[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <20240711130004.2157737-11-vschneid@redhat.com>
Date: Thu, 11 Jul 2024 15:00:04 +0200
From: Valentin Schneider <vschneid@...hat.com>
To: linux-kernel@...r.kernel.org,
rcu@...r.kernel.org
Cc: Peter Zijlstra <peterz@...radead.org>,
Ingo Molnar <mingo@...hat.com>,
Juri Lelli <juri.lelli@...hat.com>,
Vincent Guittot <vincent.guittot@...aro.org>,
Dietmar Eggemann <dietmar.eggemann@....com>,
Steven Rostedt <rostedt@...dmis.org>,
Ben Segall <bsegall@...gle.com>,
Mel Gorman <mgorman@...e.de>,
Phil Auld <pauld@...hat.com>,
Clark Williams <williams@...hat.com>,
Tomas Glozar <tglozar@...hat.com>,
"Paul E. McKenney" <paulmck@...nel.org>,
Frederic Weisbecker <frederic@...nel.org>,
Neeraj Upadhyay <neeraj.upadhyay@...nel.org>,
Joel Fernandes <joel@...lfernandes.org>,
Josh Triplett <josh@...htriplett.org>,
Boqun Feng <boqun.feng@...il.com>,
Mathieu Desnoyers <mathieu.desnoyers@...icios.com>,
Lai Jiangshan <jiangshanlai@...il.com>,
Zqiang <qiang.zhang1211@...il.com>,
Alexander Gordeev <agordeev@...ux.ibm.com>,
Catalin Marinas <catalin.marinas@....com>,
Arnd Bergmann <arnd@...db.de>,
Guo Ren <guoren@...nel.org>,
Palmer Dabbelt <palmer@...osinc.com>,
Andrew Morton <akpm@...ux-foundation.org>,
Oleg Nesterov <oleg@...hat.com>,
Jens Axboe <axboe@...nel.dk>
Subject: [RFC PATCH v3 10/10] sched/fair: Throttle CFS tasks on return to userspace
As reported in [1], CFS bandwidth throttling is a source of headaches in
PREEMPT_RT - generally speaking, a throttled CFS task can hold locks that
prevent ksoftirqd from running, which prevents replenishing & unthrottling
the cfs_rq of said CFS task.
Peter mentioned that there have been discussions on changing /when/ the
throttling happens: rather than have it be done immediately upon updating
the runtime statistics and realizing the cfs_rq has depleted its quota, we wait
for the task to be about to return to userspace.
This approach also benefits !PREEMPT_RT, as it reduces latency caused by
throttled tasks owning contended (kernel) resources.
Concept
=======
Upon throttling a cfs_rq, all tasks already enqueued get a task_work added,
which lets the actual throttling happen in exit_to_user_mode().
Any new task migrated to or enqueued on such a cfs_rq similarly gets the
task_work added.
Previous patches have added helpers for all the relevant locations where
the task_work may need to be either added or removed depending on the state
of the cfs_rq the task is (to be) enqueued on:
o sched_class change
o cgroup migration
o CPU migration
o task wakeup
Upon unthrottling, tasks are enqueued back onto their respective
cfs_rq. Unlike the previous throttling implementation, cfs_rq's can be
unthrottled while in a half-throttled state (i.e. some tasks have been
removed from them, while others are still enqueued and runnable as they
haven't reached exit_to_user_mode() yet), so the unthrottling process is a
bit more involved, especially when it comes to maintaining *nr_running fields.
Clocks
======
Correctly handling the different cfs_rq->throttled_clock* is tricky, as
unlike the current upstream approach where all tasks of a cfs_rq are
throttled at the exact same time, here they each get throttled at a
per-task, not-known-beforehand time.
For instance, for the ->throttled_clock_pelt, ideally we would need a
per-task snapshot of when the task gets really throttled in
exit_to_user_mode(), rather than a single snapshot of when the cfs_rq runs
out of runtime. This isn't implemented here. The ->throttled_clock_pelt is
set when the cfs_rq runs out of runtime, which means the "grace period"
given to the cfs_rq's tasks on their way to exit_to_user_mode() isn't
accounted.
