lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <20241001193918.7178fad1.gary@garyguo.net>
Date: Tue, 1 Oct 2024 19:39:18 +0100
From: Gary Guo <gary@...yguo.net>
To: Danilo Krummrich <dakr@...nel.org>
Cc: ojeda@...nel.org, alex.gaynor@...il.com, wedsonaf@...il.com,
 boqun.feng@...il.com, bjorn3_gh@...tonmail.com, benno.lossin@...ton.me,
 a.hindborg@...sung.com, aliceryhl@...gle.com, akpm@...ux-foundation.org,
 daniel.almeida@...labora.com, faith.ekstrand@...labora.com,
 boris.brezillon@...labora.com, lina@...hilina.net, mcanal@...lia.com,
 zhiw@...dia.com, cjia@...dia.com, jhubbard@...dia.com, airlied@...hat.com,
 ajanulgu@...hat.com, lyude@...hat.com, linux-kernel@...r.kernel.org,
 rust-for-linux@...r.kernel.org, linux-mm@...ck.org
Subject: Re: [PATCH v8 16/29] rust: alloc: implement kernel `Vec` type

On Tue,  1 Oct 2024 16:59:51 +0200
Danilo Krummrich <dakr@...nel.org> wrote:

> `Vec` provides a contiguous growable array type with contents allocated
> with the kernel's allocators (e.g. `Kmalloc`, `Vmalloc` or `KVmalloc`).
> 
> In contrast to Rust's stdlib `Vec` type, the kernel `Vec` type considers
> the kernel's GFP flags for all appropriate functions, always reports
> allocation failures through `Result<_, AllocError>` and remains
> independent from unstable features.
> 
> Signed-off-by: Danilo Krummrich <dakr@...nel.org>

Thanks a lot for your work. I think this is much cleaner with the ZST
handling offloaded to `Allocator` and overload checking offloaded to
`ArrayLayout`.

Some nits below, although I think we should apply this and then address
the nits with follow up patches (some may also be good first issues).

Therefore:

Reviewed-by: Gary Guo <gary@...yguo.net>

Best,
Gary

> ---
>  rust/kernel/alloc.rs      |   6 +
>  rust/kernel/alloc/kvec.rs | 637 ++++++++++++++++++++++++++++++++++++++
>  rust/kernel/prelude.rs    |   2 +-
>  3 files changed, 644 insertions(+), 1 deletion(-)
>  create mode 100644 rust/kernel/alloc/kvec.rs
> 
> diff --git a/rust/kernel/alloc.rs b/rust/kernel/alloc.rs
> index bf143a71d53d..961070daf6db 100644
> --- a/rust/kernel/alloc.rs
> +++ b/rust/kernel/alloc.rs
> @@ -5,6 +5,7 @@
>  #[cfg(not(any(test, testlib)))]
>  pub mod allocator;
>  pub mod kbox;
> +pub mod kvec;
>  pub mod layout;
>  pub mod vec_ext;
>  
> @@ -19,6 +20,11 @@
>  pub use self::kbox::KVBox;
>  pub use self::kbox::VBox;
>  
> +pub use self::kvec::KVVec;
> +pub use self::kvec::KVec;
> +pub use self::kvec::VVec;
> +pub use self::kvec::Vec;
> +
>  /// Indicates an allocation error.
>  #[derive(Copy, Clone, PartialEq, Eq, Debug)]
>  pub struct AllocError;
> diff --git a/rust/kernel/alloc/kvec.rs b/rust/kernel/alloc/kvec.rs
> new file mode 100644
> index 000000000000..44aade0a653b
> --- /dev/null
> +++ b/rust/kernel/alloc/kvec.rs
> @@ -0,0 +1,637 @@
> +// SPDX-License-Identifier: GPL-2.0
> +
> +//! Implementation of [`Vec`].
> +
> +use super::{
> +    allocator::{KVmalloc, Kmalloc, Vmalloc},
> +    layout::ArrayLayout,
> +    AllocError, Allocator, Box, Flags,
> +};
> +use core::{
> +    fmt,
> +    marker::PhantomData,
> +    mem::{ManuallyDrop, MaybeUninit},
> +    ops::Deref,
> +    ops::DerefMut,
> +    ops::Index,
> +    ops::IndexMut,
> +    ptr,
> +    ptr::NonNull,
> +    slice,
> +    slice::SliceIndex,
> +};
> +
> +/// Create a [`KVec`] containing the arguments.

