[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <b75de7a9-09fe-4c53-8e73-a3dbfd6efa4d@kernel.org>
Date: Tue, 23 Jul 2024 16:16:14 +0900
From: Damien Le Moal <dlemoal@...nel.org>
To: Rick Wertenbroek <rick.wertenbroek@...il.com>
Cc: rick.wertenbroek@...g-vd.ch, alberto.dassatti@...g-vd.ch,
Manivannan Sadhasivam <manivannan.sadhasivam@...aro.org>,
Krzysztof Wilczyński <kw@...ux.com>,
Kishon Vijay Abraham I <kishon@...nel.org>,
Bjorn Helgaas <bhelgaas@...gle.com>, Niklas Cassel <cassel@...nel.org>,
Frank Li <Frank.Li@....com>, Lars-Peter Clausen <lars@...afoo.de>,
linux-pci@...r.kernel.org, linux-kernel@...r.kernel.org
Subject: Re: [PATCH 1/2] PCI: endpoint: Introduce 'get_bar' to map fixed
address BARs in EPC
On 7/23/24 16:06, Rick Wertenbroek wrote:
> On Tue, Jul 23, 2024 at 2:03 AM Damien Le Moal <dlemoal@...nel.org> wrote:
>>
>> On 7/19/24 20:57, Rick Wertenbroek wrote:
>>> The current mechanism for BARs is as follows: The endpoint function
>>> allocates memory with 'pci_epf_alloc_space' which calls
>>> 'dma_alloc_coherent' to allocate memory for the BAR and fills a
>>> 'pci_epf_bar' structure with the physical address, virtual address,
>>> size, BAR number and flags. This 'pci_epf_bar' structure is passed
>>> to the endpoint controller driver through 'set_bar'. The endpoint
>>> controller driver configures the actual endpoint to reroute PCI
>>> read/write TLPs to the BAR memory space allocated.
>>>
>>> The problem with this is that not all PCI endpoint controllers can
>>> be configured to reroute read/write TLPs to their BAR to a given
>>> address in memory space. Some PCI endpoint controllers e.g., FPGA
>>> IPs for Intel/Altera and AMD/Xilinx PCI endpoints. These controllers
>>> come with pre-assigned memory for the BARs (e.g., in FPGA BRAM),
>>> because of this the endpoint controller driver has no way to tell
>>> these controllers to reroute the read/write TLPs to the memory
>>> allocated by 'pci_epf_alloc_space' and no way to get access to the
>>> memory pre-assigned to the BARs through the current API.
>>>
>>> Therefore, introduce 'get_bar' which allows to get access to a BAR
>>> without calling 'pci_epf_alloc_space'. Controllers with pre-assigned
>>> bars can therefore implement 'get_bar' which will assign the BAR
>>> pyhsical address, virtual address through ioremap, size, and flags.
>>>
>>> PCI endpoint functions can query the endpoint controller through the
>>> 'fixed_addr' boolean in the 'pci_epc_bar_desc' structure. Similarly
>>> to the BAR type, fixed size or fixed 64-bit descriptions. With this
>>> information they can either call 'pci_epf_alloc_space' and 'set_bar'
>>> as is currently the case, or call the new 'get_bar'. Both will provide
>>> a working, memory mapped BAR, that can be used in the endpoint
>>> function.
>>>
>>> Signed-off-by: Rick Wertenbroek <rick.wertenbroek@...il.com>
>>> ---
>>> drivers/pci/endpoint/pci-epc-core.c | 37 +++++++++++++++++++++++++++++
>>> include/linux/pci-epc.h | 7 ++++++
>>> 2 files changed, 44 insertions(+)
>>>
>>> diff --git a/drivers/pci/endpoint/pci-epc-core.c b/drivers/pci/endpoint/pci-epc-core.c
>>> index 84309dfe0c68..fcef848876fe 100644
>>> --- a/drivers/pci/endpoint/pci-epc-core.c
>>> +++ b/drivers/pci/endpoint/pci-epc-core.c
>>> @@ -544,6 +544,43 @@ int pci_epc_set_bar(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
>>> }
>>> EXPORT_SYMBOL_GPL(pci_epc_set_bar);
>>>
>>> +/**
>>> + * pci_epc_get_bar - get BAR configuration from a fixed address BAR
>>> + * @epc: the EPC device on which BAR resides
>>> + * @func_no: the physical endpoint function number in the EPC device
>>> + * @vfunc_no: the virtual endpoint function number in the physical function
>>> + * @bar: the BAR number to get
>>> + * @epf_bar: the struct epf_bar to fill
>>> + *
>>> + * Invoke to get the configuration of the endpoint device fixed address BAR
>>> + */
>>> +int pci_epc_get_bar(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
>>> + enum pci_barno bar, struct pci_epf_bar *epf_bar)
>>> +{
>>> + int ret;
>>> +
>>> + if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions)
>>> + return -EINVAL;
>>> +
>>> + if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
>>> + return -EINVAL;
>>> +
>>> + if (bar < 0 || bar >= PCI_STD_NUM_BARS)
>>> + return -EINVAL;
>>> +
>>> + if (!epc->ops->get_bar)
>>> + return -EINVAL;
>>> +
>>> + epf_bar->barno = bar;
>>> +
>>> + mutex_lock(&epc->lock);
>>> + ret = epc->ops->get_bar(epc, func_no, vfunc_no, bar, epf_bar);
>>> + mutex_unlock(&epc->lock);
>>> +
>>> + return ret;
>>> +}
>>> +EXPORT_SYMBOL_GPL(pci_epc_get_bar);
>>> +
>>> /**
>>> * pci_epc_write_header() - write standard configuration header
>>> * @epc: the EPC device to which the configuration header should be written
>>> diff --git a/include/linux/pci-epc.h b/include/linux/pci-epc.h
>>> index 85bdf2adb760..a5ea50dd49ba 100644
>>> --- a/include/linux/pci-epc.h
>>> +++ b/include/linux/pci-epc.h
>>> @@ -37,6 +37,7 @@ pci_epc_interface_string(enum pci_epc_interface_type type)
>>> * @write_header: ops to populate configuration space header
>>> * @set_bar: ops to configure the BAR
>>> * @clear_bar: ops to reset the BAR
>>> + * @get_bar: ops to get a fixed address BAR that cannot be set/cleared
>>> * @map_addr: ops to map CPU address to PCI address
>>> * @unmap_addr: ops to unmap CPU address and PCI address
>>> * @set_msi: ops to set the requested number of MSI interrupts in the MSI
>>> @@ -61,6 +62,8 @@ struct pci_epc_ops {
>>> struct pci_epf_bar *epf_bar);
>>> void (*clear_bar)(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
>>> struct pci_epf_bar *epf_bar);
>>> + int (*get_bar)(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
>>> + enum pci_barno, struct pci_epf_bar *epf_bar);
>>> int (*map_addr)(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
>>> phys_addr_t addr, u64 pci_addr, size_t size);
>>> void (*unmap_addr)(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
>>> @@ -163,6 +166,7 @@ enum pci_epc_bar_type {
>>> * struct pci_epc_bar_desc - hardware description for a BAR
>>> * @type: the type of the BAR
>>> * @fixed_size: the fixed size, only applicable if type is BAR_FIXED_MASK.
