[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <87le4uk936.fsf@metaspace.dk>
Date: Tue, 30 Apr 2024 20:18:37 +0200
From: Andreas Hindborg <nmi@...aspace.dk>
To: Thomas Gleixner <tglx@...utronix.de>
Cc: Miguel Ojeda <ojeda@...nel.org>, Alex Gaynor <alex.gaynor@...il.com>,
Wedson Almeida Filho <wedsonaf@...il.com>, Anna-Maria Behnsen
<anna-maria@...utronix.de>, Frederic Weisbecker <frederic@...nel.org>,
Andreas Hindborg <a.hindborg@...sung.com>, Boqun Feng
<boqun.feng@...il.com>, Gary Guo <gary@...yguo.net>, Björn Roy Baron
<bjorn3_gh@...tonmail.com>, Benno Lossin <benno.lossin@...ton.me>, Alice
Ryhl <aliceryhl@...gle.com>, rust-for-linux@...r.kernel.org,
linux-kernel@...r.kernel.org
Subject: Re: [PATCH] rust: hrtimer: introduce hrtimer support
Hi Thomas,
Thomas Gleixner <tglx@...utronix.de> writes:
> Andreas!
>
> On Thu, Apr 25 2024 at 11:46, Andreas Hindborg wrote:
>
> I'm looking at this purely from a hrtimer perspective and please excuse
> my minimal rust knowledge.
Thanks for taking a look!
>
>> +// SAFETY: A `Timer` can be moved to other threads and used from there.
>> +unsafe impl<T> Send for Timer<T> {}
>> +
>> +// SAFETY: Timer operations are locked on C side, so it is safe to operate on a
>> +// timer from multiple threads
>
> Kinda. Using an hrtimer from different threads needs some thought in the
> implementation as obviously ordering matters:
>
> T1 T2
> hrtimer_start() hrtimer_cancel()
>
> So depending on whether T1 gets the internal lock first or T2 the
> outcome is different. If T1 gets it first the timer is canceled by
> T2. If T2 gets it first the timer ends up armed.
That is all fine. What is meant here is that we will not get UB in the
`hrtimer` subsystem when racing these operations. As far as I can tell
from the C source, the operations are atomic, even though their
interleaving will not be deterministic.
>
>> +unsafe impl<T> Sync for Timer<T> {}
>> +
>> +impl<T: TimerCallback> Timer<T> {
>> + /// Return an initializer for a new timer instance.
>> + pub fn new() -> impl PinInit<Self> {
>> + crate::pin_init!( Self {
>> + timer <- Opaque::ffi_init(move |place: *mut bindings::hrtimer| {
>> + // SAFETY: By design of `pin_init!`, `place` is a pointer live
>> + // allocation. hrtimer_init will initialize `place` and does not
>> + // require `place` to be initialized prior to the call.
>> + unsafe {
>> + bindings::hrtimer_init(
>> + place,
>> + bindings::CLOCK_MONOTONIC as i32,
>> + bindings::hrtimer_mode_HRTIMER_MODE_REL,
>
> This is odd. The initializer really should take a clock ID and a mode
> argument. Otherwise you end up implementing a gazillion of different
> timers.
I implemented the minimum set of features to satisfy the requirements
for the Rust null block driver. It is my understanding that most
maintainers of existing infrastructure prefers to have a user for the
implemented features, before wanting to merge them.
I can try to extend the abstractions to cover a more complete `hrtimer`
API. Or we can work on this subset and try to get that ready to merge,
and then expand scope later.
What would you prefer?
>
>> + );
>> + }
>> +
>> + // SAFETY: `place` is pointing to a live allocation, so the deref
>> + // is safe. The `function` field might not be initialized, but
>> + // `addr_of_mut` does not create a reference to the field.
>> + let function: *mut Option<_> = unsafe { core::ptr::addr_of_mut!((*place).function) };
>> +
>> + // SAFETY: `function` points to a valid allocation.
>> + unsafe { core::ptr::write(function, Some(T::Receiver::run)) };
>
> We probably should introduce hrtimer_setup(timer, clockid, mode, function)
> to avoid this construct. That would allow to cleanup existing C code too.
Do you want me to cook up a C patch for that, or would you prefer to do
that yourself?
>
>> + }),
>> + _t: PhantomData,
>> + })
>> + }
>> +}
>> +
>> +#[pinned_drop]
>> +impl<T> PinnedDrop for Timer<T> {
>> + fn drop(self: Pin<&mut Self>) {
>> + // SAFETY: By struct invariant `self.timer` was initialized by
>> + // `hrtimer_init` so by C API contract it is safe to call
>> + // `hrtimer_cancel`.
