[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <20250206073948.181792-4-ebiggers@kernel.org>
Date: Wed, 5 Feb 2025 23:39:45 -0800
From: Eric Biggers <ebiggers@...nel.org>
To: linux-kernel@...r.kernel.org
Cc: linux-crypto@...r.kernel.org,
x86@...nel.org,
linux-block@...r.kernel.org,
Ard Biesheuvel <ardb@...nel.org>,
Keith Busch <kbusch@...nel.org>,
Kent Overstreet <kent.overstreet@...ux.dev>,
"Martin K . Petersen" <martin.petersen@...cle.com>
Subject: [PATCH v3 3/6] x86/crc: add "template" for [V]PCLMULQDQ based CRC functions
From: Eric Biggers <ebiggers@...gle.com>
The Linux kernel implements many variants of CRC, such as crc16,
crc_t10dif, crc32_le, crc32c, crc32_be, crc64_nvme, and crc64_be. On
x86, except for crc32c which has special scalar instructions, the
fastest way to compute any of these CRCs on any message of length
roughly >= 16 bytes is to use the SIMD carryless multiplication
instructions PCLMULQDQ or VPCLMULQDQ. Depending on the available CPU
features this can mean PCLMULQDQ+SSE4.1, VPCLMULQDQ+AVX2,
VPCLMULQDQ+AVX10/256, or VPCLMULQDQ+AVX10/512 (or the AVX512 equivalents
to AVX10/*). This results in a total of 20+ CRC implementations being
potentially needed to properly optimize all CRCs that someone cares
about for x86. Besides crc32c, currently only crc32_le and crc_t10dif
are actually optimized for x86, and they only use PCLMULQDQ, which means
they can be 2-4x slower than what is possible with VPCLMULQDQ.
Fortunately, at a high level the code that is needed for any
[V]PCLMULQDQ based CRC implementation is mostly the same. Therefore,
this patch introduces an assembly macro that expands into the body of a
[V]PCLMULQDQ based CRC function for a given number of bits (8, 16, 32,
or 64), bit order (lsb or msb-first), vector length, and AVX level.
The function expects to be passed a constants table, specific to the
polynomial desired, that was generated by the script previously added.
When two CRC variants share the same number of bits and bit order, the
same functions can be reused, with only the constants table differing.
A new C header is also added to make it easy to integrate the new
assembly code using a static call.
The result is that it becomes straightforward to wire up an optimized
implementation of any CRC-8, CRC-16, CRC-32, or CRC-64 for x86. Later
patches will wire up specific CRC variants.
Although this new template allows easily generating many functions, care
was taken to still keep the binary size fairly low. Each generated
function is only 550 to 850 bytes depending on the CRC variant and
target CPU features. And only one function per CRC variant is actually
used at runtime (since all functions support all lengths >= 16 bytes).
Note that a similar approach should also work for other architectures
that have carryless multiplication instructions, such as arm64.
Acked-by: Ard Biesheuvel <ardb@...nel.org>
Acked-by: Keith Busch <kbusch@...nel.org>
Signed-off-by: Eric Biggers <ebiggers@...gle.com>
---
arch/x86/lib/crc-pclmul-template.S | 584 +++++++++++++++++++++++++++++
arch/x86/lib/crc-pclmul-template.h | 81 ++++
2 files changed, 665 insertions(+)
create mode 100644 arch/x86/lib/crc-pclmul-template.S
create mode 100644 arch/x86/lib/crc-pclmul-template.h
diff --git a/arch/x86/lib/crc-pclmul-template.S b/arch/x86/lib/crc-pclmul-template.S
new file mode 100644
index 0000000000000..defe9c6045cb6
--- /dev/null
+++ b/arch/x86/lib/crc-pclmul-template.S
@@ -0,0 +1,584 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+//
+// Template to generate [V]PCLMULQDQ-based CRC functions for x86
+//
+// Copyright 2025 Google LLC
+//
+// Author: Eric Biggers <ebiggers@...gle.com>
+
+#include <linux/linkage.h>
+
+// Offsets within the generated constants table
+.set OFFSETOF_BSWAP_MASK, -5*16 // msb-first CRCs only
+.set OFFSETOF_FOLD_ACROSS_2048BIT_CONSTS, -4*16 // must precede next
+.set OFFSETOF_FOLD_ACROSS_1024BIT_CONSTS, -3*16 // must precede next
+.set OFFSETOF_FOLD_ACROSS_512BIT_CONSTS, -2*16 // must precede next
+.set OFFSETOF_FOLD_ACROSS_256BIT_CONSTS, -1*16 // must precede next
+.set OFFSETOF_FOLD_ACROSS_128BIT_CONSTS, 0*16 // must be 0
+.set OFFSETOF_SHUF_TABLE, 1*16
+.set OFFSETOF_BARRETT_REDUCTION_CONSTS, 4*16
+
+// Emit a VEX (or EVEX) coded instruction if allowed, or emulate it using the
+// corresponding non-VEX instruction plus any needed moves. The supported
+// instruction formats are:
+//
+// - Two-arg [src, dst], where the non-VEX form is the same.
