[<prev] [next>] [<thread-prev] [day] [month] [year] [list]
Message-ID: <ZvrDnm0SU7A3pn1W@gallifrey>
Date: Mon, 30 Sep 2024 15:28:30 +0000
From: "Dr. David Alan Gilbert" <linux@...blig.org>
To: Alex Deucher <alexdeucher@...il.com>
Cc: alexander.deucher@....com, christian.koenig@....com, Xinhui.Pan@....com,
airlied@...il.com, simona@...ll.ch, amd-gfx@...ts.freedesktop.org,
dri-devel@...ts.freedesktop.org, linux-kernel@...r.kernel.org
Subject: Re: [PATCH] drm/amd/powerplay: Delete unused function and maths
library
* Alex Deucher (alexdeucher@...il.com) wrote:
> On Sun, Sep 29, 2024 at 5:28 PM <linux@...blig.org> wrote:
> >
> > From: "Dr. David Alan Gilbert" <linux@...blig.org>
> >
> > We start with the function 'atomctrl_calculate_voltage_evv_on_sclk'
> > which has been unused since 2016's commit
> > e805ed83ba1c ("drm/amd/powerplay: delete useless files.")
> >
> > Remove it.
> >
> > It was the last user of the struct ATOM_ASIC_PROFILING_INFO_V3_4
> > remove it.
>
> Thanks. I've applied the patch, but left the atombios.h structure in
> place as it documents the vbios firmware data table structure which
> might be useful for debugging.
OK, thanks!
Dave
> Alex
>
> >
> > It was also the last user of the entire fixed point maths library in
> > ppevvmath.h.
> >
> > Remove it.
> >
> > Signed-off-by: Dr. David Alan Gilbert <linux@...blig.org>
> > ---
> > drivers/gpu/drm/amd/include/atombios.h | 72 ---
> > .../drm/amd/pm/powerplay/hwmgr/ppatomctrl.c | 428 -------------
> > .../drm/amd/pm/powerplay/hwmgr/ppatomctrl.h | 2 -
> > .../drm/amd/pm/powerplay/hwmgr/ppevvmath.h | 561 ------------------
> > 4 files changed, 1063 deletions(-)
> > delete mode 100644 drivers/gpu/drm/amd/pm/powerplay/hwmgr/ppevvmath.h
> >
> > diff --git a/drivers/gpu/drm/amd/include/atombios.h b/drivers/gpu/drm/amd/include/atombios.h
> > index b78360a71bc9..e810366a3c83 100644
> > --- a/drivers/gpu/drm/amd/include/atombios.h
> > +++ b/drivers/gpu/drm/amd/include/atombios.h
> > @@ -5432,78 +5432,6 @@ typedef struct _ATOM_ASIC_PROFILING_INFO_V3_3
> > ULONG ulSDCMargine;
> > }ATOM_ASIC_PROFILING_INFO_V3_3;
> >
> > -// for Fiji speed EVV algorithm
> > -typedef struct _ATOM_ASIC_PROFILING_INFO_V3_4
> > -{
> > - ATOM_COMMON_TABLE_HEADER asHeader;
> > - ULONG ulEvvLkgFactor;
> > - ULONG ulBoardCoreTemp;
> > - ULONG ulMaxVddc;
> > - ULONG ulMinVddc;
> > - ULONG ulLoadLineSlop;
> > - ULONG ulLeakageTemp;
> > - ULONG ulLeakageVoltage;
> > - EFUSE_LINEAR_FUNC_PARAM sCACm;
> > - EFUSE_LINEAR_FUNC_PARAM sCACb;
> > - EFUSE_LOGISTIC_FUNC_PARAM sKt_b;
> > - EFUSE_LOGISTIC_FUNC_PARAM sKv_m;
> > - EFUSE_LOGISTIC_FUNC_PARAM sKv_b;
> > - USHORT usLkgEuseIndex;
> > - UCHAR ucLkgEfuseBitLSB;
> > - UCHAR ucLkgEfuseLength;
> > - ULONG ulLkgEncodeLn_MaxDivMin;
> > - ULONG ulLkgEncodeMax;
> > - ULONG ulLkgEncodeMin;
> > - ULONG ulEfuseLogisticAlpha;
> > - USHORT usPowerDpm0;
> > - USHORT usPowerDpm1;
> > - USHORT usPowerDpm2;
> > - USHORT usPowerDpm3;
> > - USHORT usPowerDpm4;
> > - USHORT usPowerDpm5;
> > - USHORT usPowerDpm6;
> > - USHORT usPowerDpm7;
> > - ULONG ulTdpDerateDPM0;
> > - ULONG ulTdpDerateDPM1;
> > - ULONG ulTdpDerateDPM2;
> > - ULONG ulTdpDerateDPM3;
> > - ULONG ulTdpDerateDPM4;
> > - ULONG ulTdpDerateDPM5;
> > - ULONG ulTdpDerateDPM6;
> > - ULONG ulTdpDerateDPM7;
> > - EFUSE_LINEAR_FUNC_PARAM sRoFuse;
> > - ULONG ulEvvDefaultVddc;
> > - ULONG ulEvvNoCalcVddc;
> > - USHORT usParamNegFlag;
> > - USHORT usSpeed_Model;
> > - ULONG ulSM_A0;
> > - ULONG ulSM_A1;
> > - ULONG ulSM_A2;
> > - ULONG ulSM_A3;
> > - ULONG ulSM_A4;
> > - ULONG ulSM_A5;
> > - ULONG ulSM_A6;
> > - ULONG ulSM_A7;
> > - UCHAR ucSM_A0_sign;
> > - UCHAR ucSM_A1_sign;
> > - UCHAR ucSM_A2_sign;
> > - UCHAR ucSM_A3_sign;
> > - UCHAR ucSM_A4_sign;
> > - UCHAR ucSM_A5_sign;
> > - UCHAR ucSM_A6_sign;
> > - UCHAR ucSM_A7_sign;
> > - ULONG ulMargin_RO_a;
> > - ULONG ulMargin_RO_b;
> > - ULONG ulMargin_RO_c;
> > - ULONG ulMargin_fixed;
> > - ULONG ulMargin_Fmax_mean;
> > - ULONG ulMargin_plat_mean;
> > - ULONG ulMargin_Fmax_sigma;
> > - ULONG ulMargin_plat_sigma;
> > - ULONG ulMargin_DC_sigma;
> > - ULONG ulReserved[8]; // Reserved for future ASIC
> > -}ATOM_ASIC_PROFILING_INFO_V3_4;
> > -
> > // for Polaris10/Polaris11 speed EVV algorithm
> > typedef struct _ATOM_ASIC_PROFILING_INFO_V3_5
> > {
> > diff --git a/drivers/gpu/drm/amd/pm/powerplay/hwmgr/ppatomctrl.c b/drivers/gpu/drm/amd/pm/powerplay/hwmgr/ppatomctrl.c
> > index b56298d9da98..fe24219c3bf4 100644
> > --- a/drivers/gpu/drm/amd/pm/powerplay/hwmgr/ppatomctrl.c
> > +++ b/drivers/gpu/drm/amd/pm/powerplay/hwmgr/ppatomctrl.c
> > @@ -28,7 +28,6 @@
> > #include "ppatomctrl.h"
> > #include "atombios.h"
> > #include "cgs_common.h"
> > -#include "ppevvmath.h"
> >
> > #define MEM_ID_MASK 0xff000000
> > #define MEM_ID_SHIFT 24
> > @@ -677,433 +676,6 @@ bool atomctrl_get_pp_assign_pin(
> > return bRet;
> > }
> >
> > -int atomctrl_calculate_voltage_evv_on_sclk(
> > - struct pp_hwmgr *hwmgr,
> > - uint8_t voltage_type,
> > - uint32_t sclk,
> > - uint16_t virtual_voltage_Id,
> > - uint16_t *voltage,
> > - uint16_t dpm_level,
> > - bool debug)
> > -{