Notable behaviour changes
=========================
Once a cfs_rq is ->throttled, its tasks can continue running until they hit
exit_to_user_mode(). This means they can keep draining further runtime
from their cfs_rq, which can end up draining more than one period's worth
of runtime.
I've tested a 10ms runtime / 100ms period cgroup with an always running
task: upstream gets a "clean" periodic pattern of 10ms runtime every 100ms,
whereas this gets something more like 40ms runtime every 400ms.
[1]: https://lore.kernel.org/all/20231031160120.GE15024@noisy.programming.kicks-ass.net/
Suggested-by: Peter Zijlstra <peterz@...radead.org>
Signed-off-by: Valentin Schneider <vschneid@...hat.com>
---
include/linux/sched.h | 1 +
kernel/sched/fair.c | 438 ++++++++++++++++++++++++++++++------------
kernel/sched/sched.h | 4 +
3 files changed, 320 insertions(+), 123 deletions(-)
diff --git a/include/linux/sched.h b/include/linux/sched.h
index 99a1e77d769db..29b9334738af1 100644
--- a/include/linux/sched.h
+++ b/include/linux/sched.h
@@ -815,6 +815,7 @@ struct task_struct {
struct task_group *sched_task_group;
struct callback_head sched_throttle_work;
#ifdef CONFIG_CFS_BANDWIDTH
+ struct list_head throttle_node;
struct irq_work unthrottle_irq_work;
#endif
#endif
diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c
index 0cec3e70f1277..08cf7343aedb1 100644
--- a/kernel/sched/fair.c
+++ b/kernel/sched/fair.c
@@ -54,6 +54,7 @@
#include "sched.h"
#include "stats.h"
#include "autogroup.h"
+#include "task_work_sched.h"
/*
* The initial- and re-scaling of tunables is configurable
@@ -5694,12 +5695,114 @@ static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
return cfs_bandwidth_used() && cfs_rq->throttle_count;
}
-static inline bool task_has_throttle_work(struct task_struct *p) { return false; }
-static inline bool task_needs_throttling(struct task_struct *p) { return false; }
-static inline bool task_needs_migrate_throttling(struct task_struct *p, unsigned int dst_cpu) { return false; }
-static inline void task_throttle_setup(struct task_struct *p) { }
-static inline void task_throttle_cancel_migrate(struct task_struct *p, int dst_cpu) { }
-static inline void task_throttle_cancel(struct task_struct *p) { }
+static inline bool task_has_throttle_work(struct task_struct *p)
+{
+ return p->sched_throttle_work.next != &p->sched_throttle_work;
+}
+
+static inline bool task_needs_throttling(struct task_struct *p)
+{
+ return throttled_hierarchy(cfs_rq_of(&p->se));
+}
+
+static inline bool task_needs_migrate_throttling(struct task_struct *p, unsigned int dst_cpu)
+{
+ return throttled_hierarchy(task_group(p)->cfs_rq[dst_cpu]);
+}
+
+static inline bool task_is_throttled(struct task_struct *p)
+{
+ return !list_empty(&p->throttle_node);
+}
+
+static inline void task_throttle_setup_work(struct task_struct *p)
+{
+ /*
+ * Kthreads and exiting tasks don't return to userspace, so adding the
+ * work is pointless
+ */
+ if (!(p->flags & (PF_EXITING | PF_KTHREAD)))
+ task_work_add(p, &p->sched_throttle_work, TWA_RESUME);
+}
+
+static void throttle_cfs_rq_work(struct callback_head *work);
+static inline void task_throttle_do_cancel_work(struct task_struct *p)
+{
+ /*
+ * If this returns NULL, it means the work got run, which per
+ * this being called is a bug: the task_work throttled the
+ * task when it didn't need to be.
+ */
+ WARN_ON_ONCE(!task_work_cancel_locked(p, throttle_cfs_rq_work));
+ p->sched_throttle_work.next = &p->sched_throttle_work;
+}
+
+static inline void task_throttle_cancel_work(struct task_struct *p, int dst_cpu)
+{
+ /*
+ * The calling context may be holding p->pi_lock, which is also acquired
+ * by task_work_cancel_match().