+// - Three-arg [src1, src2, dst] where the non-VEX form is
+// [src1, src2_and_dst]. If src2 != dst, then src1 must != dst too.
+//
+// \insn gives the instruction without a "v" prefix and including any immediate
+// argument if needed to make the instruction follow one of the above formats.
+// If \unaligned_mem_tmp is given, then the emitted non-VEX code moves \arg1 to
+// it first; this is needed when \arg1 is an unaligned mem operand.
+.macro _cond_vex insn:req, arg1:req, arg2:req, arg3, unaligned_mem_tmp
+.if AVX_LEVEL == 0
+ // VEX not allowed. Emulate it.
+ .ifnb \arg3 // Three-arg [src1, src2, dst]
+ .ifc "\arg2", "\arg3" // src2 == dst?
+ .ifnb \unaligned_mem_tmp
+ movdqu \arg1, \unaligned_mem_tmp
+ \insn \unaligned_mem_tmp, \arg3
+ .else
+ \insn \arg1, \arg3
+ .endif
+ .else // src2 != dst
+ .ifc "\arg1", "\arg3"
+ .error "Can't have src1 == dst when src2 != dst"
+ .endif
+ .ifnb \unaligned_mem_tmp
+ movdqu \arg1, \unaligned_mem_tmp
+ movdqa \arg2, \arg3
+ \insn \unaligned_mem_tmp, \arg3
+ .else
+ movdqa \arg2, \arg3
+ \insn \arg1, \arg3
+ .endif
+ .endif
+ .else // Two-arg [src, dst]
+ .ifnb \unaligned_mem_tmp
+ movdqu \arg1, \unaligned_mem_tmp
+ \insn \unaligned_mem_tmp, \arg2
+ .else
+ \insn \arg1, \arg2
+ .endif
+ .endif
+.else
+ // VEX is allowed. Emit the desired instruction directly.
+ .ifnb \arg3
+ v\insn \arg1, \arg2, \arg3
+ .else
+ v\insn \arg1, \arg2
+ .endif
+.endif
+.endm
+
+// Broadcast an aligned 128-bit mem operand to all 128-bit lanes of a vector
+// register of length VL.
+.macro _vbroadcast src, dst
+.if VL == 16
+ _cond_vex movdqa, \src, \dst
+.elseif VL == 32
+ vbroadcasti128 \src, \dst
+.else
+ vbroadcasti32x4 \src, \dst
+.endif
+.endm
+
+// Load \vl bytes from the unaligned mem operand \src into \dst, and if the CRC
+// is msb-first use \bswap_mask to reflect the bytes within each 128-bit lane.
