lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Date: Mon, 10 Jun 2024 14:22:50 +0100
From: James Clark <james.clark@....com>
To: Suzuki K Poulose <suzuki.poulose@....com>,
 Linu Cherian <lcherian@...vell.com>, mike.leach@...aro.org
Cc: linux-arm-kernel@...ts.infradead.org, coresight@...ts.linaro.org,
 linux-kernel@...r.kernel.org, robh+dt@...nel.org,
 krzysztof.kozlowski+dt@...aro.org, conor+dt@...nel.org,
 devicetree@...r.kernel.org, sgoutham@...vell.com, gcherian@...vell.com
Subject: Re: [PATCH v9 0/7] Coresight for Kernel panic and watchdog reset



On 10/06/2024 14:06, Suzuki K Poulose wrote:
> On 05/06/2024 09:17, Linu Cherian wrote:
>> This patch series is rebased on coresight-next-v6.10.
>>
>>
>> Changelog from v8:
>> * Added missing exit path on error in __tmc_probe.
>> * Few whitespace fixes, checkpatch fixes.
>> * With perf sessions honouring stop_on_flush sysfs attribute,
>>    removed redundant variable stop_on_flush_en.
>>
>> Changelog from v7:
>> * Fixed breakage on perf test -vvvv  "arm coresight".
>>    No issues seen with and without "resrv" buffer mode
>> * Moved the crashdev registration into a seperate function.
>> * Removed redundant variable in tmc_etr_setup_crashdata_buf
>> * Avoided a redundant memcpy in tmc_panic_sync_etf.
>> * Tested kernel panic with trace session started uisng perf.
>>    Please see the title "Perf based testing" below for details.
>>    For this, stop_on_flush sysfs attribute is taken into
>>    consideration while starting perf sessions as well.
>>
>> Changelog from v6:
>> * Added special device files for reading crashdata, so that
>>    read_prevboot mode flag is removed.
>> * Added new sysfs TMC device attribute, stop_on_flush.
>>    Stop on flush trigger event is disabled by default.
>>    User need to explicitly enable this from sysfs for panic stop
>>    to work.
>> * Address parameter for panicstop ETM configuration is
>>    chosen as kernel "panic" address by default.
>> * Added missing tmc_wait_for_tmcready during panic handling
>> * Few other misc code rearrangements.
>>
>> Changelog from v5:
>> * Fixed issues reported by CONFIG_DEBUG_ATOMIC_SLEEP
>> * Fixed a memory leak while reading data from /dev/tmc_etrx in
>>    READ_PREVBOOT mode
>> * Tested reading trace data from crashdump kernel
>>
>> Changelog from v4:
>> * Device tree binding
>>    - Description is made more explicit on the usage of reserved memory
>>      region
>>    - Mismatch in memory region names in dts binding and driver fixed
>>    - Removed "mem" suffix from the memory region names
>> * Rename "struct tmc_register_snapshot" ->  "struct tmc_crash_metadata",
>>    since it contains more than register snapshot.
>>    Related variables are named accordingly.
>> * Rename struct tmc_drvdata members
>>     resrv_buf -> crash_tbuf
>>     metadata  -> crash_mdata
>> * Size field in metadata refers to RSZ register and hence indicates the
>>    size in 32 bit words. ETR metadata follows this convention, the same
>>    has been extended to ETF metadata as well.
>> * Added crc32 for more robust metadata and tracedata validation.
>> * Added/modified dev_dbg messages during metadata validation
>> * Fixed a typo in patch 5 commit description
>>
>> Changelog from v3:
>> * Converted the Coresight ETM driver change to a named configuration.
>>    RFC tag has been removed with this change.
>> * Fixed yaml issues reported by "make dt_binding_check"
>> * Added names for reserved memory regions 0 and 1
>> * Added prevalidation checks for metadata processing
>> * Fixed a regression introduced in RFC v3
>>    - TMC Status register was getting saved wrongly
>> * Reverted memremap attribute changes from _WB to _WC to match
>>    with the dma map attributes
>> * Introduced reserved buffer mode specific .sync op.
>>    This fixes a possible crash when reserved buffer mode was used in
>>    normal trace capture, due to unwanted dma maintenance operations.