+ *
+ * Lock recursion is prevented by punting the work cancellation to the
+ * next IRQ enable. This is sent to the destination CPU rather than
+ * >this< CPU to prevent the task from resuming execution and getting
+ * throttled in its return to userspace.
+ */
+ irq_work_queue_on(&p->unthrottle_irq_work, dst_cpu);
+}
+
+static void task_throttle_cancel_irq_work_fn(struct irq_work *work)
+{
+ struct task_struct *p = container_of(work, struct task_struct, unthrottle_irq_work);
+ int cpu = raw_smp_processor_id();
+
+ CLASS(task_rq_lock, rq_guard)(p);
+ WARN_ON_ONCE(task_cpu(p) != cpu);
+
+ if (task_has_throttle_work(p) && !task_needs_throttling(p))
+ task_throttle_do_cancel_work(p);
+}
+
+static inline void task_throttle_setup(struct task_struct *p)
+{
+ /*
+ * If already throttled-in-userspace, just transfer the throttle_node
+ * link to the new cfs_rq
+ *
+ * Else, if not yet throttled, set up the work. Also, the task may be
+ * running in userspace (e.g. this is called from sched_move_task()),
+ * so make sure it is running in kernelspace to get the kernel-exit
+ * throttle.
+ */
+ if (task_is_throttled(p))
+ list_move(&p->throttle_node, &cfs_rq_of(&p->se)->throttled_limbo_list);
+ else if (!task_has_throttle_work(p))
+ task_throttle_setup_work(p);
+}
+
+static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags);
+static inline void __task_throttle_cancel(struct task_struct *p, unsigned int cpu)
+{
+ /*
+ * Task musn't be throttled, either:
+ * o it's already throttled-in-userspace, unthrottle it
+ * o it has the task_work installed, remove it
+ */
+ if (task_is_throttled(p)) {
+ list_del_init(&p->throttle_node);
+ enqueue_task_fair(cpu_rq(cpu), p, ENQUEUE_WAKEUP);
+ } else if (task_has_throttle_work(p)) {
+ task_throttle_cancel_work(p, cpu);
+ }
+}
+static inline void task_throttle_cancel(struct task_struct *p)
+{
+ __task_throttle_cancel(p, task_cpu(p));
+}
+static inline void task_throttle_cancel_migrate(struct task_struct *p, unsigned int dst_cpu)
+{
+ __task_throttle_cancel(p, dst_cpu);
+}
/*
* Ensure that neither of the group entities corresponding to src_cpu or
@@ -5722,35 +5825,107 @@ static int tg_unthrottle_up(struct task_group *tg, void *data)
{
struct rq *rq = data;
struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
+ struct sched_entity *se = tg->se[cpu_of(rq)];
+ struct cfs_rq *pcfs_rq = cfs_rq_of(se);
+ long task_delta = 0, idle_task_delta = 0;
+ struct task_struct *p, *tmp;
cfs_rq->throttle_count--;
- if (!cfs_rq->throttle_count) {
- cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
- cfs_rq->throttled_clock_pelt;
+ if (cfs_rq->throttle_count)
+ return 0;
- /* Add cfs_rq with load or one or more already running entities to the list */
- if (!cfs_rq_is_decayed(cfs_rq))
- list_add_leaf_cfs_rq(cfs_rq);
+ cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
+ cfs_rq->throttled_clock_pelt;
+
+ /* Add cfs_rq with load or one or more already running entities to the list */
+ if (!cfs_rq_is_decayed(cfs_rq))
+ list_add_leaf_cfs_rq(cfs_rq);
- if (cfs_rq->throttled_clock_self) {
- u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self;
+ if (cfs_rq->throttled_clock_self) {
+ u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self;
- cfs_rq->throttled_clock_self = 0;
+ cfs_rq->throttled_clock_self = 0;
- if (SCHED_WARN_ON((s64)delta < 0))
- delta = 0;
+ if (SCHED_WARN_ON((s64)delta < 0))
+ delta = 0;
- cfs_rq->throttled_clock_self_time += delta;
- }
+ cfs_rq->throttled_clock_self_time += delta;
+ }
+
+ /*
+ * Re-enqueue the tasks that have been throttled at this level.