+.macro _load_data vl, src, bswap_mask, dst
+.if \vl < 64
+ _cond_vex movdqu, "\src", \dst
+.else
+ vmovdqu8 \src, \dst
+.endif
+.if !LSB_CRC
+ _cond_vex pshufb, \bswap_mask, \dst, \dst
+.endif
+.endm
+
+.macro _prepare_v0 vl, v0, v1, bswap_mask
+.if LSB_CRC
+ .if \vl < 64
+ _cond_vex pxor, (BUF), \v0, \v0, unaligned_mem_tmp=\v1
+ .else
+ vpxorq (BUF), \v0, \v0
+ .endif
+.else
+ _load_data \vl, (BUF), \bswap_mask, \v1
+ .if \vl < 64
+ _cond_vex pxor, \v1, \v0, \v0
+ .else
+ vpxorq \v1, \v0, \v0
+ .endif
+.endif
+.endm
+
+// The x^0..x^63 terms, i.e. poly128 mod x^64, i.e. the physically low qword for
+// msb-first order or the physically high qword for lsb-first order.
+#define LO64_TERMS 0
+
+// The x^64..x^127 terms, i.e. floor(poly128 / x^64), i.e. the physically high
+// qword for msb-first order or the physically low qword for lsb-first order.
+#define HI64_TERMS 1
+
+// Multiply the given \src1_terms of each 128-bit lane of \src1 by the given
+// \src2_terms of each 128-bit lane of \src2, and write the result(s) to \dst.
+.macro _pclmulqdq src1, src1_terms, src2, src2_terms, dst
+ _cond_vex "pclmulqdq $((\src1_terms ^ LSB_CRC) << 4) ^ (\src2_terms ^ LSB_CRC),", \
+ \src1, \src2, \dst
+.endm
+
+// Fold \acc into \data and store the result back into \acc. \data can be an
+// unaligned mem operand if using VEX is allowed and the CRC is lsb-first so no
+// byte-reflection is needed; otherwise it must be a vector register. \consts
+// is a vector register containing the needed fold constants, and \tmp is a
+// temporary vector register. All arguments must be the same length.
+.macro _fold_vec acc, data, consts, tmp
+ _pclmulqdq \consts, HI64_TERMS, \acc, HI64_TERMS, \tmp
+ _pclmulqdq \consts, LO64_TERMS, \acc, LO64_TERMS, \acc
+.if AVX_LEVEL < 10
+ _cond_vex pxor, \data, \tmp, \tmp
+ _cond_vex pxor, \tmp, \acc, \acc
+.else
+ vpternlogq $0x96, \data, \tmp, \acc
+.endif
+.endm
+
+// Fold \acc into \data and store the result back into \acc. \data is an
+// unaligned mem operand, \consts is a vector register containing the needed
+// fold constants, \bswap_mask is a vector register containing the
+// byte-reflection table if the CRC is msb-first, and \tmp1 and \tmp2 are
+// temporary vector registers. All arguments must have length \vl.
+.macro _fold_vec_mem vl, acc, data, consts, bswap_mask, tmp1, tmp2
+.if AVX_LEVEL == 0 || !LSB_CRC
+ _load_data \vl, \data, \bswap_mask, \tmp1
+ _fold_vec \acc, \tmp1, \consts, \tmp2
+.else
+ _fold_vec \acc, \data, \consts, \tmp1
+.endif
+.endm
+
+// Load the constants for folding across 2**i vectors of length VL at a time
+// into all 128-bit lanes of the vector register CONSTS.
+.macro _load_vec_folding_consts i
+ _vbroadcast OFFSETOF_FOLD_ACROSS_128BIT_CONSTS+(4-LOG2_VL-\i)*16(CONSTS_PTR), \
+ CONSTS
+.endm
+
+// Given vector registers \v0 and \v1 of length \vl, fold \v0 into \v1 and store
+// the result back into \v0. If the remaining length mod \vl is nonzero, also
+// fold \vl bytes from (BUF). For both operations the fold distance is \vl.
+// \consts must be a register of length \vl containing the fold constants.
+.macro _fold_vec_final vl, v0, v1, consts, bswap_mask, tmp1, tmp2
+ _fold_vec \v0, \v1, \consts, \tmp1
+ test $\vl, LEN8
+ jz .Lfold_vec_final_done\@
+ _fold_vec_mem \vl, \v0, (BUF), \consts, \bswap_mask, \tmp1, \tmp2
+ add $\vl, BUF
+.Lfold_vec_final_done\@:
+.endm
+
+// This macro generates the body of a CRC function with the following prototype:
+//
+// crc_t crc_func(crc_t crc, const u8 *buf, size_t len, const void *consts);
+//
+// |crc| is the initial CRC, and crc_t is a data type wide enough to hold it.