> > - ATOM_ASIC_PROFILING_INFO_V3_4 *getASICProfilingInfo;
> > - struct amdgpu_device *adev = hwmgr->adev;
> > - EFUSE_LINEAR_FUNC_PARAM sRO_fuse;
> > - EFUSE_LINEAR_FUNC_PARAM sCACm_fuse;
> > - EFUSE_LINEAR_FUNC_PARAM sCACb_fuse;
> > - EFUSE_LOGISTIC_FUNC_PARAM sKt_Beta_fuse;
> > - EFUSE_LOGISTIC_FUNC_PARAM sKv_m_fuse;
> > - EFUSE_LOGISTIC_FUNC_PARAM sKv_b_fuse;
> > - EFUSE_INPUT_PARAMETER sInput_FuseValues;
> > - READ_EFUSE_VALUE_PARAMETER sOutput_FuseValues;
> > -
> > - uint32_t ul_RO_fused, ul_CACb_fused, ul_CACm_fused, ul_Kt_Beta_fused, ul_Kv_m_fused, ul_Kv_b_fused;
> > - fInt fSM_A0, fSM_A1, fSM_A2, fSM_A3, fSM_A4, fSM_A5, fSM_A6, fSM_A7;
> > - fInt fMargin_RO_a, fMargin_RO_b, fMargin_RO_c, fMargin_fixed, fMargin_FMAX_mean, fMargin_Plat_mean, fMargin_FMAX_sigma, fMargin_Plat_sigma, fMargin_DC_sigma;
> > - fInt fLkg_FT, repeat;
> > - fInt fMicro_FMAX, fMicro_CR, fSigma_FMAX, fSigma_CR, fSigma_DC, fDC_SCLK, fSquared_Sigma_DC, fSquared_Sigma_CR, fSquared_Sigma_FMAX;
> > - fInt fRLL_LoadLine, fDerateTDP, fVDDC_base, fA_Term, fC_Term, fB_Term, fRO_DC_margin;
> > - fInt fRO_fused, fCACm_fused, fCACb_fused, fKv_m_fused, fKv_b_fused, fKt_Beta_fused, fFT_Lkg_V0NORM;
> > - fInt fSclk_margin, fSclk, fEVV_V;
> > - fInt fV_min, fV_max, fT_prod, fLKG_Factor, fT_FT, fV_FT, fV_x, fTDP_Power, fTDP_Power_right, fTDP_Power_left, fTDP_Current, fV_NL;
> > - uint32_t ul_FT_Lkg_V0NORM;
> > - fInt fLn_MaxDivMin, fMin, fAverage, fRange;
> > - fInt fRoots[2];
> > - fInt fStepSize = GetScaledFraction(625, 100000);
> > -
> > - int result;
> > -
> > - getASICProfilingInfo = (ATOM_ASIC_PROFILING_INFO_V3_4 *)
> > - smu_atom_get_data_table(hwmgr->adev,
> > - GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo),
> > - NULL, NULL, NULL);
> > -
> > - if (!getASICProfilingInfo)
> > - return -1;
> > -
> > - if (getASICProfilingInfo->asHeader.ucTableFormatRevision < 3 ||
> > - (getASICProfilingInfo->asHeader.ucTableFormatRevision == 3 &&
> > - getASICProfilingInfo->asHeader.ucTableContentRevision < 4))
> > - return -1;
> > -
> > - /*-----------------------------------------------------------
> > - *GETTING MULTI-STEP PARAMETERS RELATED TO CURRENT DPM LEVEL
> > - *-----------------------------------------------------------
> > - */
> > - fRLL_LoadLine = Divide(getASICProfilingInfo->ulLoadLineSlop, 1000);
> > -
> > - switch (dpm_level) {
> > - case 1:
> > - fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM1), 1000);
> > - break;
> > - case 2:
> > - fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM2), 1000);
> > - break;
> > - case 3:
> > - fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM3), 1000);
> > - break;
> > - case 4:
> > - fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM4), 1000);
> > - break;
> > - case 5:
> > - fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM5), 1000);
> > - break;
> > - case 6:
> > - fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM6), 1000);
> > - break;
> > - case 7:
> > - fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM7), 1000);
> > - break;
> > - default:
> > - pr_err("DPM Level not supported\n");
> > - fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM0), 1000);
> > - }
> > -
> > - /*-------------------------
> > - * DECODING FUSE VALUES
> > - * ------------------------
> > - */
> > - /*Decode RO_Fused*/
> > - sRO_fuse = getASICProfilingInfo->sRoFuse;
> > -
> > - sInput_FuseValues.usEfuseIndex = sRO_fuse.usEfuseIndex;
> > - sInput_FuseValues.ucBitShift = sRO_fuse.ucEfuseBitLSB;
> > - sInput_FuseValues.ucBitLength = sRO_fuse.ucEfuseLength;
> > -
> > - sOutput_FuseValues.sEfuse = sInput_FuseValues;
> > -
> > - result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
> > - GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
> > - (uint32_t *)&sOutput_FuseValues, sizeof(sOutput_FuseValues));
> > -
> > - if (result)
> > - return result;
> > -
> > - /* Finally, the actual fuse value */
> > - ul_RO_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
> > - fMin = GetScaledFraction(le32_to_cpu(sRO_fuse.ulEfuseMin), 1);
> > - fRange = GetScaledFraction(le32_to_cpu(sRO_fuse.ulEfuseEncodeRange), 1);
> > - fRO_fused = fDecodeLinearFuse(ul_RO_fused, fMin, fRange, sRO_fuse.ucEfuseLength);
> > -
> > - sCACm_fuse = getASICProfilingInfo->sCACm;
> > -
> > - sInput_FuseValues.usEfuseIndex = sCACm_fuse.usEfuseIndex;
> > - sInput_FuseValues.ucBitShift = sCACm_fuse.ucEfuseBitLSB;
> > - sInput_FuseValues.ucBitLength = sCACm_fuse.ucEfuseLength;
> > -
> > - sOutput_FuseValues.sEfuse = sInput_FuseValues;
> > -
> > - result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
> > - GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
> > - (uint32_t *)&sOutput_FuseValues, sizeof(sOutput_FuseValues));
> > -
> > - if (result)
> > - return result;
> > -
> > - ul_CACm_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
> > - fMin = GetScaledFraction(le32_to_cpu(sCACm_fuse.ulEfuseMin), 1000);
> > - fRange = GetScaledFraction(le32_to_cpu(sCACm_fuse.ulEfuseEncodeRange), 1000);
> > -
> > - fCACm_fused = fDecodeLinearFuse(ul_CACm_fused, fMin, fRange, sCACm_fuse.ucEfuseLength);
> > -