+ *
+ * The task count is up-propagated via ->unthrottled_*h_nr_running,
+ * as we can't purely rely on h_nr_running post-enqueue: the unthrottle
+ * might happen when a cfs_rq still has some tasks enqueued, either still
+ * making their way to userspace, or freshly migrated to it.
+ */
+ list_for_each_entry_safe(p, tmp, &cfs_rq->throttled_limbo_list, throttle_node) {
+ struct sched_entity *pse = &p->se;
+
+ list_del_init(&p->throttle_node);
+
+ enqueue_entity(cfs_rq, pse, ENQUEUE_WAKEUP);
+ task_delta++;
+ idle_task_delta += task_has_idle_policy(p);
+ }
+
+ /*
+ * Account tasks woken up in children; by this point all direct children
+ * have been visited.
+ */
+ task_delta += cfs_rq->unthrottled_h_nr_running;
+ idle_task_delta += cfs_rq->unthrottled_idle_h_nr_running;
+
+ cfs_rq->h_nr_running += task_delta;
+ cfs_rq->idle_h_nr_running += idle_task_delta;
+
+ /*
+ * unthrottle_cfs_rq() needs a value to up-propagate above the
+ * freshly unthrottled cfs_rq.
+ */
+ cfs_rq->unthrottled_h_nr_running = task_delta;
+ cfs_rq->unthrottled_idle_h_nr_running = idle_task_delta;
+
+ /* Accumulate the delta in the parent's stash. Once all its children
+ * (i.e. all of this cfs_rq's siblings) have been visited, this value
+ * will be stable and used for its own count update.
+ */
+ pcfs_rq->unthrottled_h_nr_running += task_delta;
+ pcfs_rq->unthrottled_idle_h_nr_running += idle_task_delta;
+
+ /*
+ * If the cfs_rq became empty during throttling, then we dequeued
+ * it. It needs to be put back in the hierarchy if it or any of
+ * its children have now-unthrottled tasks.
+ */
+ if (!se->on_rq && (cfs_rq->h_nr_running || cfs_rq->idle_h_nr_running)) {
+ enqueue_entity(pcfs_rq, se, ENQUEUE_WAKEUP);
+ } else {
+ update_load_avg(pcfs_rq, se, UPDATE_TG);
+ se_update_runnable(se);
}
return 0;
}
+static int tg_unthrottle_clear_up(struct task_group *tg, void *data)
+{
+ struct rq *rq = data;
+ struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
+
+ cfs_rq->unthrottled_h_nr_running = 0;
+ cfs_rq->unthrottled_idle_h_nr_running = 0;
+
+ return 0;
+}
+
static int tg_throttle_down(struct task_group *tg, void *data)
{
struct rq *rq = data;
struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
+ struct rb_node *node;
+ struct task_struct *p;
/* group is entering throttled state, stop time */
if (!cfs_rq->throttle_count) {
@@ -5763,17 +5938,118 @@ static int tg_throttle_down(struct task_group *tg, void *data)
}
cfs_rq->throttle_count++;
+ /*
+ * If we've already visited this cfs_rq (e.g. it ran out of its own
+ * runtime sometime earlier and hasn't had a replenish yet), then
+ * there's nothing more to do.
+ */
+ if (cfs_rq->throttle_count > 1)
+ return 0;
+
+ WARN_ON_ONCE(!list_empty(&cfs_rq->throttled_limbo_list));
+ /*
+ * rq_lock is held, current is (obviously) executing this in kernelspace.
+ *
+ * All other tasks enqueued on this rq have their saved PC at the
+ * context switch, so they will go through the kernel before returning
+ * to userspace. Thus, there are no tasks-in-userspace to handle, just
+ * install the task_work on all of them.