>>
>> v8 is posted here:
>> https://lore.kernel.org/lkml/20240531042745.494222-4-lcherian@marvell.com/T/
> 
> --8>-- CUT HERE ----
>>
>> Using Coresight for Kernel panic and Watchdog reset
>> ===================================================
>> This patch series is about extending Linux coresight driver support to
>> address kernel panic and watchdog reset scenarios. This would help
>> coresight users to debug kernel panic and watchdog reset using
>> coresight trace data.
>>
>> Coresight trace capture: Kernel panic
>> -------------------------------------
>>  From the coresight driver point of view, addressing the kernel panic
>> situation has four main requirements.
>>
>> a. Support for allocation of trace buffer pages from reserved memory
>> area.
>>     Platform can advertise this using a new device tree property added to
>>     relevant coresight nodes.
>>
>> b. Support for stopping coresight blocks at the time of panic
>>
>> c. Saving required metadata in the specified format
>>
>> d. Support for reading trace data captured at the time of panic
>>
>> Allocation of trace buffer pages from reserved RAM
>> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
>> A new optional device tree property "memory-region" is added to the
>> ETR/ETF device nodes, that would give the base address and size of trace
>> buffer.
>>
>> Static allocation of trace buffers would ensure that both IOMMU enabled
>> and disabled cases are handled. Also, platforms that support persistent
>> RAM will allow users to read trace data in the subsequent boot without
>> booting the crashdump kernel.
>>
>> Note:
>> For ETR sink devices, this reserved region will be used for both trace
>> capture and trace data retrieval.
>> For ETF sink devices, internal SRAM would be used for trace capture,
>> and they would be synced to reserved region for retrieval.
>>
>> Note: Patches 1 & 2 adds support for this.
>>
>> Disabling coresight blocks at the time of panic
>> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
>> In order to avoid the situation of losing relevant trace data after a
>> kernel panic, it would be desirable to stop the coresight blocks at the
>> time of panic.
>>
>> This can be achieved by configuring the comparator, CTI and sink
>> devices as below,
>>
>> Comparator(triggers on kernel panic) --->External out --->CTI --
>>                                 |
>>          ETR/ETF stop <------External In <--------------
>> Note:
>>
>> * Patch 6 provides the necessary ETR configuration.
>> * Patch 7 provides the necessary ETM configuration.
>>
>> Saving metadata at the time of kernel panic
>> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
>> Coresight metadata involves all additional data that are required for a
>> successful trace decode in addition to the trace data. This involves
>> ETR/ETF, ETE register snapshot etc.
>>
>> A new optional device property "memory-region" is added to
>> the ETR/ETF/ETE device nodes for this.
>>
>> Note: Patches 3 & 4 adds support for this.
>>
>> Reading trace data captured at the time of panic
>> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
>> Trace data captured at the time of panic, can be read from rebooted
>> kernel
>> or from crashdump kernel using the below mentioned interface.
>>
>> Note: Patch 5 adds support for this.
>>
>> Steps for reading trace data captured in previous boot
>> ++++++++++++++++++++++++++++++++++++++++++++++++++++++
>> 1. cd /sys/bus/coresight/devices/tmc_etrXX/
>>
>> 2. Dump trace buffer crashdata to a file,
>>
>>     #dd if=/dev/crash_tmc_etrXX of=~/cstrace.bin
>>
>>
>> General flow of trace capture and decode incase of kernel panic
>> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
>> 1. Enable source and sink on all the cores using the sysfs interface.
>>     ETR sink will have trace buffers allocated from reserved memory,
>>     by selecting "resrv" buffer mode from sysfs.
>>
>> 2. Run relevant tests.
>>
>> 3. On a kernel panic, all coresight blocks are disabled, necessary
>>     metadata is synced by kernel panic handler.
>>
>>     System would eventually reboot or boot a crashdump kernel.
>>
>> 4. For  platforms that supports crashdump kernel, raw trace data can be
>>     dumped using the coresight sysfs interface from the crashdump kernel
>>     itself. Persistent RAM is not a requirement in this case.
>>
>> 5. For platforms that supports persistent RAM, trace data can be dumped
>>     using the coresight sysfs interface in the subsequent Linux boot.
>>     Crashdump kernel is not a requirement in this case. Persistent RAM
>>     ensures that trace data is intact across reboot.
>>
>> Coresight trace capture: Watchdog reset
>> ---------------------------------------
>> The main difference between addressing the watchdog reset and kernel
>> panic
>> case are below,
>>
>> a. Saving coresight metadata need to be taken care by the
>>     SCP(system control processor) firmware in the specified format,
>>     instead of kernel.