> > - sCACb_fuse = getASICProfilingInfo->sCACb;
> > -
> > - sInput_FuseValues.usEfuseIndex = sCACb_fuse.usEfuseIndex;
> > - sInput_FuseValues.ucBitShift = sCACb_fuse.ucEfuseBitLSB;
> > - sInput_FuseValues.ucBitLength = sCACb_fuse.ucEfuseLength;
> > - sOutput_FuseValues.sEfuse = sInput_FuseValues;
> > -
> > - result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
> > - GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
> > - (uint32_t *)&sOutput_FuseValues, sizeof(sOutput_FuseValues));
> > -
> > - if (result)
> > - return result;
> > -
> > - ul_CACb_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
> > - fMin = GetScaledFraction(le32_to_cpu(sCACb_fuse.ulEfuseMin), 1000);
> > - fRange = GetScaledFraction(le32_to_cpu(sCACb_fuse.ulEfuseEncodeRange), 1000);
> > -
> > - fCACb_fused = fDecodeLinearFuse(ul_CACb_fused, fMin, fRange, sCACb_fuse.ucEfuseLength);
> > -
> > - sKt_Beta_fuse = getASICProfilingInfo->sKt_b;
> > -
> > - sInput_FuseValues.usEfuseIndex = sKt_Beta_fuse.usEfuseIndex;
> > - sInput_FuseValues.ucBitShift = sKt_Beta_fuse.ucEfuseBitLSB;
> > - sInput_FuseValues.ucBitLength = sKt_Beta_fuse.ucEfuseLength;
> > -
> > - sOutput_FuseValues.sEfuse = sInput_FuseValues;
> > -
> > - result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
> > - GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
> > - (uint32_t *)&sOutput_FuseValues, sizeof(sOutput_FuseValues));
> > -
> > - if (result)
> > - return result;
> > -
> > - ul_Kt_Beta_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
> > - fAverage = GetScaledFraction(le32_to_cpu(sKt_Beta_fuse.ulEfuseEncodeAverage), 1000);
> > - fRange = GetScaledFraction(le32_to_cpu(sKt_Beta_fuse.ulEfuseEncodeRange), 1000);
> > -
> > - fKt_Beta_fused = fDecodeLogisticFuse(ul_Kt_Beta_fused,
> > - fAverage, fRange, sKt_Beta_fuse.ucEfuseLength);
> > -
> > - sKv_m_fuse = getASICProfilingInfo->sKv_m;
> > -
> > - sInput_FuseValues.usEfuseIndex = sKv_m_fuse.usEfuseIndex;
> > - sInput_FuseValues.ucBitShift = sKv_m_fuse.ucEfuseBitLSB;
> > - sInput_FuseValues.ucBitLength = sKv_m_fuse.ucEfuseLength;
> > -
> > - sOutput_FuseValues.sEfuse = sInput_FuseValues;
> > -
> > - result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
> > - GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
> > - (uint32_t *)&sOutput_FuseValues, sizeof(sOutput_FuseValues));
> > - if (result)
> > - return result;
> > -
> > - ul_Kv_m_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
> > - fAverage = GetScaledFraction(le32_to_cpu(sKv_m_fuse.ulEfuseEncodeAverage), 1000);
> > - fRange = GetScaledFraction((le32_to_cpu(sKv_m_fuse.ulEfuseEncodeRange) & 0x7fffffff), 1000);
> > - fRange = fMultiply(fRange, ConvertToFraction(-1));
> > -
> > - fKv_m_fused = fDecodeLogisticFuse(ul_Kv_m_fused,
> > - fAverage, fRange, sKv_m_fuse.ucEfuseLength);
> > -
> > - sKv_b_fuse = getASICProfilingInfo->sKv_b;
> > -
> > - sInput_FuseValues.usEfuseIndex = sKv_b_fuse.usEfuseIndex;
> > - sInput_FuseValues.ucBitShift = sKv_b_fuse.ucEfuseBitLSB;
> > - sInput_FuseValues.ucBitLength = sKv_b_fuse.ucEfuseLength;
> > - sOutput_FuseValues.sEfuse = sInput_FuseValues;
> > -
> > - result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
> > - GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
> > - (uint32_t *)&sOutput_FuseValues, sizeof(sOutput_FuseValues));
> > -
> > - if (result)
> > - return result;
> > -
> > - ul_Kv_b_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
> > - fAverage = GetScaledFraction(le32_to_cpu(sKv_b_fuse.ulEfuseEncodeAverage), 1000);
> > - fRange = GetScaledFraction(le32_to_cpu(sKv_b_fuse.ulEfuseEncodeRange), 1000);
> > -
> > - fKv_b_fused = fDecodeLogisticFuse(ul_Kv_b_fused,
> > - fAverage, fRange, sKv_b_fuse.ucEfuseLength);
> > -
> > - /* Decoding the Leakage - No special struct container */
> > - /*
> > - * usLkgEuseIndex=56
> > - * ucLkgEfuseBitLSB=6
> > - * ucLkgEfuseLength=10
> > - * ulLkgEncodeLn_MaxDivMin=69077
> > - * ulLkgEncodeMax=1000000
> > - * ulLkgEncodeMin=1000
> > - * ulEfuseLogisticAlpha=13
> > - */
> > -
> > - sInput_FuseValues.usEfuseIndex = getASICProfilingInfo->usLkgEuseIndex;
> > - sInput_FuseValues.ucBitShift = getASICProfilingInfo->ucLkgEfuseBitLSB;
> > - sInput_FuseValues.ucBitLength = getASICProfilingInfo->ucLkgEfuseLength;
> > -
> > - sOutput_FuseValues.sEfuse = sInput_FuseValues;
> > -
> > - result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
> > - GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
> > - (uint32_t *)&sOutput_FuseValues, sizeof(sOutput_FuseValues));
> > -
> > - if (result)
> > - return result;
> > -
> > - ul_FT_Lkg_V0NORM = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
> > - fLn_MaxDivMin = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulLkgEncodeLn_MaxDivMin), 10000);
> > - fMin = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulLkgEncodeMin), 10000);
> > -
> > - fFT_Lkg_V0NORM = fDecodeLeakageID(ul_FT_Lkg_V0NORM,
> > - fLn_MaxDivMin, fMin, getASICProfilingInfo->ucLkgEfuseLength);
> > - fLkg_FT = fFT_Lkg_V0NORM;
> > -
> > - /*-------------------------------------------
> > - * PART 2 - Grabbing all required values