+ */
+ node = rb_first(&cfs_rq->tasks_timeline.rb_root);
+ while (node) {
+ struct sched_entity *se = __node_2_se(node);
+
+ if (!entity_is_task(se))
+ goto next;
+
+ p = task_of(se);
+
+ if (!task_has_throttle_work(p))
+ task_throttle_setup_work(p);
+next:
+ node = rb_next(node);
+ }
+
return 0;
}
-static void throttle_cfs_rq_work(struct callback_head *work)
+static void throttle_one_task(struct cfs_rq *cfs_rq, struct task_struct *p)
{
+ long task_delta, idle_task_delta;
+ struct sched_entity *se = &p->se;
+
+ list_add(&p->throttle_node, &cfs_rq->throttled_limbo_list);
+ task_delta = 1;
+ idle_task_delta = cfs_rq_is_idle(cfs_rq) ? 1 : 0;
+
+ for_each_sched_entity(se) {
+ cfs_rq = cfs_rq_of(se);
+
+ if (!se->on_rq)
+ return;
+
+ dequeue_entity(cfs_rq, se, DEQUEUE_SLEEP);
+ cfs_rq->h_nr_running -= task_delta;
+ cfs_rq->idle_h_nr_running -= idle_task_delta;
+
+ if (cfs_rq->load.weight) {
+ /* Avoid re-evaluating load for this entity: */
+ se = parent_entity(se);
+ break;
+ }
+ }
+
+ for_each_sched_entity(se) {
+ cfs_rq = cfs_rq_of(se);
+ /* throttled entity or throttle-on-deactivate */
+ if (!se->on_rq)
+ goto throttle_done;
+
+ update_load_avg(cfs_rq, se, 0);
+ se_update_runnable(se);
+ cfs_rq->h_nr_running -= task_delta;
+ cfs_rq->h_nr_running -= idle_task_delta;
+ }
+
+throttle_done:
+ /* At this point se is NULL and we are at root level*/
+ sub_nr_running(rq_of(cfs_rq), 1);
}
-static void task_throttle_cancel_irq_work_fn(struct irq_work *work)
+static void throttle_cfs_rq_work(struct callback_head *work)
{
- /* Write me */
+ struct task_struct *p = container_of(work, struct task_struct, sched_throttle_work);
+ struct sched_entity *se;
+ struct rq *rq;
+ struct cfs_rq *cfs_rq;
+
+ WARN_ON_ONCE(p != current);
+ p->sched_throttle_work.next = &p->sched_throttle_work;
+ /*
+ * If task is exiting, then there won't be a return to userspace, so we
+ * don't have to bother with any of this.
+ */
+ if ((p->flags & PF_EXITING))
+ return;
+
+ CLASS(task_rq_lock, rq_guard)(p);
+ rq = rq_guard.rq;
+ se = &p->se;
+ cfs_rq = cfs_rq_of(se);
+
+ /*
+ * If not in limbo, then either replenish has happened or this task got
+ * migrated out of the throttled cfs_rq, move along
+ */
+ if (!cfs_rq->throttle_count)
+ return;
+
+ update_rq_clock(rq);
+
+ throttle_one_task(cfs_rq, p);
+
+ resched_curr(rq);
}
static void task_woken_fair(struct rq *rq, struct task_struct *p)
@@ -5792,6 +6068,7 @@ void init_cfs_throttle_work(struct task_struct *p)
/* Protect against double add, see throttle_cfs_rq() and throttle_cfs_rq_work() */
p->sched_throttle_work.next = &p->sched_throttle_work;
init_task_work(&p->sched_throttle_work, throttle_cfs_rq_work);
+ INIT_LIST_HEAD(&p->throttle_node);
p->unthrottle_irq_work = IRQ_WORK_INIT_HARD(task_throttle_cancel_irq_work_fn);
}
@@ -5799,8 +6076,7 @@ static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
{
struct rq *rq = rq_of(cfs_rq);
struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
- struct sched_entity *se;
- long task_delta, idle_task_delta, dequeue = 1;
+ long dequeue = 1;
raw_spin_lock(&cfs_b->lock);
/* This will start the period timer if necessary */
@@ -5818,70 +6094,24 @@ static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
list_add_tail_rcu(&cfs_rq->throttled_list,
&cfs_b->throttled_cfs_rq);
}
+
raw_spin_unlock(&cfs_b->lock);
if (!dequeue)
return false; /* Throttle no longer required. */
- se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
-
- /* freeze hierarchy runnable averages while throttled */
+ /* Flag the hierarchy for throttle-at-user-entry */
rcu_read_lock();
walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
rcu_read_unlock();
- task_delta = cfs_rq->h_nr_running;
- idle_task_delta = cfs_rq->idle_h_nr_running;
- for_each_sched_entity(se) {
- struct cfs_rq *qcfs_rq = cfs_rq_of(se);
- /* throttled entity or throttle-on-deactivate */
- if (!se->on_rq)
- goto done;
-
- dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
-
- if (cfs_rq_is_idle(group_cfs_rq(se)))
- idle_task_delta = cfs_rq->h_nr_running;
-
- qcfs_rq->h_nr_running -= task_delta;
- qcfs_rq->idle_h_nr_running -= idle_task_delta;
-
- if (qcfs_rq->load.weight) {
- /* Avoid re-evaluating load for this entity: */
- se = parent_entity(se);
- break;
- }
- }
-
- for_each_sched_entity(se) {
- struct cfs_rq *qcfs_rq = cfs_rq_of(se);
- /* throttled entity or throttle-on-deactivate */
- if (!se->on_rq)
- goto done;
-
- update_load_avg(qcfs_rq, se, 0);
- se_update_runnable(se);
-
- if (cfs_rq_is_idle(group_cfs_rq(se)))
- idle_task_delta = cfs_rq->h_nr_running;
-
- qcfs_rq->h_nr_running -= task_delta;
- qcfs_rq->idle_h_nr_running -= idle_task_delta;
- }
-
- /* At this point se is NULL and we are at root level*/
- sub_nr_running(rq, task_delta);
-
-done:
- /*
- * Note: distribution will already see us throttled via the
- * throttled-list. rq->lock protects completion.
- */
cfs_rq->throttled = 1;
+
SCHED_WARN_ON(cfs_rq->throttled_clock);
if (cfs_rq->nr_running)
cfs_rq->throttled_clock = rq_clock(rq);
- return true;
+
+ return false;
}
void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
@@ -5922,25 +6152,17 @@ void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
goto unthrottle_throttle;
}
- task_delta = cfs_rq->h_nr_running;
- idle_task_delta = cfs_rq->idle_h_nr_running;
- for_each_sched_entity(se) {
- struct cfs_rq *qcfs_rq = cfs_rq_of(se);
-
- if (se->on_rq)
- break;
- enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
-
- if (cfs_rq_is_idle(group_cfs_rq(se)))
- idle_task_delta = cfs_rq->h_nr_running;
+ if (cfs_rq->throttle_count)
+ return;
- qcfs_rq->h_nr_running += task_delta;
- qcfs_rq->idle_h_nr_running += idle_task_delta;
+ /*
+ * cfs_rq's below us may not have been fully emptied out, so we can't rely
+ * directly on ->h_nr_running. Use the stash instead.
