lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [day] [month] [year] [list]
Message-ID: <20240919161630891WDVy1IhTDCo8JYWf1h2z7@zte.com.cn>
Date: Thu, 19 Sep 2024 16:16:30 +0800 (CST)
From: <jiang.kun2@....com.cn>
To: <alexs@...nel.org>, <siyanteng@...ngson.cn>, <corbet@....net>,
        <linux-doc@...r.kernel.org>, <linux-kernel@...r.kernel.org>,
        <mudongliangabcd@...il.com>, <seakeel@...il.com>
Cc: <wang.yaxin@....com.cn>, <fan.yu9@....com.cn>, <xu.xin16@....com.cn>,
        <he.peilin@....com.cn>, <tu.qiang35@....com.cn>,
        <qiu.yutan@....com.cn>, <zhang.yunkai@....com.cn>
Subject: [PATCH v4] Docs/zh_CN: Translate physical_memory.rst to Simplified Chinese

From: Yaxin Wang <wang.yaxin@....com.cn>

This patch translates the "physical_memory.rst" document into
Simplified Chinese to improve accessibility for Chinese-speaking
developers and users.

The translation was done with attention to technical accuracy
and readability, ensuring that the document remains informative
and useful in its translated form.

Signed-off-by: Yaxin Wang <wang.yaxin@....com.cn>
---
v3->v4:
Some fixes according to:
https://lore.kernel.org/all/CAD-N9QWJL8xmyLXi+D1gm5fXX-9DcjuzGv=pW=oQyJyXc=GfqA@mail.gmail.com/
1. Adjust the context alignment, make it more neat.
2. Regenerate the patch make sure it can now be applied to the latest
next/master branch.

Documentation/translations/zh_CN/mm/index.rst |   1 +
../translations/zh_CN/mm/physical_memory.rst | 356 ++++++++++++++++++
2 files changed, 357 insertions(+)
create mode 100644 Documentation/translations/zh_CN/mm/physical_memory.rst

