[<prev] [next>] [thread-next>] [day] [month] [year] [list]
Message-ID: <20241223025751.3268975-1-riel@surriel.com>
Date: Sun, 22 Dec 2024 21:55:06 -0500
From: Rik van Riel <riel@...riel.com>
To: x86@...nel.org
Cc: linux-kernel@...r.kernel.org,
kernel-team@...a.com,
dave.hansen@...ux.intel.com,
luto@...nel.org,
peterz@...radead.org,
tglx@...utronix.de,
mingo@...hat.com,
bp@...en8.de,
hpa@...or.com,
akpm@...ux-foundation.org,
linux-mm@...ck.org
Subject: [RFC PATCH v2 00/11] AMD broadcast TLB invalidation
Add support for broadcast TLB invalidation using AMD's INVLPGB instruction.
This allows the kernel to invalidate TLB entries on remote CPUs without
needing to send IPIs, without having to wait for remote CPUs to handle
those interrupts, and with less interruption to what was running on
those CPUs.
Because x86 PCID space is limited, and there are some very large
systems out there, broadcast TLB invalidation is only used for
processes that are active on 3 or more CPUs, with the threshold
being gradually increased the more the PCID space gets exhausted.
Combined with the removal of unnecessary lru_add_drain calls
(see https://lkml.org/lkml/2024/12/19/1388) this results in a
nice performance boost for the will-it-scale tlb_flush2_threads
test on an AMD Milan system with 36 cores:
- vanilla kernel: 527k loops/second
- lru_add_drain removal: 731k loops/second
- only INVLPGB: 527k loops/second
- lru_add_drain + INVLPGB: 1157k loops/second
Profiling with only the INVLPGB changes showed while
TLB invalidation went down from 40% of the total CPU
time to only around 4% of CPU time, the contention
simply moved to the LRU lock.
Fixing both at the same time about doubles the
number of iterations per second from this case.
v2:
- Apply suggestions by Peter and Borislav (thank you!)
- Fix bug in arch_tlbbatch_flush, where we need to do both
the TLBSYNC, and flush the CPUs that are in the cpumask.
- Some updates to comments and changelogs based on questions.
Powered by blists - more mailing lists