[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-Id: <AB2022AB-89EE-48E1-BDA3-46088831E950@linux.dev>
Date: Tue, 7 Jan 2025 16:41:03 +0800
From: Muchun Song <muchun.song@...ux.dev>
To: Yu Zhao <yuzhao@...gle.com>
Cc: Andrew Morton <akpm@...ux-foundation.org>,
David Hildenbrand <david@...hat.com>,
Mateusz Guzik <mjguzik@...il.com>,
"Matthew Wilcox (Oracle)" <willy@...radead.org>,
linux-mm@...ck.org,
linux-kernel@...r.kernel.org,
Will Deacon <will@...nel.org>
Subject: Re: [PATCH mm-unstable v1] mm/hugetlb_vmemmap: fix memory loads
ordering
> On Jan 7, 2025, at 12:35, Yu Zhao <yuzhao@...gle.com> wrote:
>
> Using x86_64 as an example, for a 32KB struct page[] area describing a
> 2MB hugeTLB, HVO reduces the area to 4KB by the following steps:
> 1. Split the (r/w vmemmap) PMD mapping the area into 512 (r/w) PTEs;
> 2. For the 8 PTEs mapping the area, remap PTE 1-7 to the page mapped
> by PTE 0, and at the same time change the permission from r/w to
> r/o;
> 3. Free the pages PTE 1-7 used to map, hence the reduction from 32KB
> to 4KB.
>
> However, the following race can happen due to improperly memory loads
> ordering:
> CPU 1 (HVO) CPU 2 (speculative PFN walker)
>
> page_ref_freeze()
> synchronize_rcu()
> rcu_read_lock()
> page_is_fake_head() is false
> vmemmap_remap_pte()
> XXX: struct page[] becomes r/o
>
> page_ref_unfreeze()
> page_ref_count() is not zero
>
> atomic_add_unless(&page->_refcount)
> XXX: try to modify r/o struct page[]
>
> Specifically, page_is_fake_head() must be ordered after
> page_ref_count() on CPU 2 so that it can only return true for this
> case, to avoid the later attempt to modify r/o struct page[].
>
> This patch adds the missing memory barrier and makes the tests on
> page_is_fake_head() and page_ref_count() done in the proper order.
>
> Fixes: bd225530a4c7 ("mm/hugetlb_vmemmap: fix race with speculative PFN walkers")
> Reported-by: Will Deacon <will@...nel.org>
> Closes: https://lore.kernel.org/20241128142028.GA3506@willie-the-truck/
> Signed-off-by: Yu Zhao <yuzhao@...gle.com>
> ---
> include/linux/page-flags.h | 2 +-
> include/linux/page_ref.h | 8 ++++++--
> 2 files changed, 7 insertions(+), 3 deletions(-)
>
> diff --git a/include/linux/page-flags.h b/include/linux/page-flags.h
> index 691506bdf2c5..6b8ecf86f1b6 100644
> --- a/include/linux/page-flags.h
> +++ b/include/linux/page-flags.h
> @@ -212,7 +212,7 @@ static __always_inline const struct page *page_fixed_fake_head(const struct page
> * cold cacheline in some cases.
> */
> if (IS_ALIGNED((unsigned long)page, PAGE_SIZE) &&
> - test_bit(PG_head, &page->flags)) {
> + test_bit_acquire(PG_head, &page->flags)) {
> /*
> * We can safely access the field of the @page[1] with PG_head
> * because the @page is a compound page composed with at least
> diff --git a/include/linux/page_ref.h b/include/linux/page_ref.h
> index 8c236c651d1d..5becea98bd79 100644
> --- a/include/linux/page_ref.h
> +++ b/include/linux/page_ref.h
> @@ -233,8 +233,12 @@ static inline bool page_ref_add_unless(struct page *page, int nr, int u)
> bool ret = false;
>
> rcu_read_lock();
> - /* avoid writing to the vmemmap area being remapped */
> - if (!page_is_fake_head(page) && page_ref_count(page) != u)
> + /*
> + * To avoid writing to the vmemmap area remapped into r/o in parallel,
> + * the page_ref_count() test must precede the page_is_fake_head() test
> + * so that test_bit_acquire() in the latter is ordered after the former.
> + */
> + if (page_ref_count(page) != u && !page_is_fake_head(page))
IIUC, we need to insert a memory barrier between page_ref_count() and page_is_fake_head().
Specifically, accessing between page->_refcount and page->flags. So we should insert a
read memory barrier here, right? But I saw you added an acquire barrier in page_fixed_fake_head(),
I don't understand why an acquire barrier could stop the CPU reordering the accessing
between them. What am I missing here?
Muchun,
Thanks.
> ret = atomic_add_unless(&page->_refcount, nr, u);
> rcu_read_unlock();
>
> --
> 2.47.1.613.gc27f4b7a9f-goog
>
Powered by blists - more mailing lists