diff --git a/Documentation/translations/zh_CN/mm/index.rst b/Documentation/translations/zh_CN/mm/index.rst
index b950dd118be7..eac20a7ec9a6 100644
--- a/Documentation/translations/zh_CN/mm/index.rst
+++ b/Documentation/translations/zh_CN/mm/index.rst
@@ -53,6 +53,7 @@ Linux内存管理文档
page_migration
page_owner
page_table_check
+   physical_memory
remap_file_pages
split_page_table_lock
vmalloced-kernel-stacks
diff --git a/Documentation/translations/zh_CN/mm/physical_memory.rst b/Documentation/translations/zh_CN/mm/physical_memory.rst
new file mode 100644
index 000000000000..ed813e513897
--- /dev/null
+++ b/Documentation/translations/zh_CN/mm/physical_memory.rst
@@ -0,0 +1,356 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+.. include:: ../disclaimer-zh_CN.rst
+
+:Original: Documentation/mm/physical_memory.rst
+
+:翻译:
+
+   王亚鑫 Yaxin Wang <wang.yaxin@....com.cn>
+
+========
+物理内存
+========
+
+Linux可用于多种架构,因此需要一个与架构无关的抽象来表示物理内存。本章描述
+了管理运行系统中物理内存的结构。
+
+第一个与内存管理相关的主要概念是`非一致性内存访问(NUMA)
+<https://en.wikipedia.org/wiki/Non-uniform_memory_access>`
+
+在多核和多插槽机器中,内存可能被组织成不同的存储区,这些存储区根据与处理器
+的“不同”而有不同的访问开销。例如,可能为每个CPU分配内存存储区,或者为外围
+设备在附近分配一个非常适合DMA的内存存储区。
+
+每个存储区被称为一个节点,节点在Linux中表示为 ``struct pglist_data``,
+即使是在UMA架构中也是这样表示。该结构总是通过 ``pg_data_t`` 来引用。特
+定节点的 ``pg_data_t`` 结构体可以通过NODE_DATA(nid)引用,其中nid被称
+为该节点的ID。
+
+对于非一致性内存访问(NUMA)架构,节点数据结构在引导时由特定于架构的代码早
+期分配。通常,这些结构在其所在的内存区上本地分配。对于一致性内存访问(UMA)
+架构,只使用一个静态的 ``pg_data_t`` 结构体,称为 ``contig_page_data`` 。
+节点将会在 :ref:`节点 <nodes>` 章节中进一步讨论。
+
+整个物理内存被划分为一个或多个被称为区域的块,这些区域表示内存的范围。这
+些范围通常由访问内存的架构限制来决定。在节点内,与特定区域对应的内存范围
+由 ``struct zone`` 结构体描述,该结构被定义为 ``zone_t``,每种区域都
+属于以下描述类型的一种。
+
+* ``ZONE_DMA`` 和 ``ZONE_DMA32`` 在历史上代表适用于DMA的内存,这些
+  内存由那些不能访问所有可寻址内存的外设访问。多年来,已经有了更好、更稳
+  固的接口来获取满足特定DMA需求的内存(这些接口由
+  Documentation/core-api/dma-api.rst 文档描述),但是 ``ZONE_DMA``
+  和 ``ZONE_DMA32`` 仍然表示访问受限的内存范围。
+
+取决于架构的不同,这两种区域可以在构建时通过关闭 ``CONFIG_ZONE_DMA`` 和
+``CONFIG_ZONE_DMA32`` 配置选项来禁用。一些64位的平台可能需要这两种区域,
+因为他们支持具有不同DMA寻址限制的外设。
+
+* ``ZONE_NORMAL`` 是普通内存的区域,这种内存可以被内核随时访问。如果DMA
+  设备支持将数据传输到所有可寻址的内存区域,那么可在该区域的页面上执行DMA
+  操作。 ``ZONE_NORMAL`` 总是开启的。
+
+* ``ZONE_HIGHMEM`` 是指那些没有在内核页表中永久映射的物理内存部分。该区
+  域的内存只能通过临时映射被内核访问。该区域只在某些32位架构上可用,并且是
+  通过 ``CONFIG_HIGHMEM`` 选项开启。
+
+* ``ZONE_MOVABLE`` 是用于可访问的普通内存区域,就像 ``ZONE_NORMAL``
+  一样。  不同之处在于 ``ZONE_MOVABLE`` 中的大多数页面内容是可移动的。
+  这意味着这些页面的虚拟地址不会改变,但它们的内容可能会在不同的物理页面
+  之间移动。通常,在内存热插拔期间填充 ``ZONE_MOVABLE``,  在启动时也
+  可以使用 ``kernelcore``、 ``movablecore`` 和 ``movable_node``
+  这些内核命令行参数来填充。更多详细信息,请参阅内核文档
+  Documentation/mm/page_migration.rst 和
+  Documentation/admin-guide/mm/memory-hotplug.rst。
+
+* ``ZONE_DEVICE`` 表示位于持久性内存(PMEM)和图形处理单元(GPU)
+  等设备上的内存。它与RAM区域类型有不同的特性,并且它的存在是为了提供
+  :ref:`struct page<Pages>` 结构和内存映射服务,以便设备驱动程序能
+  识别物理地址范围。 ``ZONE_DEVICE`` 通过 ``CONFIG_ZONE_DEVICE``
+  选项开启。
+
+需要注意的是,许多内核操作只能使用 ``ZONE_NORMAL`` 来执行,因此它是
+性能最关键区域。区域在 :ref:`区域 <zones>` 章节中有更详细的讨论。
+
+节点和区域范围之间的关系由固件报告的物理内存映射决定,另外也由内存寻址
+的架构约束以及内核命令行中的某些参数决定。
+
+例如,在具有2GB RAM的x86统一内存架构(UMA)机器上运行32位内核时,整
+个内存将位于节点0,并且将有三个区域: ``ZONE_DMA``、 ``ZONE_NORMAL``
+和 ``ZONE_HIGHMEM``::
+
