[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <Z2LCUWdEERRodZpx@pollux>
Date: Wed, 18 Dec 2024 13:38:41 +0100
From: Danilo Krummrich <dakr@...nel.org>
To: Benoît du Garreau <benoit@...arreau.fr>
Cc: gregkh@...uxfoundation.org, rafael@...nel.org, bhelgaas@...gle.com,
ojeda@...nel.org, alex.gaynor@...il.com, boqun.feng@...il.com,
gary@...yguo.net, bjorn3_gh@...tonmail.com, benno.lossin@...ton.me,
tmgross@...ch.edu, a.hindborg@...sung.com, aliceryhl@...gle.com,
airlied@...il.com, fujita.tomonori@...il.com, lina@...hilina.net,
pstanner@...hat.com, ajanulgu@...hat.com, lyude@...hat.com,
robh@...nel.org, daniel.almeida@...labora.com, saravanak@...gle.com,
dirk.behme@...bosch.com, j@...nau.net, fabien.parent@...aro.org,
chrisi.schrefl@...il.com, paulmck@...nel.org,
rust-for-linux@...r.kernel.org, linux-kernel@...r.kernel.org,
linux-pci@...r.kernel.org, devicetree@...r.kernel.org,
rcu@...r.kernel.org, Wedson Almeida Filho <wedsonaf@...il.com>
Subject: Re: [PATCH v6 06/16] rust: add `Revocable` type
On Wed, Dec 18, 2024 at 01:20:20PM +0100, Benoît du Garreau wrote:
> On Thu, 12 Dec 2024 17:33:37 +0100 Danilo Krummrich <dakr@...nel.org> wrote:
>
> > From: Wedson Almeida Filho <wedsonaf@...il.com>
> >
> > Revocable allows access to objects to be safely revoked at run time.
> >
> > This is useful, for example, for resources allocated during device probe;
> > when the device is removed, the driver should stop accessing the device
> > resources even if another state is kept in memory due to existing
> > references (i.e., device context data is ref-counted and has a non-zero
> > refcount after removal of the device).
> >
> > Signed-off-by: Wedson Almeida Filho <wedsonaf@...il.com>
> > Co-developed-by: Danilo Krummrich <dakr@...nel.org>
> > Signed-off-by: Danilo Krummrich <dakr@...nel.org>
> > ---
> > rust/kernel/lib.rs | 1 +
> > rust/kernel/revocable.rs | 223 +++++++++++++++++++++++++++++++++++++++
> > 2 files changed, 224 insertions(+)
> > create mode 100644 rust/kernel/revocable.rs
> >
> > diff --git a/rust/kernel/lib.rs b/rust/kernel/lib.rs
> > index 66149ac5c0c9..5702ce32ec8e 100644
> > --- a/rust/kernel/lib.rs
> > +++ b/rust/kernel/lib.rs
> > @@ -60,6 +60,7 @@
> > pub mod prelude;
> > pub mod print;
> > pub mod rbtree;
> > +pub mod revocable;
> > pub mod security;
> > pub mod seq_file;
> > pub mod sizes;
> > diff --git a/rust/kernel/revocable.rs b/rust/kernel/revocable.rs
> > new file mode 100644
> > index 000000000000..e464d59eb6b5
> > --- /dev/null
> > +++ b/rust/kernel/revocable.rs
> > @@ -0,0 +1,223 @@
> > +// SPDX-License-Identifier: GPL-2.0
> > +
> > +//! Revocable objects.
> > +//!
> > +//! The [`Revocable`] type wraps other types and allows access to them to be revoked. The existence
> > +//! of a [`RevocableGuard`] ensures that objects remain valid.
> > +
> > +use crate::{bindings, prelude::*, sync::rcu, types::Opaque};
> > +use core::{
> > + marker::PhantomData,
> > + ops::Deref,
> > + ptr::drop_in_place,
> > + sync::atomic::{AtomicBool, Ordering},
> > +};
> > +
> > +/// An object that can become inaccessible at runtime.
> > +///
> > +/// Once access is revoked and all concurrent users complete (i.e., all existing instances of
> > +/// [`RevocableGuard`] are dropped), the wrapped object is also dropped.