This should mention that it allocates using `GFP_KERNEL`.

> +///
> +/// # Examples
> +///
> +/// ```
> +/// let mut v = kernel::kvec![];
> +/// v.push(1, GFP_KERNEL)?;
> +/// assert_eq!(v, [1]);
> +///
> +/// let mut v = kernel::kvec![1; 3]?;
> +/// v.push(4, GFP_KERNEL)?;
> +/// assert_eq!(v, [1, 1, 1, 4]);
> +///
> +/// let mut v = kernel::kvec![1, 2, 3]?;
> +/// v.push(4, GFP_KERNEL)?;
> +/// assert_eq!(v, [1, 2, 3, 4]);
> +///
> +/// # Ok::<(), Error>(())
> +/// ```
> +#[macro_export]
> +macro_rules! kvec {
> +    () => (
> +        $crate::alloc::KVec::new()
> +    );
> +    ($elem:expr; $n:expr) => (
> +        $crate::alloc::KVec::from_elem($elem, $n, GFP_KERNEL)
> +    );
> +    ($($x:expr),+ $(,)?) => (
> +        match $crate::alloc::KBox::new_uninit(GFP_KERNEL) {
> +            Ok(b) => Ok($crate::alloc::KVec::from($crate::alloc::KBox::write(b, [$($x),+]))),
> +            Err(e) => Err(e),
> +        }
> +    );
> +}
> +
> +/// The kernel's [`Vec`] type.
> +///
> +/// A contiguous growable array type with contents allocated with the kernel's allocators (e.g.
> +/// [`Kmalloc`], [`Vmalloc`] or [`KVmalloc`]), written `Vec<T, A>`.
> +///
> +/// For non-zero-sized values, a [`Vec`] will use the given allocator `A` for its allocation. For
> +/// the most common allocators the type aliases [`KVec`], [`VVec`] and [`KVVec`] exist.
> +///
> +/// For zero-sized types the [`Vec`]'s pointer must be `dangling_mut::<T>`; no memory is allocated.
> +///
> +/// Generally, [`Vec`] consists of a pointer that represents the vector's backing buffer, the
> +/// capacity of the vector (the number of elements that currently fit into the vector), it's length
> +/// (the number of elements that are currently stored in the vector) and the `Allocator` type used
> +/// to allocate (and free) the backing buffer.
> +///
> +/// A [`Vec`] can be deconstructed into and (re-)constructed from it's previously named raw parts
> +/// and manually modified.
> +///
> +/// [`Vec`]'s backing buffer gets, if required, automatically increased (re-allocated) when elements
> +/// are added to the vector.
> +///
> +/// # Invariants
> +///
> +/// - `self.ptr` is always properly aligned and either points to memory allocated with `A` or, for
> +///   zero-sized types, is a dangling, well aligned pointer.
> +///
> +/// - `self.len` always represents the exact number of elements stored in the vector.
> +///
> +/// - `self.layout` represents the absolute number of elements that can be stored within the vector
> +///   without re-allocation. However, it is legal for the backing buffer to be larger than `layout`.
> +///
> +/// - The `Allocator` type `A` of the vector is the exact same `Allocator` type the backing buffer
> +///   was allocated with (and must be freed with).
> +pub struct Vec<T, A: Allocator> {
> +    ptr: NonNull<T>,
> +    /// Represents the actual buffer size as `cap` times `size_of::<T>` bytes.
> +    ///
> +    /// Note: This isn't quite the same as `Self::capacity`, which in contrast returns the number of
> +    /// elements we can still store without reallocating.
> +    layout: ArrayLayout<T>,
> +    len: usize,
> +    _p: PhantomData<A>,
> +}
> +
> +/// Type alias for [`Vec`] with a [`Kmalloc`] allocator.
> +///
> +/// # Examples
> +///
> +/// ```
> +/// let mut v = KVec::new();
> +/// v.push(1, GFP_KERNEL)?;
> +/// assert_eq!(&v, &[1]);
> +///
> +/// # Ok::<(), Error>(())
> +/// ```