> > - *-------------------------------------------
> > - */
> > - fSM_A0 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A0), 1000000),
> > - ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A0_sign)));
> > - fSM_A1 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A1), 1000000),
> > - ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A1_sign)));
> > - fSM_A2 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A2), 100000),
> > - ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A2_sign)));
> > - fSM_A3 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A3), 1000000),
> > - ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A3_sign)));
> > - fSM_A4 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A4), 1000000),
> > - ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A4_sign)));
> > - fSM_A5 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A5), 1000),
> > - ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A5_sign)));
> > - fSM_A6 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A6), 1000),
> > - ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A6_sign)));
> > - fSM_A7 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A7), 1000),
> > - ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A7_sign)));
> > -
> > - fMargin_RO_a = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_RO_a));
> > - fMargin_RO_b = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_RO_b));
> > - fMargin_RO_c = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_RO_c));
> > -
> > - fMargin_fixed = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_fixed));
> > -
> > - fMargin_FMAX_mean = GetScaledFraction(
> > - le32_to_cpu(getASICProfilingInfo->ulMargin_Fmax_mean), 10000);
> > - fMargin_Plat_mean = GetScaledFraction(
> > - le32_to_cpu(getASICProfilingInfo->ulMargin_plat_mean), 10000);
> > - fMargin_FMAX_sigma = GetScaledFraction(
> > - le32_to_cpu(getASICProfilingInfo->ulMargin_Fmax_sigma), 10000);
> > - fMargin_Plat_sigma = GetScaledFraction(
> > - le32_to_cpu(getASICProfilingInfo->ulMargin_plat_sigma), 10000);
> > -
> > - fMargin_DC_sigma = GetScaledFraction(
> > - le32_to_cpu(getASICProfilingInfo->ulMargin_DC_sigma), 100);
> > - fMargin_DC_sigma = fDivide(fMargin_DC_sigma, ConvertToFraction(1000));
> > -
> > - fCACm_fused = fDivide(fCACm_fused, ConvertToFraction(100));
> > - fCACb_fused = fDivide(fCACb_fused, ConvertToFraction(100));
> > - fKt_Beta_fused = fDivide(fKt_Beta_fused, ConvertToFraction(100));
> > - fKv_m_fused = fNegate(fDivide(fKv_m_fused, ConvertToFraction(100)));
> > - fKv_b_fused = fDivide(fKv_b_fused, ConvertToFraction(10));
> > -
> > - fSclk = GetScaledFraction(sclk, 100);
> > -
> > - fV_max = fDivide(GetScaledFraction(
> > - le32_to_cpu(getASICProfilingInfo->ulMaxVddc), 1000), ConvertToFraction(4));
> > - fT_prod = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulBoardCoreTemp), 10);
> > - fLKG_Factor = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulEvvLkgFactor), 100);
> > - fT_FT = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulLeakageTemp), 10);
> > - fV_FT = fDivide(GetScaledFraction(
> > - le32_to_cpu(getASICProfilingInfo->ulLeakageVoltage), 1000), ConvertToFraction(4));
> > - fV_min = fDivide(GetScaledFraction(
> > - le32_to_cpu(getASICProfilingInfo->ulMinVddc), 1000), ConvertToFraction(4));
> > -
> > - /*-----------------------
> > - * PART 3
> > - *-----------------------
> > - */
> > -
> > - fA_Term = fAdd(fMargin_RO_a, fAdd(fMultiply(fSM_A4, fSclk), fSM_A5));
> > - fB_Term = fAdd(fAdd(fMultiply(fSM_A2, fSclk), fSM_A6), fMargin_RO_b);
> > - fC_Term = fAdd(fMargin_RO_c,
> > - fAdd(fMultiply(fSM_A0, fLkg_FT),
> > - fAdd(fMultiply(fSM_A1, fMultiply(fLkg_FT, fSclk)),
> > - fAdd(fMultiply(fSM_A3, fSclk),
> > - fSubtract(fSM_A7, fRO_fused)))));
> > -
> > - fVDDC_base = fSubtract(fRO_fused,
> > - fSubtract(fMargin_RO_c,
> > - fSubtract(fSM_A3, fMultiply(fSM_A1, fSclk))));
> > - fVDDC_base = fDivide(fVDDC_base, fAdd(fMultiply(fSM_A0, fSclk), fSM_A2));
> > -
> > - repeat = fSubtract(fVDDC_base,
> > - fDivide(fMargin_DC_sigma, ConvertToFraction(1000)));
> > -
> > - fRO_DC_margin = fAdd(fMultiply(fMargin_RO_a,
> > - fGetSquare(repeat)),
> > - fAdd(fMultiply(fMargin_RO_b, repeat),
> > - fMargin_RO_c));
> > -
> > - fDC_SCLK = fSubtract(fRO_fused,
> > - fSubtract(fRO_DC_margin,
> > - fSubtract(fSM_A3,
> > - fMultiply(fSM_A2, repeat))));
> > - fDC_SCLK = fDivide(fDC_SCLK, fAdd(fMultiply(fSM_A0, repeat), fSM_A1));
> > -
> > - fSigma_DC = fSubtract(fSclk, fDC_SCLK);
> > -
> > - fMicro_FMAX = fMultiply(fSclk, fMargin_FMAX_mean);
> > - fMicro_CR = fMultiply(fSclk, fMargin_Plat_mean);
> > - fSigma_FMAX = fMultiply(fSclk, fMargin_FMAX_sigma);
> > - fSigma_CR = fMultiply(fSclk, fMargin_Plat_sigma);
> > -
> > - fSquared_Sigma_DC = fGetSquare(fSigma_DC);
> > - fSquared_Sigma_CR = fGetSquare(fSigma_CR);
> > - fSquared_Sigma_FMAX = fGetSquare(fSigma_FMAX);
> > -
> > - fSclk_margin = fAdd(fMicro_FMAX,
> > - fAdd(fMicro_CR,
> > - fAdd(fMargin_fixed,
> > - fSqrt(fAdd(fSquared_Sigma_FMAX,
> > - fAdd(fSquared_Sigma_DC, fSquared_Sigma_CR))))));
> > - /*
> > - fA_Term = fSM_A4 * (fSclk + fSclk_margin) + fSM_A5;