>>
>> b. Reserved memory region given by firmware for trace buffer and metadata
>>     has to be in persistent RAM.
>>     Note: This is a requirement for watchdog reset case but optional
>>     in kernel panic case.
>>
>> Watchdog reset can be supported only on platforms that meet the above
>> two requirements.
>>
>> Testing Kernel panic on Linux 6.8
>> ---------------------------------
>> 1. Enable the preloaded ETM configuration
>>
>>    #echo 1 > /sys/kernel/config/cs-syscfg/configurations/panicstop/enable
>>
>> 2. Configure CTI using sysfs interface
>>
>>    #./cti_setup.sh
>>
>>    #cat cti_setup.sh
>>
>>    cd /sys/bus/coresight/devices/
>>
>>    ap_cti_config () {
>>      #ETM trig out[0] trigger to Channel 0
>>      echo 0 4 > channels/trigin_attach
>>    }
>>
>>    etf_cti_config () {
>>      #ETF Flush in trigger from Channel 0
>>      echo 0 1 > channels/trigout_attach
>>      echo 1 > channels/trig_filter_enable
>>    }
>>
>>    etr_cti_config () {
>>      #ETR Flush in from Channel 0
>>      echo 0 1 > channels/trigout_attach
>>      echo 1 > channels/trig_filter_enable
>>    }
>>
>>    ctidevs=`find . -name "cti*"`
>>
>>    for i in $ctidevs
>>    do
>>            cd $i
>>
>>            connection=`find . -name "ete*"`
>>            if [ ! -z "$connection" ]
>>            then
>>                    echo "AP CTI config for $i"
>>                    ap_cti_config
>>            fi
>>
>>            connection=`find . -name "tmc_etf*"`
>>            if [ ! -z "$connection" ]
>>            then
>>                    echo "ETF CTI config for $i"
>>                    etf_cti_config
>>            fi
>>
>>            connection=`find . -name "tmc_etr*"`
>>            if [ ! -z "$connection" ]
>>            then
>>                    echo "ETR CTI config for $i"
>>                    etr_cti_config
>>            fi
>>
>>            cd ..
>>    done
>>
>> Note: CTI connections are SOC specific and hence the above script is
>> added just for reference.
>>
>> 3. Choose reserved buffer mode for ETR buffer
>>    #echo "resrv" > /sys/bus/coresight/devices/tmc_etr0/buf_mode_preferred
>>
>> 4. Enable stop on flush trigger configuration
>>    #echo 1 > /sys/bus/coresight/devices/tmc_etr0/stop_on_flush
>>
>> 4. Start Coresight tracing on cores 1 and 2 using sysfs interface
>>
>> 5. Run some application on core 1
>>    #taskset -c 1 dd if=/dev/urandom of=/dev/null &
>>
>> 6. Invoke kernel panic on core 2
>>    #echo 1 > /proc/sys/kernel/panic
>>    #taskset -c 2 echo c > /proc/sysrq-trigger
>>
>> 7. From rebooted kernel or crashdump kernel, read crashdata
>>      Note: For crashdump kernel option, please make sure
>> "crash_kexec_post_notifiers" is
>>    added to the kernel bootargs.
>>
>>    #dd if=/dev/crash_tmc_etr0 of=/trace/cstrace.bin
>>
>> 8. Run opencsd decoder tools/scripts to generate the instruction trace.
>>
>> Sample Core 1 instruction trace dump:
>> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
>>     A                                  etm4_enable_hw: ffff800008ae1dd4
>>     CONTEXT EL2                        etm4_enable_hw: ffff800008ae1dd4
>>     I                                  etm4_enable_hw: ffff800008ae1dd4:
>>     d503201f   nop
>>     I                                  etm4_enable_hw: ffff800008ae1dd8:
>>     d503201f   nop
>>     I                                  etm4_enable_hw: ffff800008ae1ddc:
>>     d503201f   nop
>>     I                                  etm4_enable_hw: ffff800008ae1de0:
>>     d503201f   nop
>>     I                                  etm4_enable_hw: ffff800008ae1de4:
>>     d503201f   nop
>>     I                                  etm4_enable_hw: ffff800008ae1de8:
>>     d503233f   paciasp
>>     I                                  etm4_enable_hw: ffff800008ae1dec:
>>     a9be7bfd   stp     x29, x30, [sp, #-32]!