> +pub type KVec<T> = Vec<T, Kmalloc>;
> +
> +/// Type alias for [`Vec`] with a [`Vmalloc`] allocator.
> +///
> +/// # Examples
> +///
> +/// ```
> +/// let mut v = VVec::new();
> +/// v.push(1, GFP_KERNEL)?;
> +/// assert_eq!(&v, &[1]);
> +///
> +/// # Ok::<(), Error>(())
> +/// ```
> +pub type VVec<T> = Vec<T, Vmalloc>;
> +
> +/// Type alias for [`Vec`] with a [`KVmalloc`] allocator.
> +///
> +/// # Examples
> +///
> +/// ```
> +/// let mut v = KVVec::new();
> +/// v.push(1, GFP_KERNEL)?;
> +/// assert_eq!(&v, &[1]);
> +///
> +/// # Ok::<(), Error>(())
> +/// ```
> +pub type KVVec<T> = Vec<T, KVmalloc>;
> +
> +// SAFETY: `Vec` is `Send` if `T` is `Send` because `Vec` owns its elements.
> +unsafe impl<T, A> Send for Vec<T, A>
> +where
> +    T: Send,
> +    A: Allocator,
> +{
> +}
> +
> +// SAFETY: `Vec` is `Sync` if `T` is `Sync` because `Vec` owns its elements.
> +unsafe impl<T, A> Sync for Vec<T, A>
> +where
> +    T: Sync,
> +    A: Allocator,
> +{
> +}
> +
> +impl<T, A> Vec<T, A>
> +where
> +    A: Allocator,
> +{
> +    #[inline]
> +    const fn is_zst() -> bool {
> +        core::mem::size_of::<T>() == 0
> +    }
> +
> +    /// Returns the number of elements that can be stored within the vector without allocating
> +    /// additional memory.
> +    pub fn capacity(&self) -> usize {
> +        if const { Self::is_zst() } {
> +            usize::MAX
> +        } else {
> +            self.layout.len()
> +        }
> +    }
> +
> +    /// Returns the number of elements stored within the vector.
> +    #[inline]
> +    pub fn len(&self) -> usize {
> +        self.len
> +    }
> +
> +    /// Forcefully sets `self.len` to `new_len`.
> +    ///
> +    /// # Safety
> +    ///
> +    /// - `new_len` must be less than or equal to [`Self::capacity`].
> +    /// - If `new_len` is greater than `self.len`, all elements within the interval
> +    ///   [`self.len`,`new_len`) must be initialized.
> +    #[inline]
> +    pub unsafe fn set_len(&mut self, new_len: usize) {
> +        debug_assert!(new_len <= self.capacity());
> +        self.len = new_len;
> +    }
> +
> +    /// Returns a slice of the entire vector.
> +    #[inline]
> +    pub fn as_slice(&self) -> &[T] {
> +        self
> +    }
> +
> +    /// Returns a mutable slice of the entire vector.
> +    #[inline]
> +    pub fn as_mut_slice(&mut self) -> &mut [T] {
> +        self
> +    }
> +
> +    /// Returns a mutable raw pointer to the vector's backing buffer, or, if `T` is a ZST, a
> +    /// dangling raw pointer.
> +    #[inline]
> +    pub fn as_mut_ptr(&mut self) -> *mut T {
> +        self.ptr.as_ptr()
> +    }
> +
> +    /// Returns a raw pointer to the vector's backing buffer, or, if `T` is a ZST, a dangling raw
> +    /// pointer.
> +    #[inline]
> +    pub fn as_ptr(&self) -> *const T {
> +        self.ptr.as_ptr()
> +    }
> +
> +    /// Returns `true` if the vector contains no elements, `false` otherwise.
> +    ///
> +    /// # Examples
> +    ///
> +    /// ```
> +    /// let mut v = KVec::new();
> +    /// assert!(v.is_empty());
> +    ///
> +    /// v.push(1, GFP_KERNEL);
> +    /// assert!(!v.is_empty());
> +    /// ```
> +    #[inline]
> +    pub fn is_empty(&self) -> bool {
> +        self.len() == 0
> +    }
> +
> +    /// Creates a new, empty Vec<T, A>.
> +    ///
> +    /// This method does not allocate by itself.
> +    #[inline]
> +    pub const fn new() -> Self {

Missing // INVARIANT here.

