_iv_done:
> vmovdqu %xmm0, (%rsi)
> RET
>
> // Out-of-line handling of AES-128 and AES-192
> .Lencrypt_iv_aes_128_or_192:
> jz .Lencrypt_iv_aes_192
> - vaesenclast 10*16(%rdi), %xmm0, %xmm0
> + vaesenclast 3*16(%rdi), %xmm0, %xmm0
> jmp .Lencrypt_iv_done
> .Lencrypt_iv_aes_192:
> - vaesenc 10*16(%rdi), %xmm0, %xmm0
> - vaesenc 11*16(%rdi), %xmm0, %xmm0
> - vaesenclast 12*16(%rdi), %xmm0, %xmm0
> + vaesenc 3*16(%rdi), %xmm0, %xmm0
> + vaesenc 4*16(%rdi), %xmm0, %xmm0
> + vaesenclast 5*16(%rdi), %xmm0, %xmm0
> jmp .Lencrypt_iv_done
> SYM_FUNC_END(aes_xts_encrypt_iv)
>
> // Below are the actual AES-XTS encryption and decryption functions,
> // instantiated from the above macro. They all have the following prototype:
>
> base-commit: 4ad27a8be9dbefd4820da0f60da879d512b2f659
> prerequisite-patch-id: 8d09ed747039f5e718ac7267e2a15e22504aa7f3
> --
> 2.44.0
>
>
Powered by blists - more mailing lists