> > +///
> > +/// # Examples
> > +///
> > +/// ```
> > +/// # use kernel::revocable::Revocable;
> > +///
> > +/// struct Example {
> > +/// a: u32,
> > +/// b: u32,
> > +/// }
> > +///
> > +/// fn add_two(v: &Revocable<Example>) -> Option<u32> {
> > +/// let guard = v.try_access()?;
> > +/// Some(guard.a + guard.b)
> > +/// }
> > +///
> > +/// let v = KBox::pin_init(Revocable::new(Example { a: 10, b: 20 }), GFP_KERNEL).unwrap();
> > +/// assert_eq!(add_two(&v), Some(30));
> > +/// v.revoke();
> > +/// assert_eq!(add_two(&v), None);
> > +/// ```
> > +///
> > +/// Sample example as above, but explicitly using the rcu read side lock.
> > +///
> > +/// ```
> > +/// # use kernel::revocable::Revocable;
> > +/// use kernel::sync::rcu;
> > +///
> > +/// struct Example {
> > +/// a: u32,
> > +/// b: u32,
> > +/// }
> > +///
> > +/// fn add_two(v: &Revocable<Example>) -> Option<u32> {
> > +/// let guard = rcu::read_lock();
> > +/// let e = v.try_access_with_guard(&guard)?;
> > +/// Some(e.a + e.b)
> > +/// }
> > +///
> > +/// let v = KBox::pin_init(Revocable::new(Example { a: 10, b: 20 }), GFP_KERNEL).unwrap();
> > +/// assert_eq!(add_two(&v), Some(30));
> > +/// v.revoke();
> > +/// assert_eq!(add_two(&v), None);
> > +/// ```
> > +#[pin_data(PinnedDrop)]
> > +pub struct Revocable<T> {
> > + is_available: AtomicBool,
> > + #[pin]
> > + data: Opaque<T>,
> > +}
> > +
> > +// SAFETY: `Revocable` is `Send` if the wrapped object is also `Send`. This is because while the
> > +// functionality exposed by `Revocable` can be accessed from any thread/CPU, it is possible that
> > +// this isn't supported by the wrapped object.
> > +unsafe impl<T: Send> Send for Revocable<T> {}
> > +
> > +// SAFETY: `Revocable` is `Sync` if the wrapped object is both `Send` and `Sync`. We require `Send`
> > +// from the wrapped object as well because of `Revocable::revoke`, which can trigger the `Drop`
> > +// implementation of the wrapped object from an arbitrary thread.
> > +unsafe impl<T: Sync + Send> Sync for Revocable<T> {}
> > +
> > +impl<T> Revocable<T> {
> > + /// Creates a new revocable instance of the given data.
> > + pub fn new(data: impl PinInit<T>) -> impl PinInit<Self> {
> > + pin_init!(Self {
> > + is_available: AtomicBool::new(true),
> > + data <- Opaque::pin_init(data),
> > + })
> > + }
> > +
> > + /// Tries to access the revocable wrapped object.
> > + ///
> > + /// Returns `None` if the object has been revoked and is therefore no longer accessible.
> > + ///
> > + /// Returns a guard that gives access to the object otherwise; the object is guaranteed to
> > + /// remain accessible while the guard is alive. In such cases, callers are not allowed to sleep
> > + /// because another CPU may be waiting to complete the revocation of this object.
> > + pub fn try_access(&self) -> Option<RevocableGuard<'_, T>> {
> > + let guard = rcu::read_lock();
> > + if self.is_available.load(Ordering::Relaxed) {
> > + // Since `self.is_available` is true, data is initialised and has to remain valid
> > + // because the RCU read side lock prevents it from being dropped.
> > + Some(RevocableGuard::new(self.data.get(), guard))
> > + } else {
> > + None
> > + }
> > + }
> > +
> > + /// Tries to access the revocable wrapped object.
> > + ///
> > + /// Returns `None` if the object has been revoked and is therefore no longer accessible.
> > + ///
> > + /// Returns a shared reference to the object otherwise; the object is guaranteed to
> > + /// remain accessible while the rcu read side guard is alive. In such cases, callers are not
> > + /// allowed to sleep because another CPU may be waiting to complete the revocation of this
> > + /// object.
> > + pub fn try_access_with_guard<'a>(&'a self, _guard: &'a rcu::Guard) -> Option<&'a T> {
> > + if self.is_available.load(Ordering::Relaxed) {
> > + // SAFETY: Since `self.is_available` is true, data is initialised and has to remain
> > + // valid because the RCU read side lock prevents it from being dropped.
> > + Some(unsafe { &*self.data.get() })
> > + } else {
> > + None
> > + }
> > + }
> > +
> > + /// # Safety
> > + ///
> > + /// Callers must ensure that there are no more concurrent users of the revocable object.