>>     I                                  etm4_enable_hw: ffff800008ae1df0:
>>     910003fd   mov     x29, sp
>>     I                                  etm4_enable_hw: ffff800008ae1df4:
>>     a90153f3   stp     x19, x20, [sp, #16]
>>     I                                  etm4_enable_hw: ffff800008ae1df8:
>>     2a0003f4   mov     w20, w0
>>     I                                  etm4_enable_hw: ffff800008ae1dfc:
>>     900085b3   adrp    x19, ffff800009b95000 <reserved_mem+0xc48>
>>     I                                  etm4_enable_hw: ffff800008ae1e00:
>>     910f4273   add     x19, x19, #0x3d0
>>     I                                  etm4_enable_hw: ffff800008ae1e04:
>>     f8747a60   ldr     x0, [x19, x20, lsl #3]
>>     E                                  etm4_enable_hw: ffff800008ae1e08:
>>     b4000140   cbz     x0, ffff800008ae1e30 <etm4_starting_cpu+0x50>
>>     I    149.039572921                 etm4_enable_hw: ffff800008ae1e30:
>>     a94153f3   ldp     x19, x20, [sp, #16]
>>     I    149.039572921                 etm4_enable_hw: ffff800008ae1e34:
>>     52800000   mov     w0, #0x0                        // #0
>>     I    149.039572921                 etm4_enable_hw: ffff800008ae1e38:
>>     a8c27bfd   ldp     x29, x30, [sp], #32
>>
>>     ..snip
>>
>>         149.052324811           chacha_block_generic: ffff800008642d80:
>>     9100a3e0   add     x0,
>>     I    149.052324811           chacha_block_generic: ffff800008642d84:
>>     b86178a2   ldr     w2, [x5, x1, lsl #2]
>>     I    149.052324811           chacha_block_generic: ffff800008642d88:
>>     8b010803   add     x3, x0, x1, lsl #2
>>     I    149.052324811           chacha_block_generic: ffff800008642d8c:
>>     b85fc063   ldur    w3, [x3, #-4]
>>     I    149.052324811           chacha_block_generic: ffff800008642d90:
>>     0b030042   add     w2, w2, w3
>>     I    149.052324811           chacha_block_generic: ffff800008642d94:
>>     b8217882   str     w2, [x4, x1, lsl #2]
>>     I    149.052324811           chacha_block_generic: ffff800008642d98:
>>     91000421   add     x1, x1, #0x1
>>     I    149.052324811           chacha_block_generic: ffff800008642d9c:
>>     f100443f   cmp     x1, #0x11
>>
>>
>> Sample Core 2 instruction trace dump(kernel panic triggered core):
>> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
>>     A                                  etm4_enable_hw: ffff800008ae1dd4
>>     CONTEXT EL2                        etm4_enable_hw: ffff800008ae1dd4
>>     I                                  etm4_enable_hw: ffff800008ae1dd4:
>>     d503201f   nop
>>     I                                  etm4_enable_hw: ffff800008ae1dd8:
>>     d503201f   nop
>>     I                                  etm4_enable_hw: ffff800008ae1ddc:
>>     d503201f   nop
>>     I                                  etm4_enable_hw: ffff800008ae1de0:
>>     d503201f   nop
>>     I                                  etm4_enable_hw: ffff800008ae1de4:
>>     d503201f   nop
>>     I                                  etm4_enable_hw: ffff800008ae1de8:
>>     d503233f   paciasp
>>     I                                  etm4_enable_hw: ffff800008ae1dec:
>>     a9be7bfd   stp     x29, x30, [sp, #-32]!