+// |buf| is the data to checksum. |len| is the data length in bytes, which must
+// be at least 16. |consts| is a pointer to the fold_across_128_bits_consts
+// field of the constants table that was generated for the chosen CRC variant.
+//
+// Moving onto the macro parameters, \n is the number of bits in the CRC, e.g.
+// 32 for a CRC-32. Currently the supported values are 8, 16, 32, and 64. If
+// the file is compiled in i386 mode, then the maximum supported value is 32.
+//
+// \lsb_crc is 1 if the CRC processes the least significant bit of each byte
+// first, i.e. maps bit0 to x^7, bit1 to x^6, ..., bit7 to x^0. \lsb_crc is 0
+// if the CRC processes the most significant bit of each byte first, i.e. maps
+// bit0 to x^0, bit1 to x^1, bit7 to x^7.
+//
+// \vl is the maximum length of vector register to use in bytes: 16, 32, or 64.
+//
+// \avx_level is the level of AVX support to use: 0 for SSE only, 2 for AVX2, or
+// 10 for AVX10 or AVX512.
+//
+// If \vl == 16 && \avx_level == 0, the generated code requires:
+// PCLMULQDQ && SSE4.1. (Note: all known CPUs with PCLMULQDQ also have SSE4.1.)
+//
+// If \vl == 32 && \avx_level == 2, the generated code requires:
+// VPCLMULQDQ && AVX2.
+//
+// If \vl == 32 && \avx_level == 10, the generated code requires:
+// VPCLMULQDQ && (AVX10/256 || (AVX512BW && AVX512VL))
+//
+// If \vl == 64 && \avx_level == 10, the generated code requires:
+// VPCLMULQDQ && (AVX10/512 || (AVX512BW && AVX512VL))
+//
+// Other \vl and \avx_level combinations are either not supported or not useful.
+.macro _crc_pclmul n, lsb_crc, vl, avx_level
+ .set LSB_CRC, \lsb_crc
+ .set VL, \vl
+ .set AVX_LEVEL, \avx_level
+
+ // Define aliases for the xmm, ymm, or zmm registers according to VL.
+.irp i, 0,1,2,3,4,5,6,7
+ .if VL == 16
+ .set V\i, %xmm\i
+ .set LOG2_VL, 4
+ .elseif VL == 32
+ .set V\i, %ymm\i
+ .set LOG2_VL, 5
+ .elseif VL == 64
+ .set V\i, %zmm\i
+ .set LOG2_VL, 6
+ .else
+ .error "Unsupported vector length"
+ .endif
+.endr
+ // Define aliases for the function parameters.
+ // Note: when crc_t is shorter than u32, zero-extension to 32 bits is
+ // guaranteed by the ABI. Zero-extension to 64 bits is *not* guaranteed
+ // when crc_t is shorter than u64.
+#ifdef __x86_64__
+.if \n <= 32
+ .set CRC, %edi
+.else
+ .set CRC, %rdi
+.endif
+ .set BUF, %rsi
+ .set LEN, %rdx
+ .set LEN32, %edx
+ .set LEN8, %dl
+ .set CONSTS_PTR, %rcx
+#else
+ // 32-bit support, assuming -mregparm=3 and not including support for
+ // CRC-64 (which would use both eax and edx to pass the crc parameter).
+ .set CRC, %eax
+ .set BUF, %edx
+ .set LEN, %ecx
+ .set LEN32, %ecx
+ .set LEN8, %cl
+ .set CONSTS_PTR, %ebx // Passed on stack
+#endif
+
+ // Define aliases for some local variables. V0-V5 are used without
+ // aliases (for accumulators, data, temporary values, etc). Staying
+ // within the first 8 vector registers keeps the code 32-bit SSE
+ // compatible and reduces the size of 64-bit SSE code slightly.