> +        Self {
> +            ptr: NonNull::dangling(),
> +            layout: ArrayLayout::empty(),
> +            len: 0,
> +            _p: PhantomData::<A>,
> +        }
> +    }
> +
> +    /// Returns a slice of `MaybeUninit<T>` for the remaining spare capacity of the vector.
> +    pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] {
> +        // SAFETY:
> +        // - `self.len` is smaller than `self.capacity` and hence, the resulting pointer is
> +        //   guaranteed to be part of the same allocated object.
> +        // - `self.len` can not overflow `isize`.
> +        let ptr = unsafe { self.as_mut_ptr().add(self.len) } as *mut MaybeUninit<T>;
> +
> +        // SAFETY: The memory between `self.len` and `self.capacity` is guaranteed to be allocated
> +        // and valid, but uninitialized.
> +        unsafe { slice::from_raw_parts_mut(ptr, self.capacity() - self.len) }
> +    }
> +
> +    /// Appends an element to the back of the [`Vec`] instance.
> +    ///
> +    /// # Examples
> +    ///
> +    /// ```
> +    /// let mut v = KVec::new();
> +    /// v.push(1, GFP_KERNEL)?;
> +    /// assert_eq!(&v, &[1]);
> +    ///
> +    /// v.push(2, GFP_KERNEL)?;
> +    /// assert_eq!(&v, &[1, 2]);
> +    /// # Ok::<(), Error>(())
> +    /// ```
> +    pub fn push(&mut self, v: T, flags: Flags) -> Result<(), AllocError> {
> +        self.reserve(1, flags)?;
> +
> +        // SAFETY:
> +        // - `self.len` is smaller than `self.capacity` and hence, the resulting pointer is
> +        //   guaranteed to be part of the same allocated object.
> +        // - `self.len` can not overflow `isize`.
> +        let ptr = unsafe { self.as_mut_ptr().add(self.len) };
> +
> +        // SAFETY:
> +        // - `ptr` is properly aligned and valid for writes.
> +        unsafe { core::ptr::write(ptr, v) };
> +
> +        // SAFETY: We just initialised the first spare entry, so it is safe to increase the length
> +        // by 1. We also know that the new length is <= capacity because of the previous call to
> +        // `reserve` above.
> +        unsafe { self.set_len(self.len() + 1) };
> +        Ok(())
> +    }
> +
> +    /// Creates a new [`Vec`] instance with at least the given capacity.
> +    ///
> +    /// # Examples
> +    ///
> +    /// ```
> +    /// let v = KVec::<u32>::with_capacity(20, GFP_KERNEL)?;
> +    ///
> +    /// assert!(v.capacity() >= 20);
> +    /// # Ok::<(), Error>(())
> +    /// ```
> +    pub fn with_capacity(capacity: usize, flags: Flags) -> Result<Self, AllocError> {
> +        let mut v = Vec::new();
> +
> +        v.reserve(capacity, flags)?;
> +
> +        Ok(v)
> +    }
> +
> +    /// Creates a Vec<T, A> from a pointer, a length and a capacity using the allocator `A`.
> +    ///
> +    /// # Examples
> +    ///
> +    /// ```
> +    /// let mut v = kernel::kvec![1, 2, 3]?;
> +    /// v.reserve(1, GFP_KERNEL)?;
> +    ///
> +    /// let (mut ptr, mut len, cap) = v.into_raw_parts();
> +    ///
> +    /// // SAFETY: We've just reserved memory for another element.
> +    /// unsafe { ptr.add(len).write(4) };
> +    /// len += 1;
> +    ///
> +    /// // SAFETY: We only wrote an additional element at the end of the `KVec`'s buffer and
> +    /// // correspondingly increased the length of the `KVec` by one. Otherwise, we construct it
> +    /// // from the exact same raw parts.
> +    /// let v = unsafe { KVec::from_raw_parts(ptr, len, cap) };
> +    ///
> +    /// assert_eq!(v, [1, 2, 3, 4]);
> +    ///
> +    /// # Ok::<(), Error>(())
> +    /// ```
> +    ///
> +    /// # Safety
> +    ///
> +    /// If `T` is a ZST:
> +    ///
> +    /// - `ptr` must be a dangling, well aligned pointer.
> +    ///
> +    /// Otherwise:
> +    ///
> +    /// - `ptr` must have been allocated with the allocator `A`.
> +    /// - `ptr` must satisfy or exceed the alignment requirements of `T`.
> +    /// - `ptr` must point to memory with a size of at least `size_of::<T>() * capacity`.
> +    ///    bytes.
> +    /// - The allocated size in bytes must not be larger than `isize::MAX`.
> +    /// - `length` must be less than or equal to `capacity`.
> +    /// - The first `length` elements must be initialized values of type `T`.
> +    ///
> +    /// It is also valid to create an empty `Vec` passing a dangling pointer for `ptr` and zero for
> +    /// `cap` and `len`.
> +    pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self {
> +        let layout = if Self::is_zst() {
> +            ArrayLayout::empty()
> +        } else {
> +            // SAFETY: By the safety requirements of this function, `capacity * size_of::<T>()` is
> +            // smaller than `isize::MAX`.
> +            unsafe { ArrayLayout::new_unchecked(capacity) }
> +        };