>>     I                                  etm4_enable_hw: ffff800008ae1df0:
>>     910003fd   mov     x29, sp
>>     I                                  etm4_enable_hw: ffff800008ae1df4:
>>     a90153f3   stp     x19, x20, [sp, #16]
>>     I                                  etm4_enable_hw: ffff800008ae1df8:
>>     2a0003f4   mov     w20, w0
>>     I                                  etm4_enable_hw: ffff800008ae1dfc:
>>     900085b3   adrp    x19, ffff800009b95000 <reserved_mem+0xc48>
>>     I                                  etm4_enable_hw: ffff800008ae1e00:
>>     910f4273   add     x19, x19, #0x3d0
>>     I                                  etm4_enable_hw: ffff800008ae1e04:
>>     f8747a60   ldr     x0, [x19, x20, lsl #3]
>>     E                                  etm4_enable_hw: ffff800008ae1e08:
>>     b4000140   cbz     x0, ffff800008ae1e30 <etm4_starting_cpu+0x50>
>>     I    149.046243445                 etm4_enable_hw: ffff800008ae1e30:
>>     a94153f3   ldp     x19, x20, [sp, #16]
>>     I    149.046243445                 etm4_enable_hw: ffff800008ae1e34:
>>     52800000   mov     w0, #0x0                        // #0
>>     I    149.046243445                 etm4_enable_hw: ffff800008ae1e38:
>>     a8c27bfd   ldp     x29, x30, [sp], #32
>>     I    149.046243445                 etm4_enable_hw: ffff800008ae1e3c:
>>     d50323bf   autiasp
>>     E    149.046243445                 etm4_enable_hw: ffff800008ae1e40:
>>     d65f03c0   ret
>>     A                                ete_sysreg_write: ffff800008adfa18
>>
>>     ..snip
>>
>>     I     149.05422547                          panic: ffff800008096300:
>>     a90363f7   stp     x23, x24, [sp, #48]
>>     I     149.05422547                          panic: ffff800008096304:
>>     6b00003f   cmp     w1, w0
>>     I     149.05422547                          panic: ffff800008096308:
>>     3a411804   ccmn    w0, #0x1, #0x4, ne  // ne = any
>>     N     149.05422547                          panic: ffff80000809630c:
>>     540001e0   b.eq    ffff800008096348 <panic+0xe0>  // b.none
>>     I     149.05422547                          panic: ffff800008096310:
>>     f90023f9   str     x25, [sp, #64]
>>     E     149.05422547                          panic: ffff800008096314:
>>     97fe44ef   bl      ffff8000080276d0 <panic_smp_self_stop>
>>     A                                           panic: ffff80000809634c
>>     I     149.05422547                          panic: ffff80000809634c:
>>     910102d5   add     x21, x22, #0x40
>>     I     149.05422547                          panic: ffff800008096350:
>>     52800020   mov     w0, #0x1                        // #1
>>     E     149.05422547                          panic: ffff800008096354:
>>     94166b8b   bl      ffff800008631180 <bust_spinlocks>
>>     N    149.054225518                 bust_spinlocks: ffff800008631180:
>>     340000c0   cbz     w0, ffff800008631198 <bust_spinlocks+0x18>
>>     I    149.054225518                 bust_spinlocks: ffff800008631184:
>>     f000a321   adrp    x1, ffff800009a98000 <pbufs.0+0xbb8>
>>     I    149.054225518                 bust_spinlocks: ffff800008631188:
>>     b9405c20   ldr     w0, [x1, #92]
>>     I    149.054225518                 bust_spinlocks: ffff80000863118c:
>>     11000400   add     w0, w0, #0x1
>>     I    149.054225518                 bust_spinlocks: ffff800008631190:
>>     b9005c20   str     w0, [x1, #92]
>>     E    149.054225518                 bust_spinlocks: ffff800008631194:
>>     d65f03c0   ret
>>     A                                           panic: ffff800008096358
>>
>> Perf based testing
>> ------------------
>> Kernel panic during perf trace sessions has been tested with this series.
>>
>> Starting perf session
>> ~~~~~~~~~~~~~~~~~~~~~
>> ETF:
>> ./tools/perf/perf record -e cs_etm/panicstop,@tmc_etf1/ -C 1
>> ./tools/perf/perf record -e cs_etm/panicstop,@tmc_etf2/ -C 2
>>
>> ETR:
>> ./tools/perf/perf record -e cs_etm/panicstop,@tmc_etr0/ -C 1,2
>>
>> Reading trace data after panic
>> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
>> Same sysfs based method explained above can be used to retrieve and
>> decode the trace data after the reboot on kernel panic.
> 
> 
> --8>-- End here ---<8--
> 
> 
> Please add the above section into a Documentation/trace/coresight/panic.rst
> 
> Cover letter doesn't get saved anywhere (except archives). Please
> have the above useful information documented for people to try it.
> 
> Kind Regards
> Suzuki
> 
> 

And in the example in the docs put booting with "crashkernel=512M
crash_kexec_post_notifiers" as step 1. I know it might be possible read
back after a normal reboot on some systems but it would be good to have
one beginning to end example that's most likely to work for everyone.

Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