+ .set BSWAP_MASK, V6
+ .set BSWAP_MASK_YMM, %ymm6
+ .set BSWAP_MASK_XMM, %xmm6
+ .set CONSTS, V7
+ .set CONSTS_YMM, %ymm7
+ .set CONSTS_XMM, %xmm7
+
+#ifdef __i386__
+ push CONSTS_PTR
+ mov 8(%esp), CONSTS_PTR
+#endif
+
+ // Create a 128-bit vector that contains the initial CRC in the end
+ // representing the high-order polynomial coefficients, and the rest 0.
+.if \n <= 32
+ _cond_vex movd, CRC, %xmm0
+.else
+ _cond_vex movq, CRC, %xmm0
+.endif
+.if !LSB_CRC
+ _cond_vex pslldq, $(128-\n)/8, %xmm0, %xmm0
+ _vbroadcast OFFSETOF_BSWAP_MASK(CONSTS_PTR), BSWAP_MASK
+.endif
+
+ // Load the first vector of data and XOR the initial CRC into the
+ // appropriate end of the first 128-bit lane of data. If LEN < VL, then
+ // use a short vector and jump to the end to do the final reduction.
+ // (LEN >= 16 is guaranteed here but not necessarily LEN >= VL.)
+.if VL >= 32
+ cmp $VL, LEN
+ jae 2f
+ .if VL == 64
+ cmp $32, LEN32
+ jb 1f
+ _prepare_v0 32, %ymm0, %ymm1, BSWAP_MASK_YMM
+ add $32, BUF
+ jmp .Lreduce_256bits_to_128bits\@
+1:
+ .endif
+ _prepare_v0 16, %xmm0, %xmm1, BSWAP_MASK_XMM
+ add $16, BUF
+ vmovdqa OFFSETOF_FOLD_ACROSS_128BIT_CONSTS(CONSTS_PTR), CONSTS_XMM
+ jmp .Lcheck_for_partial_block\@
+2:
+.endif
+ _prepare_v0 VL, V0, V1, BSWAP_MASK
+
+ // Handle VL <= LEN < 4*VL.
+ cmp $4*VL-1, LEN
+ ja .Lfold_4vecs_prepare\@
+ add $VL, BUF
+ // If VL <= LEN < 2*VL, then jump to the code at the end that handles
+ // the reduction from 1 vector. If VL==16 then
+ // fold_across_128bit_consts must be loaded first, as the final
+ // reduction depends on it and it won't be loaded anywhere else.
+ cmp $2*VL-1, LEN32
+.if VL == 16
+ _cond_vex movdqa, OFFSETOF_FOLD_ACROSS_128BIT_CONSTS(CONSTS_PTR), CONSTS_XMM
+.endif
+ jbe .Lreduce_1vec_to_128bits\@
+ // Otherwise 2*VL <= LEN < 4*VL. Load one more vector and jump to the
+ // code at the end that handles the reduction from 2 vectors.
+ _load_data VL, (BUF), BSWAP_MASK, V1
+ add $VL, BUF
+ jmp .Lreduce_2vecs_to_1\@
+
+.Lfold_4vecs_prepare\@:
+ // Load 3 more vectors of data.
+ _load_data VL, 1*VL(BUF), BSWAP_MASK, V1
+ _load_data VL, 2*VL(BUF), BSWAP_MASK, V2
+ _load_data VL, 3*VL(BUF), BSWAP_MASK, V3
+ sub $-4*VL, BUF // Shorter than 'add 4*VL' when VL=32
+ add $-4*VL, LEN // Shorter than 'sub 4*VL' when VL=32
+
+ // While >= 4 vectors of data remain, fold the 4 vectors V0-V3 into the
+ // next 4 vectors of data and write the result back to V0-V3.