> > - fB_Term = fSM_A2 * (fSclk + fSclk_margin) + fSM_A6;
> > - fC_Term = fRO_DC_margin + fSM_A0 * fLkg_FT + fSM_A1 * fLkg_FT * (fSclk + fSclk_margin) + fSM_A3 * (fSclk + fSclk_margin) + fSM_A7 - fRO_fused;
> > - */
> > -
> > - fA_Term = fAdd(fMultiply(fSM_A4, fAdd(fSclk, fSclk_margin)), fSM_A5);
> > - fB_Term = fAdd(fMultiply(fSM_A2, fAdd(fSclk, fSclk_margin)), fSM_A6);
> > - fC_Term = fAdd(fRO_DC_margin,
> > - fAdd(fMultiply(fSM_A0, fLkg_FT),
> > - fAdd(fMultiply(fMultiply(fSM_A1, fLkg_FT),
> > - fAdd(fSclk, fSclk_margin)),
> > - fAdd(fMultiply(fSM_A3,
> > - fAdd(fSclk, fSclk_margin)),
> > - fSubtract(fSM_A7, fRO_fused)))));
> > -
> > - SolveQuadracticEqn(fA_Term, fB_Term, fC_Term, fRoots);
> > -
> > - if (GreaterThan(fRoots[0], fRoots[1]))
> > - fEVV_V = fRoots[1];
> > - else
> > - fEVV_V = fRoots[0];
> > -
> > - if (GreaterThan(fV_min, fEVV_V))
> > - fEVV_V = fV_min;
> > - else if (GreaterThan(fEVV_V, fV_max))
> > - fEVV_V = fSubtract(fV_max, fStepSize);
> > -
> > - fEVV_V = fRoundUpByStepSize(fEVV_V, fStepSize, 0);
> > -
> > - /*-----------------
> > - * PART 4
> > - *-----------------
> > - */
> > -
> > - fV_x = fV_min;
> > -
> > - while (GreaterThan(fAdd(fV_max, fStepSize), fV_x)) {
> > - fTDP_Power_left = fMultiply(fMultiply(fMultiply(fAdd(
> > - fMultiply(fCACm_fused, fV_x), fCACb_fused), fSclk),
> > - fGetSquare(fV_x)), fDerateTDP);
> > -
> > - fTDP_Power_right = fMultiply(fFT_Lkg_V0NORM, fMultiply(fLKG_Factor,
> > - fMultiply(fExponential(fMultiply(fAdd(fMultiply(fKv_m_fused,
> > - fT_prod), fKv_b_fused), fV_x)), fV_x)));
> > - fTDP_Power_right = fMultiply(fTDP_Power_right, fExponential(fMultiply(
> > - fKt_Beta_fused, fT_prod)));
> > - fTDP_Power_right = fDivide(fTDP_Power_right, fExponential(fMultiply(
> > - fAdd(fMultiply(fKv_m_fused, fT_prod), fKv_b_fused), fV_FT)));
> > - fTDP_Power_right = fDivide(fTDP_Power_right, fExponential(fMultiply(
> > - fKt_Beta_fused, fT_FT)));
> > -
> > - fTDP_Power = fAdd(fTDP_Power_left, fTDP_Power_right);
> > -
> > - fTDP_Current = fDivide(fTDP_Power, fV_x);
> > -
> > - fV_NL = fAdd(fV_x, fDivide(fMultiply(fTDP_Current, fRLL_LoadLine),
> > - ConvertToFraction(10)));
> > -
> > - fV_NL = fRoundUpByStepSize(fV_NL, fStepSize, 0);
> > -
> > - if (GreaterThan(fV_max, fV_NL) &&
> > - (GreaterThan(fV_NL, fEVV_V) ||
> > - Equal(fV_NL, fEVV_V))) {
> > - fV_NL = fMultiply(fV_NL, ConvertToFraction(1000));
> > -
> > - *voltage = (uint16_t)fV_NL.partial.real;
> > - break;
> > - } else
> > - fV_x = fAdd(fV_x, fStepSize);
> > - }
> > -
> > - return result;
> > -}
> > -
> > /**
> > * atomctrl_get_voltage_evv_on_sclk: gets voltage via call to ATOM COMMAND table.
> > * @hwmgr: input: pointer to hwManager
> > diff --git a/drivers/gpu/drm/amd/pm/powerplay/hwmgr/ppatomctrl.h b/drivers/gpu/drm/amd/pm/powerplay/hwmgr/ppatomctrl.h
> > index 1f987e846628..22b0ac12df97 100644
> > --- a/drivers/gpu/drm/amd/pm/powerplay/hwmgr/ppatomctrl.h
> > +++ b/drivers/gpu/drm/amd/pm/powerplay/hwmgr/ppatomctrl.h
> > @@ -316,8 +316,6 @@ extern int atomctrl_get_engine_pll_dividers_kong(struct pp_hwmgr *hwmgr,
> > pp_atomctrl_clock_dividers_kong *dividers);
> > extern int atomctrl_read_efuse(struct pp_hwmgr *hwmgr, uint16_t start_index,
> > uint16_t end_index, uint32_t *efuse);
> > -extern int atomctrl_calculate_voltage_evv_on_sclk(struct pp_hwmgr *hwmgr, uint8_t voltage_type,
> > - uint32_t sclk, uint16_t virtual_voltage_Id, uint16_t *voltage, uint16_t dpm_level, bool debug);
> > extern int atomctrl_get_engine_pll_dividers_ai(struct pp_hwmgr *hwmgr, uint32_t clock_value, pp_atomctrl_clock_dividers_ai *dividers);
> > extern int atomctrl_set_ac_timing_ai(struct pp_hwmgr *hwmgr, uint32_t memory_clock,
> > uint8_t level);
> > diff --git a/drivers/gpu/drm/amd/pm/powerplay/hwmgr/ppevvmath.h b/drivers/gpu/drm/amd/pm/powerplay/hwmgr/ppevvmath.h
> > deleted file mode 100644
> > index 409aeec6baa9..000000000000
> > --- a/drivers/gpu/drm/amd/pm/powerplay/hwmgr/ppevvmath.h
> > +++ /dev/null
> > @@ -1,561 +0,0 @@
> > -/*
> > - * Copyright 2015 Advanced Micro Devices, Inc.
> > - *
> > - * Permission is hereby granted, free of charge, to any person obtaining a
> > - * copy of this software and associated documentation files (the "Software"),
> > - * to deal in the Software without restriction, including without limitation
> > - * the rights to use, copy, modify, merge, publish, distribute, sublicense,
> > - * and/or sell copies of the Software, and to permit persons to whom the
> > - * Software is furnished to do so, subject to the following conditions:
> > - *
> > - * The above copyright notice and this permission notice shall be included in
> > - * all copies or substantial portions of the Software.
> > - *
> > - * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
> > - * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
> > - * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
> > - * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
> > - * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
> > - * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
> > - * OTHER DEALINGS IN THE SOFTWARE.
