[<prev] [next>] [day] [month] [year] [list]
Message-ID: <20241106021337.183724-1-sashal@kernel.org>
Date: Tue, 5 Nov 2024 21:13:36 -0500
From: Sasha Levin <sashal@...nel.org>
To: stable@...r.kernel.org,
chenridong@...wei.com
Cc: Vishal Chourasia <vishalc@...ux.ibm.com>,
Tejun Heo <tj@...nel.org>,
bpf@...r.kernel.org,
linux-kernel@...r.kernel.org
Subject: FAILED: Patch "cgroup/bpf: use a dedicated workqueue for cgroup bpf destruction" failed to apply to v5.4-stable tree
The patch below does not apply to the v5.4-stable tree.
If someone wants it applied there, or to any other stable or longterm
tree, then please email the backport, including the original git commit
id to <stable@...r.kernel.org>.
Thanks,
Sasha
------------------ original commit in Linus's tree ------------------
>From 117932eea99b729ee5d12783601a4f7f5fd58a23 Mon Sep 17 00:00:00 2001
From: Chen Ridong <chenridong@...wei.com>
Date: Tue, 8 Oct 2024 11:24:56 +0000
Subject: [PATCH] cgroup/bpf: use a dedicated workqueue for cgroup bpf
destruction
A hung_task problem shown below was found:
INFO: task kworker/0:0:8 blocked for more than 327 seconds.
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
Workqueue: events cgroup_bpf_release
Call Trace:
<TASK>
__schedule+0x5a2/0x2050
? find_held_lock+0x33/0x100
? wq_worker_sleeping+0x9e/0xe0
schedule+0x9f/0x180
schedule_preempt_disabled+0x25/0x50
__mutex_lock+0x512/0x740
? cgroup_bpf_release+0x1e/0x4d0
? cgroup_bpf_release+0xcf/0x4d0
? process_scheduled_works+0x161/0x8a0
? cgroup_bpf_release+0x1e/0x4d0
? mutex_lock_nested+0x2b/0x40
? __pfx_delay_tsc+0x10/0x10
mutex_lock_nested+0x2b/0x40
cgroup_bpf_release+0xcf/0x4d0
? process_scheduled_works+0x161/0x8a0
? trace_event_raw_event_workqueue_execute_start+0x64/0xd0
? process_scheduled_works+0x161/0x8a0
process_scheduled_works+0x23a/0x8a0
worker_thread+0x231/0x5b0
? __pfx_worker_thread+0x10/0x10
kthread+0x14d/0x1c0
? __pfx_kthread+0x10/0x10
ret_from_fork+0x59/0x70
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1b/0x30
</TASK>
This issue can be reproduced by the following pressuse test:
1. A large number of cpuset cgroups are deleted.
2. Set cpu on and off repeatly.
3. Set watchdog_thresh repeatly.
The scripts can be obtained at LINK mentioned above the signature.
The reason for this issue is cgroup_mutex and cpu_hotplug_lock are
acquired in different tasks, which may lead to deadlock.
It can lead to a deadlock through the following steps:
1. A large number of cpusets are deleted asynchronously, which puts a
large number of cgroup_bpf_release works into system_wq. The max_active
of system_wq is WQ_DFL_ACTIVE(256). Consequently, all active works are
cgroup_bpf_release works, and many cgroup_bpf_release works will be put
into inactive queue. As illustrated in the diagram, there are 256 (in
the acvtive queue) + n (in the inactive queue) works.
2. Setting watchdog_thresh will hold cpu_hotplug_lock.read and put
smp_call_on_cpu work into system_wq. However step 1 has already filled
system_wq, 'sscs.work' is put into inactive queue. 'sscs.work' has
to wait until the works that were put into the inacvtive queue earlier
have executed (n cgroup_bpf_release), so it will be blocked for a while.
3. Cpu offline requires cpu_hotplug_lock.write, which is blocked by step 2.
4. Cpusets that were deleted at step 1 put cgroup_release works into
cgroup_destroy_wq. They are competing to get cgroup_mutex all the time.