+ cmp $4*VL-1, LEN // Shorter than 'cmp 4*VL' when VL=32
+ jbe .Lreduce_4vecs_to_2\@
+ _load_vec_folding_consts 2
+.Lfold_4vecs_loop\@:
+ _fold_vec_mem VL, V0, 0*VL(BUF), CONSTS, BSWAP_MASK, V4, V5
+ _fold_vec_mem VL, V1, 1*VL(BUF), CONSTS, BSWAP_MASK, V4, V5
+ _fold_vec_mem VL, V2, 2*VL(BUF), CONSTS, BSWAP_MASK, V4, V5
+ _fold_vec_mem VL, V3, 3*VL(BUF), CONSTS, BSWAP_MASK, V4, V5
+ sub $-4*VL, BUF
+ add $-4*VL, LEN
+ cmp $4*VL-1, LEN
+ ja .Lfold_4vecs_loop\@
+
+ // Fold V0,V1 into V2,V3 and write the result back to V0,V1.
+ // Then fold two vectors of data, if at least that much remains.
+.Lreduce_4vecs_to_2\@:
+ _load_vec_folding_consts 1
+ _fold_vec V0, V2, CONSTS, V4
+ _fold_vec V1, V3, CONSTS, V4
+ test $2*VL, LEN8
+ jz .Lreduce_2vecs_to_1\@
+ _fold_vec_mem VL, V0, 0*VL(BUF), CONSTS, BSWAP_MASK, V4, V5
+ _fold_vec_mem VL, V1, 1*VL(BUF), CONSTS, BSWAP_MASK, V4, V5
+ sub $-2*VL, BUF
+
+ // Fold V0 into V1 and write the result back to V0.
+ // Then fold one vector of data, if at least that much remains.
+.Lreduce_2vecs_to_1\@:
+ _load_vec_folding_consts 0
+ _fold_vec_final VL, V0, V1, CONSTS, BSWAP_MASK, V4, V5
+
+.Lreduce_1vec_to_128bits\@:
+ // Reduce V0 to 128 bits xmm0.
+.if VL == 64
+ // zmm0 => ymm0
+ vbroadcasti128 OFFSETOF_FOLD_ACROSS_256BIT_CONSTS(CONSTS_PTR), CONSTS_YMM
+ vextracti64x4 $1, %zmm0, %ymm1
+ _fold_vec_final 32, %ymm0, %ymm1, CONSTS_YMM, BSWAP_MASK_YMM, %ymm4, %ymm5
+.endif
+.if VL >= 32
+.Lreduce_256bits_to_128bits\@:
+ // ymm0 => xmm0
+ vmovdqa OFFSETOF_FOLD_ACROSS_128BIT_CONSTS(CONSTS_PTR), CONSTS_XMM
+ vextracti128 $1, %ymm0, %xmm1
+ _fold_vec_final 16, %xmm0, %xmm1, CONSTS_XMM, BSWAP_MASK_XMM, %xmm4, %xmm5
+.endif
+
+.Lcheck_for_partial_block\@:
+ and $15, LEN32
+ jz .Lpartial_block_done\@
+
+ // 1 <= LEN <= 15 data bytes remain. The polynomial is now
+ // A*(x^(8*LEN)) + B, where A = %xmm0 and B is the polynomial of the
+ // remaining LEN bytes. To reduce this to 128 bits without needing fold
+ // constants for each possible LEN, rearrange this expression into
+ // C1*(x^128) + C2, where C1 = floor(A / x^(128 - 8*LEN)) and
+ // C2 = A*x^(8*LEN) + B mod x^128. Then fold C1 into C2, which is just
+ // another fold across 128 bits.
+
+.if !LSB_CRC || AVX_LEVEL == 0
+ // Load the last 16 data bytes.
+ _load_data 16, "-16(BUF,LEN)", BSWAP_MASK_XMM, %xmm1
+.endif // Else will use vpblendvb mem operand later.
+.if !LSB_CRC
+ neg LEN // Needed for indexing shuf_table
+.endif
+
+ // tmp = A*x^(8*LEN) mod x^128
+ // lsb: pshufb by [LEN, LEN+1, ..., 15, -1, -1, ..., -1]
+ // i.e. right-shift by LEN bytes.