> > - *
> > - */
> > -#include <asm/div64.h>
> > -
> > -enum ppevvmath_constants {
> > - /* We multiply all original integers with 2^SHIFT_AMOUNT to get the fInt representation */
> > - SHIFT_AMOUNT = 16,
> > -
> > - /* Change this value to change the number of decimal places in the final output - 5 is a good default */
> > - PRECISION = 5,
> > -
> > - SHIFTED_2 = (2 << SHIFT_AMOUNT),
> > -
> > - /* 32767 - Might change in the future */
> > - MAX = (1 << (SHIFT_AMOUNT - 1)) - 1,
> > -};
> > -
> > -/* -------------------------------------------------------------------------------
> > - * NEW TYPE - fINT
> > - * -------------------------------------------------------------------------------
> > - * A variable of type fInt can be accessed in 3 ways using the dot (.) operator
> > - * fInt A;
> > - * A.full => The full number as it is. Generally not easy to read
> > - * A.partial.real => Only the integer portion
> > - * A.partial.decimal => Only the fractional portion
> > - */
> > -typedef union _fInt {
> > - int full;
> > - struct _partial {
> > - unsigned int decimal: SHIFT_AMOUNT; /*Needs to always be unsigned*/
> > - int real: 32 - SHIFT_AMOUNT;
> > - } partial;
> > -} fInt;
> > -
> > -/* -------------------------------------------------------------------------------
> > - * Function Declarations
> > - * -------------------------------------------------------------------------------
> > - */
> > -static fInt ConvertToFraction(int); /* Use this to convert an INT to a FINT */
> > -static fInt Convert_ULONG_ToFraction(uint32_t); /* Use this to convert an uint32_t to a FINT */
> > -static fInt GetScaledFraction(int, int); /* Use this to convert an INT to a FINT after scaling it by a factor */
> > -static int ConvertBackToInteger(fInt); /* Convert a FINT back to an INT that is scaled by 1000 (i.e. last 3 digits are the decimal digits) */
> > -
> > -static fInt fNegate(fInt); /* Returns -1 * input fInt value */
> > -static fInt fAdd (fInt, fInt); /* Returns the sum of two fInt numbers */
> > -static fInt fSubtract (fInt A, fInt B); /* Returns A-B - Sometimes easier than Adding negative numbers */
> > -static fInt fMultiply (fInt, fInt); /* Returns the product of two fInt numbers */
> > -static fInt fDivide (fInt A, fInt B); /* Returns A/B */
> > -static fInt fGetSquare(fInt); /* Returns the square of a fInt number */
> > -static fInt fSqrt(fInt); /* Returns the Square Root of a fInt number */
> > -
> > -static int uAbs(int); /* Returns the Absolute value of the Int */
> > -static int uPow(int base, int exponent); /* Returns base^exponent an INT */
> > -
> > -static void SolveQuadracticEqn(fInt, fInt, fInt, fInt[]); /* Returns the 2 roots via the array */
> > -static bool Equal(fInt, fInt); /* Returns true if two fInts are equal to each other */
> > -static bool GreaterThan(fInt A, fInt B); /* Returns true if A > B */
> > -
> > -static fInt fExponential(fInt exponent); /* Can be used to calculate e^exponent */
> > -static fInt fNaturalLog(fInt value); /* Can be used to calculate ln(value) */
> > -
> > -/* Fuse decoding functions
> > - * -------------------------------------------------------------------------------------
> > - */
> > -static fInt fDecodeLinearFuse(uint32_t fuse_value, fInt f_min, fInt f_range, uint32_t bitlength);
> > -static fInt fDecodeLogisticFuse(uint32_t fuse_value, fInt f_average, fInt f_range, uint32_t bitlength);
> > -static fInt fDecodeLeakageID (uint32_t leakageID_fuse, fInt ln_max_div_min, fInt f_min, uint32_t bitlength);
> > -
> > -/* Internal Support Functions - Use these ONLY for testing or adding to internal functions
> > - * -------------------------------------------------------------------------------------
> > - * Some of the following functions take two INTs as their input - This is unsafe for a variety of reasons.
> > - */
> > -static fInt Divide (int, int); /* Divide two INTs and return result as FINT */
> > -static fInt fNegate(fInt);
> > -
> > -static int uGetScaledDecimal (fInt); /* Internal function */
> > -static int GetReal (fInt A); /* Internal function */
> > -
> > -/* -------------------------------------------------------------------------------------
> > - * TROUBLESHOOTING INFORMATION
> > - * -------------------------------------------------------------------------------------
> > - * 1) ConvertToFraction - InputOutOfRangeException: Only accepts numbers smaller than MAX (default: 32767)
> > - * 2) fAdd - OutputOutOfRangeException: Output bigger than MAX (default: 32767)
> > - * 3) fMultiply - OutputOutOfRangeException:
> > - * 4) fGetSquare - OutputOutOfRangeException:
> > - * 5) fDivide - DivideByZeroException
> > - * 6) fSqrt - NegativeSquareRootException: Input cannot be a negative number
> > - */
> > -
> > -/* -------------------------------------------------------------------------------------
> > - * START OF CODE
> > - * -------------------------------------------------------------------------------------
> > - */
> > -static fInt fExponential(fInt exponent) /*Can be used to calculate e^exponent*/
> > -{
> > - uint32_t i;
> > - bool bNegated = false;
> > -
> > - fInt fPositiveOne = ConvertToFraction(1);
> > - fInt fZERO = ConvertToFraction(0);
> > -
> > - fInt lower_bound = Divide(78, 10000);
> > - fInt solution = fPositiveOne; /*Starting off with baseline of 1 */
> > - fInt error_term;
> > -
> > - static const uint32_t k_array[11] = {55452, 27726, 13863, 6931, 4055, 2231, 1178, 606, 308, 155, 78};
> > - static const uint32_t expk_array[11] = {2560000, 160000, 40000, 20000, 15000, 12500, 11250, 10625, 10313, 10156, 10078};
> > -
> > - if (GreaterThan(fZERO, exponent)) {
> > - exponent = fNegate(exponent);
> > - bNegated = true;
> > - }
> > -
> > - while (GreaterThan(exponent, lower_bound)) {
> > - for (i = 0; i < 11; i++) {
> > - if (GreaterThan(exponent, GetScaledFraction(k_array[i], 10000))) {
> > - exponent = fSubtract(exponent, GetScaledFraction(k_array[i], 10000));
> > - solution = fMultiply(solution, GetScaledFraction(expk_array[i], 10000));
> > - }
> > - }
> > - }
> > -
> > - error_term = fAdd(fPositiveOne, exponent);
> > -
> > - solution = fMultiply(solution, error_term);