Missing // INVARIANT here.

> +
> +        Self {
> +            // SAFETY: By the safety requirements, `ptr` is either dangling or pointing to a valid
> +            // memory allocation, allocated with `A`.
> +            ptr: unsafe { NonNull::new_unchecked(ptr) },
> +            layout,
> +            len: length,
> +            _p: PhantomData::<A>,
> +        }
> +    }
> +
> +    /// Consumes the `Vec<T, A>` and returns its raw components `pointer`, `length` and `capacity`.
> +    ///
> +    /// This will not run the destructor of the contained elements and for non-ZSTs the allocation
> +    /// will stay alive indefinitely. Use [`Vec::from_raw_parts`] to recover the [`Vec`], drop the
> +    /// elements and free the allocation, if any.
> +    pub fn into_raw_parts(self) -> (*mut T, usize, usize) {
> +        let mut me = ManuallyDrop::new(self);
> +        let len = me.len();
> +        let capacity = me.capacity();
> +        let ptr = me.as_mut_ptr();
> +        (ptr, len, capacity)
> +    }
> +
> +    /// Ensures that the capacity exceeds the length by at least `additional`
> +    /// elements.
> +    ///
> +    /// # Examples
> +    ///
> +    /// ```
> +    /// let mut v = KVec::new();
> +    /// v.push(1, GFP_KERNEL)?;
> +    ///
> +    /// v.reserve(10, GFP_KERNEL)?;
> +    /// let cap = v.capacity();
> +    /// assert!(cap >= 10);
> +    ///
> +    /// v.reserve(10, GFP_KERNEL)?;
> +    /// let new_cap = v.capacity();
> +    /// assert_eq!(new_cap, cap);
> +    ///
> +    /// # Ok::<(), Error>(())
> +    /// ```
> +    pub fn reserve(&mut self, additional: usize, flags: Flags) -> Result<(), AllocError> {
> +        let len = self.len();
> +        let cap = self.capacity();
> +
> +        if cap - len >= additional {
> +            return Ok(());
> +        }
> +
> +        if Self::is_zst() {
> +            // The capacity is already `usize::MAX` for ZSTs, we can't go higher.
> +            return Err(AllocError);
> +        }
> +
> +        // We know that `cap <= isize::MAX` because of the type invariants of `Self`. So the
> +        // multiplication by two won't overflow.
> +        let new_cap = core::cmp::max(cap * 2, len.checked_add(additional).ok_or(AllocError)?);
> +        let layout = ArrayLayout::new(new_cap).map_err(|_| AllocError)?;
> +
> +        // SAFETY:
> +        // - `ptr` is valid because it's either `None` or comes from a previous call to
> +        //   `A::realloc`.
> +        // - `self.layout` matches the `ArrayLayout` of the preceeding allocation.
> +        let ptr = unsafe {
> +            A::realloc(
> +                Some(self.ptr.cast()),
> +                layout.into(),
> +                self.layout.into(),
> +                flags,
> +            )?
> +        };

Missing // INVARIANT here.

> +
> +        self.ptr = ptr.cast();
> +        self.layout = layout;
> +
> +        Ok(())
> +    }
> +}


Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