>> + unsafe {
>> + bindings::hrtimer_cancel(self.timer.get());
>> + }
>> + }
>> +}
>> +
>> +/// Implemented by pointer types to structs that embed a [`Timer`]. This trait
>> +/// facilitates queueing the timer through the pointer that implements the
>> +/// trait.
>> +///
>> +/// Typical implementers would be [`Box<T>`], [`Arc<T>`], [`ARef<T>`] where `T`
>> +/// has a field of type `Timer`.
>> +///
>> +/// Target must be [`Sync`] because timer callbacks happen in another thread of
>> +/// execution.
>
> Timer callbacks happen in hard or soft interrupt context.
Thanks, I'll be sure to add that to the documentation.
>
>> +/// [`Box<T>`]: Box
>> +/// [`Arc<T>`]: Arc
>> +/// [`ARef<T>`]: crate::types::ARef
>> +pub trait RawTimer: Sync {
>> + /// Schedule the timer after `expires` time units
>> + fn schedule(self, expires: u64);
>
> Don't we have some time related rust types in the kernel by now?
There are patches on the list, but I think they are not applied to any
tree yet? I did not want to depend on those patches before they are
staged somewhere. Would you prefer this patch on top of the Rust `ktime`
patches?
>
>> +}
>
>> +/// Implemented by pointer types that can be the target of a C timer callback.
>> +pub trait RawTimerCallback: RawTimer {
>> + /// Callback to be called from C.
>> + ///
>> + /// # Safety
>> + ///
>> + /// Only to be called by C code in `hrtimer`subsystem.
>> + unsafe extern "C" fn run(ptr: *mut bindings::hrtimer) -> bindings::hrtimer_restart;
>> +}
>> +
>> +/// Implemented by pointers to structs that can the target of a timer callback
>> +pub trait TimerCallback {
>> + /// Type of `this` argument for `run()`.
>> + type Receiver: RawTimerCallback;
>> +
>> + /// Called by the timer logic when the timer fires
>> + fn run(this: Self::Receiver);
>> +}
>> +
>> +impl<T> RawTimer for Arc<T>
>> +where
>> + T: Send + Sync,
>> + T: HasTimer<T>,
>> +{
>> + fn schedule(self, expires: u64) {
>> + let self_ptr = Arc::into_raw(self);
>> +
>> + // SAFETY: `self_ptr` is a valid pointer to a `T`
>> + let timer_ptr = unsafe { T::raw_get_timer(self_ptr) };
>> +
>> + // `Timer` is `repr(transparent)`
>> + let c_timer_ptr = timer_ptr.cast::<bindings::hrtimer>();
>> +
>> + // Schedule the timer - if it is already scheduled it is removed and
>> + // inserted
>> +
>> + // SAFETY: c_timer_ptr points to a valid hrtimer instance that was
>> + // initialized by `hrtimer_init`
>> + unsafe {
>> + bindings::hrtimer_start_range_ns(
>> + c_timer_ptr.cast_mut(),
>> + expires as i64,
>
> same comment vs. time
>
>> + 0,
>> + bindings::hrtimer_mode_HRTIMER_MODE_REL,
>
> and mode.
>
>> + );
>> + }
>> + }
>> +}
>> +
>> +impl<T> kernel::hrtimer::RawTimerCallback for Arc<T>
>> +where
>> + T: Send + Sync,
>> + T: HasTimer<T>,
>> + T: TimerCallback<Receiver = Self>,
>> +{
>> + unsafe extern "C" fn run(ptr: *mut bindings::hrtimer) -> bindings::hrtimer_restart {
>> + // `Timer` is `repr(transparent)`
>> + let timer_ptr = ptr.cast::<kernel::hrtimer::Timer<T>>();
>> +
>> + // SAFETY: By C API contract `ptr` is the pointer we passed when
>> + // enqueing the timer, so it is a `Timer<T>` embedded in a `T`
>> + let data_ptr = unsafe { T::timer_container_of(timer_ptr) };
>> +
>> + // SAFETY: This `Arc` comes from a call to `Arc::into_raw()`
>> + let receiver = unsafe { Arc::from_raw(data_ptr) };
>> +
>> + T::run(receiver);
>> +
>> + bindings::hrtimer_restart_HRTIMER_NORESTART
>
> One of the common use cases of hrtimers is to create periodic schedules
> where the timer callback advances the expiry value and returns
> HRTIMER_RESTART. It might be not required for your initial use case at
> hand, but you'll need that in the long run IMO.
If you are OK with taking that feature without a user, I will gladly add
it.
Best regards,
Andreas
Powered by blists - more mailing lists