> > -
> > - if (bNegated)
> > - solution = fDivide(fPositiveOne, solution);
> > -
> > - return solution;
> > -}
> > -
> > -static fInt fNaturalLog(fInt value)
> > -{
> > - uint32_t i;
> > - fInt upper_bound = Divide(8, 1000);
> > - fInt fNegativeOne = ConvertToFraction(-1);
> > - fInt solution = ConvertToFraction(0); /*Starting off with baseline of 0 */
> > - fInt error_term;
> > -
> > - static const uint32_t k_array[10] = {160000, 40000, 20000, 15000, 12500, 11250, 10625, 10313, 10156, 10078};
> > - static const uint32_t logk_array[10] = {27726, 13863, 6931, 4055, 2231, 1178, 606, 308, 155, 78};
> > -
> > - while (GreaterThan(fAdd(value, fNegativeOne), upper_bound)) {
> > - for (i = 0; i < 10; i++) {
> > - if (GreaterThan(value, GetScaledFraction(k_array[i], 10000))) {
> > - value = fDivide(value, GetScaledFraction(k_array[i], 10000));
> > - solution = fAdd(solution, GetScaledFraction(logk_array[i], 10000));
> > - }
> > - }
> > - }
> > -
> > - error_term = fAdd(fNegativeOne, value);
> > -
> > - return fAdd(solution, error_term);
> > -}
> > -
> > -static fInt fDecodeLinearFuse(uint32_t fuse_value, fInt f_min, fInt f_range, uint32_t bitlength)
> > -{
> > - fInt f_fuse_value = Convert_ULONG_ToFraction(fuse_value);
> > - fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1);
> > -
> > - fInt f_decoded_value;
> > -
> > - f_decoded_value = fDivide(f_fuse_value, f_bit_max_value);
> > - f_decoded_value = fMultiply(f_decoded_value, f_range);
> > - f_decoded_value = fAdd(f_decoded_value, f_min);
> > -
> > - return f_decoded_value;
> > -}
> > -
> > -
> > -static fInt fDecodeLogisticFuse(uint32_t fuse_value, fInt f_average, fInt f_range, uint32_t bitlength)
> > -{
> > - fInt f_fuse_value = Convert_ULONG_ToFraction(fuse_value);
> > - fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1);
> > -
> > - fInt f_CONSTANT_NEG13 = ConvertToFraction(-13);
> > - fInt f_CONSTANT1 = ConvertToFraction(1);
> > -
> > - fInt f_decoded_value;
> > -
> > - f_decoded_value = fSubtract(fDivide(f_bit_max_value, f_fuse_value), f_CONSTANT1);
> > - f_decoded_value = fNaturalLog(f_decoded_value);
> > - f_decoded_value = fMultiply(f_decoded_value, fDivide(f_range, f_CONSTANT_NEG13));
> > - f_decoded_value = fAdd(f_decoded_value, f_average);
> > -
> > - return f_decoded_value;
> > -}
> > -
> > -static fInt fDecodeLeakageID (uint32_t leakageID_fuse, fInt ln_max_div_min, fInt f_min, uint32_t bitlength)
> > -{
> > - fInt fLeakage;
> > - fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1);
> > -
> > - fLeakage = fMultiply(ln_max_div_min, Convert_ULONG_ToFraction(leakageID_fuse));
> > - fLeakage = fDivide(fLeakage, f_bit_max_value);
> > - fLeakage = fExponential(fLeakage);
> > - fLeakage = fMultiply(fLeakage, f_min);
> > -
> > - return fLeakage;
> > -}
> > -
> > -static fInt ConvertToFraction(int X) /*Add all range checking here. Is it possible to make fInt a private declaration? */
> > -{
> > - fInt temp;
> > -
> > - if (X <= MAX)
> > - temp.full = (X << SHIFT_AMOUNT);
> > - else
> > - temp.full = 0;
> > -
> > - return temp;
> > -}
> > -
> > -static fInt fNegate(fInt X)
> > -{
> > - fInt CONSTANT_NEGONE = ConvertToFraction(-1);
> > - return fMultiply(X, CONSTANT_NEGONE);
> > -}
> > -
> > -static fInt Convert_ULONG_ToFraction(uint32_t X)
> > -{
> > - fInt temp;
> > -
> > - if (X <= MAX)
> > - temp.full = (X << SHIFT_AMOUNT);
> > - else
> > - temp.full = 0;
> > -
> > - return temp;
> > -}
> > -
> > -static fInt GetScaledFraction(int X, int factor)
> > -{
> > - int times_shifted, factor_shifted;
> > - bool bNEGATED;
> > - fInt fValue;
> > -
> > - times_shifted = 0;
> > - factor_shifted = 0;
> > - bNEGATED = false;
> > -
> > - if (X < 0) {
> > - X = -1*X;
> > - bNEGATED = true;
> > - }
> > -
> > - if (factor < 0) {
> > - factor = -1*factor;
> > - bNEGATED = !bNEGATED; /*If bNEGATED = true due to X < 0, this will cover the case of negative cancelling negative */
> > - }
> > -
> > - if ((X > MAX) || factor > MAX) {
> > - if ((X/factor) <= MAX) {
> > - while (X > MAX) {
> > - X = X >> 1;
> > - times_shifted++;
> > - }
> > -
> > - while (factor > MAX) {
> > - factor = factor >> 1;
> > - factor_shifted++;
> > - }
> > - } else {
> > - fValue.full = 0;
> > - return fValue;
> > - }
> > - }
> > -
> > - if (factor == 1)
> > - return ConvertToFraction(X);
> > -
> > - fValue = fDivide(ConvertToFraction(X * uPow(-1, bNEGATED)), ConvertToFraction(factor));
> > -
> > - fValue.full = fValue.full << times_shifted;
> > - fValue.full = fValue.full >> factor_shifted;
> > -
> > - return fValue;
> > -}
> > -
> > -/* Addition using two fInts */
> > -static fInt fAdd (fInt X, fInt Y)
> > -{
> > - fInt Sum;
> > -
> > - Sum.full = X.full + Y.full;
> > -
> > - return Sum;
> > -}
> > -
> > -/* Addition using two fInts */
> > -static fInt fSubtract (fInt X, fInt Y)
> > -{
> > - fInt Difference;
> > -
> > - Difference.full = X.full - Y.full;
> > -
> > - return Difference;
> > -}
> > -
> > -static bool Equal(fInt A, fInt B)
> > -{
> > - if (A.full == B.full)
> > - return true;
> > - else
> > - return false;
> > -}
> > -
> > -static bool GreaterThan(fInt A, fInt B)
> > -{
> > - if (A.full > B.full)
> > - return true;
> > - else
> > - return false;
> > -}
> > -
> > -static fInt fMultiply (fInt X, fInt Y) /* Uses 64-bit integers (int64_t) */
> > -{
> > - fInt Product;
> > - int64_t tempProduct;
> > -
> > - /*The following is for a very specific common case: Non-zero number with ONLY fractional portion*/
> > - /* TEMPORARILY DISABLED - CAN BE USED TO IMPROVE PRECISION
> > - bool X_LessThanOne, Y_LessThanOne;
> > -
> > - X_LessThanOne = (X.partial.real == 0 && X.partial.decimal != 0 && X.full >= 0);
> > - Y_LessThanOne = (Y.partial.real == 0 && Y.partial.decimal != 0 && Y.full >= 0);
> > -
> > - if (X_LessThanOne && Y_LessThanOne) {
> > - Product.full = X.full * Y.full;
> > - return Product
> > - }*/
> > -
> > - tempProduct = ((int64_t)X.full) * ((int64_t)Y.full); /*Q(16,16)*Q(16,16) = Q(32, 32) - Might become a negative number! */
> > - tempProduct = tempProduct >> 16; /*Remove lagging 16 bits - Will lose some precision from decimal; */