+  0                                                            2G
+  +-------------------------------------------------------------+
+  |                            node 0                           |
+  +-------------------------------------------------------------+
+
+  0         16M                    896M                        2G
+  +----------+-----------------------+--------------------------+
+  | ZONE_DMA |      ZONE_NORMAL      |       ZONE_HIGHMEM       |
+  +----------+-----------------------+--------------------------+
+
+
+在内核构建时关闭 ``ZONE_DMA`` 开启 ``ZONE_DMA32``,并且在具有16GB
+RAM平均分配在两个节点上的arm64机器上,使用 ``movablecore=80%`` 参数
+启动时, ``ZONE_DMA32`` 、 ``ZONE_NORMAL`` 和 ``ZONE_MOVABLE``
+位于节点0,而 ``ZONE_NORMAL`` 和 ``ZONE_MOVABLE`` 位于节点1::
+
+
+ 1G                                9G                         17G
+  +--------------------------------+ +--------------------------+
+  |              node 0            | |          node 1          |
+  +--------------------------------+ +--------------------------+
+
+  1G       4G        4200M          9G          9320M          17G
+  +---------+----------+-----------+ +------------+-------------+
+  |  DMA32  |  NORMAL  |  MOVABLE  | |   NORMAL   |   MOVABLE   |
+  +---------+----------+-----------+ +------------+-------------+
+
+
+内存存储区可能位于交错的节点。在下面的例子中,一台x86机器有16GB的RAM分
+布在4个内存存储区上,偶数编号的内存存储区属于节点0,奇数编号的内存条属于
+节点1::
+
+  0              4G              8G             12G            16G
+  +-------------+ +-------------+ +-------------+ +-------------+
+  |    node 0   | |    node 1   | |    node 0   | |    node 1   |
+  +-------------+ +-------------+ +-------------+ +-------------+
+
+  0   16M      4G
+  +-----+-------+ +-------------+ +-------------+ +-------------+
+  | DMA | DMA32 | |    NORMAL   | |    NORMAL   | |    NORMAL   |
+  +-----+-------+ +-------------+ +-------------+ +-------------+
+
+在这种情况下,节点0将覆盖从0到12GB的内存范围,而节点1将覆盖从4GB到16GB
+的内存范围。
+
+.. _nodes:
+
+节点
+====
+
+正如我们所提到的,内存中的每个节点由 ``pg_data_t`` 描述,通过
+``struct pglist_data`` 结构体的类型定义。在分配页面时,默认情况下,Linux
+使用节点本地分配策略,从离当前运行CPU的最近节点分配内存。由于进程倾向于在同
+一个CPU上运行,很可能会使用当前节点的内存。分配策略可以由用户控制,如内核文
+档Documentation/admin-guide/mm/numa_memory_policy.rst 中所述。
+
+大多数NUMA(非统一内存访问)架构维护了一个指向节点结构的指针数组。这些实际
+的结构在启动过程中的早期被分配,这时特定于架构的代码解析了固件报告的物理内
+存映射。节点初始化的大部分工作是在由 free_area_init()实现的启动过程之后
+完成,该函数在后面的小节 :ref:`初始化 <initialization>` 中有详细描述。
+
+除了节点结构,内核还维护了一个名为 ``node_states`` 的 ``nodemask_t``
+位掩码数组。这个数组中的每个位掩码代表一组特定属性的节点,这些属性由
+``enum node_states`` 定义,定义如下:
+
+``N_POSSIBLE``
+节点可能在某个时刻上线。
+
+``N_ONLINE``
+节点已经上线。
+
+``N_NORMAL_MEMORY``
+节点拥有普通内存。
+
+``N_HIGH_MEMORY``
+节点拥有普通或高端内存。当关闭 ``CONFIG_HIGHMEM`` 配置时,
+也可以称为 ``N_NORMAL_MEMORY``。
+
+``N_MEMORY``
+节点拥有(普通、高端、可移动)内存。
+
+``N_CPU``
+节点拥有一个或多个CPU。
+
+对于具有上述属性的每个节点, ``node_states[<property>]``
+掩码中对应于节点ID的位会被置位。
+
+例如,对于具有常规内存和CPU的节点2,第二个bit将被设置::
+
+  node_states[N_POSSIBLE]
+  node_states[N_ONLINE]
+  node_states[N_NORMAL_MEMORY]
+  node_states[N_HIGH_MEMORY]
+  node_states[N_MEMORY]
+  node_states[N_CPU]
+
+有关使用节点掩码(nodemasks)可能进行的各种操作,请参考
+``include/linux/nodemask.h``。
+