> > + unsafe fn revoke_internal<const SYNC: bool>(&self) {
> > + if self
> > + .is_available
> > + .compare_exchange(true, false, Ordering::Relaxed, Ordering::Relaxed)
> > + .is_ok()
> > + {
>
> The comment I made in a previous series was somehow lost, so I put it back here:
> You can use `self.is_available.swap(false, Ordering::Relaxed)` instead of a CAS,
> it is IMO clearer and optimizes better on some architectures.
Thanks for bringing this up again!
>
> > + if SYNC {
> > + // SAFETY: Just an FFI call, there are no further requirements.
> > + unsafe { bindings::synchronize_rcu() };
> > + }
> > +
> > + // SAFETY: We know `self.data` is valid because only one CPU can succeed the
> > + // `compare_exchange` above that takes `is_available` from `true` to `false`.
> > + unsafe { drop_in_place(self.data.get()) };
> > + }
> > + }
> > +
> > + /// Revokes access to and drops the wrapped object.
> > + ///
> > + /// Access to the object is revoked immediately to new callers of [`Revocable::try_access`],
> > + /// expecting that there are no concurrent users of the object.
> > + ///
> > + /// # Safety
> > + ///
> > + /// Callers must ensure that there are no more concurrent users of the revocable object.
> > + pub unsafe fn revoke_nosync(&self) {
> > + // SAFETY: By the safety requirement of this function, the caller ensures that nobody is
> > + // accessing the data anymore and hence we don't have to wait for the grace period to
> > + // finish.
> > + unsafe { self.revoke_internal::<false>() }
> > + }
> > +
> > + /// Revokes access to and drops the wrapped object.
> > + ///
> > + /// Access to the object is revoked immediately to new callers of [`Revocable::try_access`].
> > + ///
> > + /// If there are concurrent users of the object (i.e., ones that called
> > + /// [`Revocable::try_access`] beforehand and still haven't dropped the returned guard), this
> > + /// function waits for the concurrent access to complete before dropping the wrapped object.
> > + pub fn revoke(&self) {
> > + // SAFETY: By passing `true` we ask `revoke_internal` to wait for the grace period to
> > + // finish.
> > + unsafe { self.revoke_internal::<true>() }
> > + }
> > +}
> > +
> > +#[pinned_drop]
> > +impl<T> PinnedDrop for Revocable<T> {
> > + fn drop(self: Pin<&mut Self>) {
> > + // Drop only if the data hasn't been revoked yet (in which case it has already been
> > + // dropped).
> > + // SAFETY: We are not moving out of `p`, only dropping in place
> > + let p = unsafe { self.get_unchecked_mut() };
> > + if *p.is_available.get_mut() {
> > + // SAFETY: We know `self.data` is valid because no other CPU has changed
> > + // `is_available` to `false` yet, and no other CPU can do it anymore because this CPU
> > + // holds the only reference (mutable) to `self` now.
> > + unsafe { drop_in_place(p.data.get()) };
> > + }
> > + }
> > +}
> > +
> > +/// A guard that allows access to a revocable object and keeps it alive.
> > +///
> > +/// CPUs may not sleep while holding on to [`RevocableGuard`] because it's in atomic context
> > +/// holding the RCU read-side lock.
> > +///
> > +/// # Invariants
> > +///
> > +/// The RCU read-side lock is held while the guard is alive.
> > +pub struct RevocableGuard<'a, T> {
> > + data_ref: *const T,
> > + _rcu_guard: rcu::Guard,
> > + _p: PhantomData<&'a ()>,
> > +}
> > +
> > +impl<T> RevocableGuard<'_, T> {
> > + fn new(data_ref: *const T, rcu_guard: rcu::Guard) -> Self {
> > + Self {
> > + data_ref,
> > + _rcu_guard: rcu_guard,
> > + _p: PhantomData,
> > + }
> > + }
> > +}
> > +
> > +impl<T> Deref for RevocableGuard<'_, T> {
> > + type Target = T;
> > +
> > + fn deref(&self) -> &Self::Target {
> > + // SAFETY: By the type invariants, we hold the rcu read-side lock, so the object is
> > + // guaranteed to remain valid.
> > + unsafe { &*self.data_ref }
> > + }
> > +}
> > --
> > 2.47.1
> >
> >
>
> Benoît du Garreau
Powered by blists - more mailing lists