> > - Product.full = (int)tempProduct; /*The int64_t will lose the leading 16 bits that were part of the integer portion */
> > -
> > - return Product;
> > -}
> > -
> > -static fInt fDivide (fInt X, fInt Y)
> > -{
> > - fInt fZERO, fQuotient;
> > - int64_t longlongX, longlongY;
> > -
> > - fZERO = ConvertToFraction(0);
> > -
> > - if (Equal(Y, fZERO))
> > - return fZERO;
> > -
> > - longlongX = (int64_t)X.full;
> > - longlongY = (int64_t)Y.full;
> > -
> > - longlongX = longlongX << 16; /*Q(16,16) -> Q(32,32) */
> > -
> > - div64_s64(longlongX, longlongY); /*Q(32,32) divided by Q(16,16) = Q(16,16) Back to original format */
> > -
> > - fQuotient.full = (int)longlongX;
> > - return fQuotient;
> > -}
> > -
> > -static int ConvertBackToInteger (fInt A) /*THIS is the function that will be used to check with the Golden settings table*/
> > -{
> > - fInt fullNumber, scaledDecimal, scaledReal;
> > -
> > - scaledReal.full = GetReal(A) * uPow(10, PRECISION-1); /* DOUBLE CHECK THISSSS!!! */
> > -
> > - scaledDecimal.full = uGetScaledDecimal(A);
> > -
> > - fullNumber = fAdd(scaledDecimal, scaledReal);
> > -
> > - return fullNumber.full;
> > -}
> > -
> > -static fInt fGetSquare(fInt A)
> > -{
> > - return fMultiply(A, A);
> > -}
> > -
> > -/* x_new = x_old - (x_old^2 - C) / (2 * x_old) */
> > -static fInt fSqrt(fInt num)
> > -{
> > - fInt F_divide_Fprime, Fprime;
> > - fInt test;
> > - fInt twoShifted;
> > - int seed, counter, error;
> > - fInt x_new, x_old, C, y;
> > -
> > - fInt fZERO = ConvertToFraction(0);
> > -
> > - /* (0 > num) is the same as (num < 0), i.e., num is negative */
> > -
> > - if (GreaterThan(fZERO, num) || Equal(fZERO, num))
> > - return fZERO;
> > -
> > - C = num;
> > -
> > - if (num.partial.real > 3000)
> > - seed = 60;
> > - else if (num.partial.real > 1000)
> > - seed = 30;
> > - else if (num.partial.real > 100)
> > - seed = 10;
> > - else
> > - seed = 2;
> > -
> > - counter = 0;
> > -
> > - if (Equal(num, fZERO)) /*Square Root of Zero is zero */
> > - return fZERO;
> > -
> > - twoShifted = ConvertToFraction(2);
> > - x_new = ConvertToFraction(seed);
> > -
> > - do {
> > - counter++;
> > -
> > - x_old.full = x_new.full;
> > -
> > - test = fGetSquare(x_old); /*1.75*1.75 is reverting back to 1 when shifted down */
> > - y = fSubtract(test, C); /*y = f(x) = x^2 - C; */
> > -
> > - Fprime = fMultiply(twoShifted, x_old);
> > - F_divide_Fprime = fDivide(y, Fprime);
> > -
> > - x_new = fSubtract(x_old, F_divide_Fprime);
> > -
> > - error = ConvertBackToInteger(x_new) - ConvertBackToInteger(x_old);
> > -
> > - if (counter > 20) /*20 is already way too many iterations. If we dont have an answer by then, we never will*/
> > - return x_new;
> > -
> > - } while (uAbs(error) > 0);
> > -
> > - return x_new;
> > -}
> > -
> > -static void SolveQuadracticEqn(fInt A, fInt B, fInt C, fInt Roots[])
> > -{
> > - fInt *pRoots = &Roots[0];
> > - fInt temp, root_first, root_second;
> > - fInt f_CONSTANT10, f_CONSTANT100;
> > -
> > - f_CONSTANT100 = ConvertToFraction(100);
> > - f_CONSTANT10 = ConvertToFraction(10);
> > -
> > - while (GreaterThan(A, f_CONSTANT100) || GreaterThan(B, f_CONSTANT100) || GreaterThan(C, f_CONSTANT100)) {
> > - A = fDivide(A, f_CONSTANT10);
> > - B = fDivide(B, f_CONSTANT10);
> > - C = fDivide(C, f_CONSTANT10);
> > - }
> > -
> > - temp = fMultiply(ConvertToFraction(4), A); /* root = 4*A */
> > - temp = fMultiply(temp, C); /* root = 4*A*C */
> > - temp = fSubtract(fGetSquare(B), temp); /* root = b^2 - 4AC */
> > - temp = fSqrt(temp); /*root = Sqrt (b^2 - 4AC); */
> > -
> > - root_first = fSubtract(fNegate(B), temp); /* b - Sqrt(b^2 - 4AC) */
> > - root_second = fAdd(fNegate(B), temp); /* b + Sqrt(b^2 - 4AC) */
> > -
> > - root_first = fDivide(root_first, ConvertToFraction(2)); /* [b +- Sqrt(b^2 - 4AC)]/[2] */
> > - root_first = fDivide(root_first, A); /*[b +- Sqrt(b^2 - 4AC)]/[2*A] */
> > -
> > - root_second = fDivide(root_second, ConvertToFraction(2)); /* [b +- Sqrt(b^2 - 4AC)]/[2] */
> > - root_second = fDivide(root_second, A); /*[b +- Sqrt(b^2 - 4AC)]/[2*A] */
> > -
> > - *(pRoots + 0) = root_first;
> > - *(pRoots + 1) = root_second;
> > -}
> > -
> > -/* -----------------------------------------------------------------------------
> > - * SUPPORT FUNCTIONS
> > - * -----------------------------------------------------------------------------
> > - */
> > -
> > -/* Conversion Functions */
> > -static int GetReal (fInt A)
> > -{
> > - return (A.full >> SHIFT_AMOUNT);
> > -}
> > -
> > -static fInt Divide (int X, int Y)
> > -{
> > - fInt A, B, Quotient;
> > -
> > - A.full = X << SHIFT_AMOUNT;
> > - B.full = Y << SHIFT_AMOUNT;
> > -
> > - Quotient = fDivide(A, B);
> > -
> > - return Quotient;
> > -}
> > -
> > -static int uGetScaledDecimal (fInt A) /*Converts the fractional portion to whole integers - Costly function */
> > -{
> > - int dec[PRECISION];
> > - int i, scaledDecimal = 0, tmp = A.partial.decimal;
> > -
> > - for (i = 0; i < PRECISION; i++) {
> > - dec[i] = tmp / (1 << SHIFT_AMOUNT);
> > - tmp = tmp - ((1 << SHIFT_AMOUNT)*dec[i]);
> > - tmp *= 10;
> > - scaledDecimal = scaledDecimal + dec[i]*uPow(10, PRECISION - 1 - i);
> > - }
> > -
> > - return scaledDecimal;
> > -}
> > -
> > -static int uPow(int base, int power)
> > -{
> > - if (power == 0)
> > - return 1;
> > - else
> > - return (base)*uPow(base, power - 1);
> > -}
> > -
> > -static int uAbs(int X)
> > -{
> > - if (X < 0)
> > - return (X * -1);
> > - else
> > - return X;
> > -}
> > -
> > -static fInt fRoundUpByStepSize(fInt A, fInt fStepSize, bool error_term)
> > -{
> > - fInt solution;
> > -
> > - solution = fDivide(A, fStepSize);
> > - solution.partial.decimal = 0; /*All fractional digits changes to 0 */
> > -
> > - if (error_term)
> > - solution.partial.real += 1; /*Error term of 1 added */
> > -
> > - solution = fMultiply(solution, fStepSize);
> > - solution = fAdd(solution, fStepSize);
> > -
> > - return solution;
> > -}
> > -
> > --
> > 2.46.2
> >
--
-----Open up your eyes, open up your mind, open up your code -------
/ Dr. David Alan Gilbert | Running GNU/Linux | Happy \
\ dave @ treblig.org | | In Hex /
\ _________________________|_____ http://www.treblig.org |_______/
Powered by blists - more mailing lists