+除此之外,节点掩码(nodemasks)提供用于遍历节点的宏,即
+``for_each_node()`` 和 ``for_each_online_node()``。
+
+例如,要为每个在线节点调用函数 foo(),可以这样操作::
+
+  for_each_online_node(nid) {
+		  pg_data_t *pgdat = NODE_DATA(nid);
+
+		  foo(pgdat);
+	}
+
+节点数据结构
+------------
+
+节点结构 ``struct pglist_data`` 在 ``include/linux/mmzone.h``
+中声明。这里我们将简要描述这个结构体的字段:
+
+通用字段
+~~~~~~~~
+
+``node_zones``
+表示该节点的区域列表。并非所有区域都可能被填充,但这是
+完整的列表。它被该节点的node_zonelists以及其它节点的
+node_zonelists引用。
+
+``node_zonelists``
+所有节点中所有区域的列表。此列表定义了分配内存时首选的区域
+顺序。 ``node_zonelists`` 在核心内存管理结构初始化期间,
+由 ``mm/page_alloc.c`` 中的 ``build_zonelists()``
+函数设置。
+
+``nr_zones``
+表示此节点中已填充区域的数量。
+
+``node_mem_map``
+对于使用FLATMEM内存模型的UMA系统,0号节点的 ``node_mem_map``
+表示每个物理帧的struct pages数组。
+
+``node_page_ext``
+对于使用FLATMEM内存模型的UMA系统,0号节点的 ``node_page_ext``
+是struct pages的扩展数组。只有在构建时开启了 ``CONFIG_PAGE_EXTENSION``
+选项的内核中才可用。
+
+``node_start_pfn``
+表示此节点中起始页面帧的页面帧号。
+
+``node_present_pages``
+表示此节点中存在的物理页面的总数。
+
+``node_spanned_pages``
+表示包括空洞在内的物理页面范围的总大小。
+
+``node_size_lock``
+一个保护定义节点范围字段的锁。仅在开启了 ``CONFIG_MEMORY_HOTPLUG`` 或
+``CONFIG_DEFERRED_STRUCT_PAGE_INIT`` 配置选项中的某一个时才定义。提
+供了``pgdat_resize_lock()`` 和 ``pgdat_resize_unlock()`` 用来操作
+``node_size_lock``,而无需检查 ``CONFIG_MEMORY_HOTPLUG`` 或
+``CONFIG_DEFERRED_STRUCT_PAGE_INIT`` 选项。
+
+``node_id``
+节点的节点ID(NID),从0开始。
+
+``totalreserve_pages``
+这是每个节点保留的页面,这些页面不可用于用户空间分配。
+
+``first_deferred_pfn``
+如果大型机器上的内存初始化被推迟,那么第一个PFN(页帧号)是需要初始化的。
+在开启了 ``CONFIG_DEFERRED_STRUCT_PAGE_INIT`` 选项时定义。
+
+``deferred_split_queue``
+每个节点的大页队列,这些大页的拆分被推迟了。仅在开启了 ``CONFIG_TRANSPARENT_HUGEPAGE``
+配置选项时定义。
+
+``__lruvec``
+每个节点的lruvec持有LRU(最近最少使用)列表和相关参数。仅在禁用了内存
+控制组(cgroups)时使用。它不应该直接访问,而应该使用 ``mem_cgroup_lruvec()``
+来查找 lruvecs。
+
+回收控制
+~~~~~~~~
+
+另见内核文档 Documentation/mm/page_reclaim.rst 文件。
+
+``kswapd``
+每个节点的kswapd内核线程实例。
+
+``kswapd_wait``, ``pfmemalloc_wait``, ``reclaim_wait``
+同步内存回收任务的工作队列。
+
+``nr_writeback_throttled``
+等待写回脏页时,被限制的任务数量。
+
+``kswapd_order``
+控制kswapd尝试回收的order。
+
+``kswapd_highest_zoneidx``
+kswapd线程可以回收的最高区域索引。
+
+``kswapd_failures``
+kswapd无法回收任何页面的运行次数。
+
+``min_unmapped_pages``
+无法回收的未映射文件支持的最小页面数量。由 ``vm.min_unmapped_ratio``
+系统控制台(sysctl)参数决定。在开启 ``CONFIG_NUMA`` 配置时定义。
+
+``min_slab_pages``
+无法回收的SLAB页面的最少数量。由 ``vm.min_slab_ratio`` 系统控制台
+(sysctl)参数决定。在开启 ``CONFIG_NUMA`` 时定义。
+
+``flags``
+控制回收行为的标志位。
+
+内存压缩控制
+~~~~~~~~~~~~
+
+``kcompactd_max_order``
+kcompactd应尝试实现的页面order。
+
+``kcompactd_highest_zoneidx``
+kcompactd可以压缩的最高区域索引。
+
+``kcompactd_wait``
+同步内存压缩任务的工作队列。
+
+``kcompactd``
+每个节点的kcompactd内核线程实例。
+
+``proactive_compact_trigger``
+决定是否使用主动压缩。由 ``vm.compaction_proactiveness`` 系统控
+制台(sysctl)参数控制。
+
+统计信息
+~~~~~~~~
+
+``per_cpu_nodestats``
+表示节点的Per-CPU虚拟内存统计信息。
+
+``vm_stat``
+表示节点的虚拟内存统计数据。
+
+.. _zones:
+
+区域
+====
+
+.. admonition:: Stub
+
+  本节内容不完整。请列出并描述相应的字段。
+
+.. _pages:
+
+页
+====
+
+.. admonition:: Stub
+
+  本节内容不完整。请列出并描述相应的字段。
+
+页码
+====
+
+.. admonition:: Stub
+
+  本节内容不完整。请列出并描述相应的字段。
+
+.. _initialization:
+
+初始化
+======
+
+.. admonition:: Stub
+
+  本节内容不完整。请列出并描述相应的字段。
+
+
--
2.25.1

Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