When cgroup_metux is acqured by work at css_killed_work_fn, it will
call cpuset_css_offline, which needs to acqure cpu_hotplug_lock.read.
However, cpuset_css_offline will be blocked for step 3.
5. At this moment, there are 256 works in active queue that are
cgroup_bpf_release, they are attempting to acquire cgroup_mutex, and as
a result, all of them are blocked. Consequently, sscs.work can not be
executed. Ultimately, this situation leads to four processes being
blocked, forming a deadlock.
system_wq(step1) WatchDog(step2) cpu offline(step3) cgroup_destroy_wq(step4)
...
2000+ cgroups deleted asyn
256 actives + n inactives
__lockup_detector_reconfigure
P(cpu_hotplug_lock.read)
put sscs.work into system_wq
256 + n + 1(sscs.work)
sscs.work wait to be executed
warting sscs.work finish
percpu_down_write
P(cpu_hotplug_lock.write)
...blocking...
css_killed_work_fn
P(cgroup_mutex)
cpuset_css_offline
P(cpu_hotplug_lock.read)
...blocking...
256 cgroup_bpf_release
mutex_lock(&cgroup_mutex);
..blocking...
To fix the problem, place cgroup_bpf_release works on a dedicated
workqueue which can break the loop and solve the problem. System wqs are
for misc things which shouldn't create a large number of concurrent work
items. If something is going to generate >WQ_DFL_ACTIVE(256) concurrent
work items, it should use its own dedicated workqueue.
Fixes: 4bfc0bb2c60e ("bpf: decouple the lifetime of cgroup_bpf from cgroup itself")
Cc: stable@...r.kernel.org # v5.3+
Link: https://lore.kernel.org/cgroups/e90c32d2-2a85-4f28-9154-09c7d320cb60@huawei.com/T/#t
Tested-by: Vishal Chourasia <vishalc@...ux.ibm.com>
Signed-off-by: Chen Ridong <chenridong@...wei.com>
Signed-off-by: Tejun Heo <tj@...nel.org>
---
kernel/bpf/cgroup.c | 19 ++++++++++++++++++-
1 file changed, 18 insertions(+), 1 deletion(-)
diff --git a/kernel/bpf/cgroup.c b/kernel/bpf/cgroup.c
index e7113d700b878..025d7e2214aeb 100644
--- a/kernel/bpf/cgroup.c
+++ b/kernel/bpf/cgroup.c
@@ -24,6 +24,23 @@
DEFINE_STATIC_KEY_ARRAY_FALSE(cgroup_bpf_enabled_key, MAX_CGROUP_BPF_ATTACH_TYPE);
EXPORT_SYMBOL(cgroup_bpf_enabled_key);
+/*
+ * cgroup bpf destruction makes heavy use of work items and there can be a lot
+ * of concurrent destructions. Use a separate workqueue so that cgroup bpf
+ * destruction work items don't end up filling up max_active of system_wq
+ * which may lead to deadlock.
+ */
+static struct workqueue_struct *cgroup_bpf_destroy_wq;
+
+static int __init cgroup_bpf_wq_init(void)
+{
+ cgroup_bpf_destroy_wq = alloc_workqueue("cgroup_bpf_destroy", 0, 1);
+ if (!cgroup_bpf_destroy_wq)
+ panic("Failed to alloc workqueue for cgroup bpf destroy.\n");
+ return 0;
+}
+core_initcall(cgroup_bpf_wq_init);
+
/* __always_inline is necessary to prevent indirect call through run_prog
* function pointer.
*/
@@ -334,7 +351,7 @@ static void cgroup_bpf_release_fn(struct percpu_ref *ref)
struct cgroup *cgrp = container_of(ref, struct cgroup, bpf.refcnt);
INIT_WORK(&cgrp->bpf.release_work, cgroup_bpf_release);
- queue_work(system_wq, &cgrp->bpf.release_work);
+ queue_work(cgroup_bpf_destroy_wq, &cgrp->bpf.release_work);
}
/* Get underlying bpf_prog of bpf_prog_list entry, regardless if it's through
--
2.43.0
Powered by blists - more mailing lists