+ */
+ task_delta = cfs_rq->unthrottled_h_nr_running;
+ idle_task_delta = cfs_rq->unthrottled_idle_h_nr_running;
- /* end evaluation on encountering a throttled cfs_rq */
- if (cfs_rq_throttled(qcfs_rq))
- goto unthrottle_throttle;
- }
+ walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_clear_up, (void *)rq);
for_each_sched_entity(se) {
struct cfs_rq *qcfs_rq = cfs_rq_of(se);
@@ -5948,15 +6170,8 @@ void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
update_load_avg(qcfs_rq, se, UPDATE_TG);
se_update_runnable(se);
- if (cfs_rq_is_idle(group_cfs_rq(se)))
- idle_task_delta = cfs_rq->h_nr_running;
-
qcfs_rq->h_nr_running += task_delta;
qcfs_rq->idle_h_nr_running += idle_task_delta;
-
- /* end evaluation on encountering a throttled cfs_rq */
- if (cfs_rq_throttled(qcfs_rq))
- goto unthrottle_throttle;
}
/* At this point se is NULL and we are at root level*/
@@ -6455,6 +6670,7 @@ static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
cfs_rq->runtime_enabled = 0;
INIT_LIST_HEAD(&cfs_rq->throttled_list);
INIT_LIST_HEAD(&cfs_rq->throttled_csd_list);
+ INIT_LIST_HEAD(&cfs_rq->throttled_limbo_list);
}
void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
@@ -6822,10 +7038,6 @@ enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
if (cfs_rq_is_idle(cfs_rq))
idle_h_nr_running = 1;
- /* end evaluation on encountering a throttled cfs_rq */
- if (cfs_rq_throttled(cfs_rq))
- goto enqueue_throttle;
-
flags = ENQUEUE_WAKEUP;
}
@@ -6841,10 +7053,6 @@ enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
if (cfs_rq_is_idle(cfs_rq))
idle_h_nr_running = 1;
-
- /* end evaluation on encountering a throttled cfs_rq */
- if (cfs_rq_throttled(cfs_rq))
- goto enqueue_throttle;
}
/* At this point se is NULL and we are at root level*/
@@ -6867,7 +7075,6 @@ enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
if (!task_new)
check_update_overutilized_status(rq);
-enqueue_throttle:
assert_list_leaf_cfs_rq(rq);
hrtick_update(rq);
@@ -6900,10 +7107,6 @@ static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
if (cfs_rq_is_idle(cfs_rq))
idle_h_nr_running = 1;
- /* end evaluation on encountering a throttled cfs_rq */
- if (cfs_rq_throttled(cfs_rq))
- goto dequeue_throttle;
-
/* Don't dequeue parent if it has other entities besides us */
if (cfs_rq->load.weight) {
/* Avoid re-evaluating load for this entity: */
@@ -6932,10 +7135,6 @@ static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
if (cfs_rq_is_idle(cfs_rq))
idle_h_nr_running = 1;
- /* end evaluation on encountering a throttled cfs_rq */
- if (cfs_rq_throttled(cfs_rq))
- goto dequeue_throttle;
-
}
/* At this point se is NULL and we are at root level*/
@@ -6945,7 +7144,6 @@ static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
rq->next_balance = jiffies;
-dequeue_throttle:
util_est_update(&rq->cfs, p, task_sleep);
hrtick_update(rq);
}
@@ -12815,9 +13013,6 @@ static void propagate_entity_cfs_rq(struct sched_entity *se)
{
struct cfs_rq *cfs_rq = cfs_rq_of(se);
- if (cfs_rq_throttled(cfs_rq))
- return;
-
if (!throttled_hierarchy(cfs_rq))
list_add_leaf_cfs_rq(cfs_rq);
@@ -12829,9 +13024,6 @@ static void propagate_entity_cfs_rq(struct sched_entity *se)
update_load_avg(cfs_rq, se, UPDATE_TG);
- if (cfs_rq_throttled(cfs_rq))
- break;
-
if (!throttled_hierarchy(cfs_rq))
list_add_leaf_cfs_rq(cfs_rq);
}
diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h
index 943bca8263ffe..f4a00b1dd9505 100644
--- a/kernel/sched/sched.h
+++ b/kernel/sched/sched.h
@@ -690,8 +690,12 @@ struct cfs_rq {
u64 throttled_clock_self_time;
int throttled;
int throttle_count;
+ /* Temp storage for updating the counts during unthrottling */
+ unsigned int unthrottled_h_nr_running;
+ unsigned int unthrottled_idle_h_nr_running;
struct list_head throttled_list;
struct list_head throttled_csd_list;
+ struct list_head throttled_limbo_list;
#endif /* CONFIG_CFS_BANDWIDTH */
#endif /* CONFIG_FAIR_GROUP_SCHED */
};
--
2.43.0
Powered by blists - more mailing lists