>>> + * @fixed_addr: indicates that the BAR has a fixed address in memory map.
>>> * @only_64bit: if true, an EPF driver is not allowed to choose if this BAR
>>> * should be configured as 32-bit or 64-bit, the EPF driver must
>>> * configure this BAR as 64-bit. Additionally, the BAR succeeding
>>> @@ -176,6 +180,7 @@ enum pci_epc_bar_type {
>>> struct pci_epc_bar_desc {
>>> enum pci_epc_bar_type type;
>>> u64 fixed_size;
>>> + bool fixed_addr;
>>
>> Why make this a bool instead of a 64-bits address ?
>> If the controller sets this to a non-zero value, we will know it is a fixed
>> address bar. And that can avoid adding the get_bar operations, no ?
>>
>
> The reason to use a bool is to force the use of 'get_bar', get_bar will fill
> the 'pci_epf_bar' structure and memory map the BAR. This ensures the
> 'pci_epf_bar' structure is filled correctly and usable, same as after a
> 'pci_epf_alloc_space' operation. This also removes a burden to the
> endpoint function (i.e., map the memory, handle errors, set the fields
> of the structure etc.). This will likely avoid errors in the endpoint functions
> as this code is quite sensitive and possibly controller specific (e.g.,
> memremap for virtual controllers vs ioremap for real controllers). Also,
> this code would be duplicated for each endpoint function, therefore I think
> it is better to just call 'get_bar' instead of rewriting all corresponding lines
> in each endpoint function (which would be very error prone).
>
> There could also be other cases where the PCIe controller is behind a
> specific bus and the BAR doesn't have a physical address and needs
> to be accessed in a specific way. E.g., one could make a BAR accessible
> via a serial interface in the FPGA (probably no one will do this, but it is
> a possible architecture).
>
> That's why I believe it is important to let the controller fill the
> 'pci_epf_bar'
> structure and do the necessary io/mem remapping internally.
OK. All fair points. I asked because I am not a fan of the code we end up
needing in the epf, such as you have in the test driver changes in patch 2:
+ if (!epc_features->bar[test_reg_bar].fixed_addr)
+ base = pci_epf_alloc_space(epf, test_reg_size, test_reg_bar,
+ epc_features, PRIMARY_INTERFACE);
+ else {
+ ret = pci_epc_get_bar(epf->epc, epf->func_no, epf->vfunc_no,
+ test_reg_bar, &epf->bar[test_reg_bar]);
+ if (ret < 0) {
+ dev_err(dev, "Failed to get fixed address BAR\n");
+ return ret;
+ }
+ base = epf->bar[test_reg_bar].addr;
+ }
+
It would be a lot nicer if we could have a single epf function that does the
alloc space call OR the get bar called based on the type of the bar.
I was thinking of something like:
base = pci_epf_alloc_bar(epf, &epf->bar[test_reg_bar], test_reg_size,
PRIMARY_INTERFACE);
(we do not need to pass the epc_features as we can get that through epf->epc)
That would greatly simplify the epf driver code. And of course we need the
reverse pci_epf_free_bar() which would call either pci_epf_free_space() or
pci_epc_release_bar() for fixed address bars. This last function is needed
either way I think so that we can have a clean teardown of the epc resources
used for an epf.
>
>>> bool only_64bit;
>>> };
>>>
>>> @@ -238,6 +243,8 @@ int pci_epc_set_bar(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
>>> struct pci_epf_bar *epf_bar);
>>> void pci_epc_clear_bar(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
>>> struct pci_epf_bar *epf_bar);
>>> +int pci_epc_get_bar(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
>>> + enum pci_barno, struct pci_epf_bar *epf_bar);
>>> int pci_epc_map_addr(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
>>> phys_addr_t phys_addr,
>>> u64 pci_addr, size_t size);
>>
>> --
>> Damien Le Moal
>> Western Digital Research
>>
>
> Thank you for your insights.
> Rick
--
Damien Le Moal
Western Digital Research
Powered by blists - more mailing lists