+ // msb: pshufb by [-1, -1, ..., -1, 0, 1, ..., 15-LEN]
+ // i.e. left-shift by LEN bytes.
+ _cond_vex movdqu, "OFFSETOF_SHUF_TABLE+16(CONSTS_PTR,LEN)", %xmm3
+ _cond_vex pshufb, %xmm3, %xmm0, %xmm2
+
+ // C1 = floor(A / x^(128 - 8*LEN))
+ // lsb: pshufb by [-1, -1, ..., -1, 0, 1, ..., LEN-1]
+ // i.e. left-shift by 16-LEN bytes.
+ // msb: pshufb by [16-LEN, 16-LEN+1, ..., 15, -1, -1, ..., -1]
+ // i.e. right-shift by 16-LEN bytes.
+ _cond_vex pshufb, "OFFSETOF_SHUF_TABLE+32*!LSB_CRC(CONSTS_PTR,LEN)", \
+ %xmm0, %xmm0, unaligned_mem_tmp=%xmm4
+
+ // C2 = tmp + B. This is just a blend of tmp with the last 16 data
+ // bytes (reflected if msb-first). The blend mask is the shuffle table
+ // that was used to create tmp. 0 selects tmp, and 1 last16databytes.
+.if AVX_LEVEL == 0
+ movdqa %xmm0, %xmm4
+ movdqa %xmm3, %xmm0
+ pblendvb %xmm1, %xmm2 // uses %xmm0 as implicit operand
+ movdqa %xmm4, %xmm0
+.elseif LSB_CRC
+ vpblendvb %xmm3, -16(BUF,LEN), %xmm2, %xmm2
+.else
+ vpblendvb %xmm3, %xmm1, %xmm2, %xmm2
+.endif
+
+ // Fold C1 into C2 and store the 128-bit result in xmm0.
+ _fold_vec %xmm0, %xmm2, CONSTS_XMM, %xmm4
+
+.Lpartial_block_done\@:
+ // Compute the CRC as %xmm0 * x^n mod G. Here %xmm0 means the 128-bit
+ // polynomial stored in %xmm0 (using either lsb-first or msb-first bit
+ // order according to LSB_CRC), and G is the CRC's generator polynomial.
+
+ // First, multiply %xmm0 by x^n and reduce the result to 64+n bits:
+ //
+ // t0 := (x^(64+n) mod G) * floor(%xmm0 / x^64) +
+ // x^n * (%xmm0 mod x^64)
+ //
+ // Store t0 * x^(64-n) in %xmm0. I.e., actually do:
+ //
+ // %xmm0 := ((x^(64+n) mod G) * x^(64-n)) * floor(%xmm0 / x^64) +
+ // x^64 * (%xmm0 mod x^64)
+ //
+ // The extra unreduced factor of x^(64-n) makes floor(t0 / x^n) aligned
+ // to the HI64_TERMS of %xmm0 so that the next pclmulqdq can easily
+ // select it. The 64-bit constant (x^(64+n) mod G) * x^(64-n) in the
+ // msb-first case, or (x^(63+n) mod G) * x^(64-n) in the lsb-first case
+ // (considering the extra factor of x that gets implicitly introduced by
+ // each pclmulqdq when using lsb-first order), is identical to the
+ // constant that was used earlier for folding the LO64_TERMS across 128
+ // bits. Thus it's already available in LO64_TERMS of CONSTS_XMM.
+ _pclmulqdq CONSTS_XMM, LO64_TERMS, %xmm0, HI64_TERMS, %xmm1
+.if LSB_CRC
+ _cond_vex psrldq, $8, %xmm0, %xmm0 // x^64 * (%xmm0 mod x^64)
+.else
+ _cond_vex pslldq, $8, %xmm0, %xmm0 // x^64 * (%xmm0 mod x^64)
+.endif
+ _cond_vex pxor, %xmm1, %xmm0, %xmm0
+ // The HI64_TERMS of %xmm0 now contain floor(t0 / x^n).
+ // The LO64_TERMS of %xmm0 now contain (t0 mod x^n) * x^(64-n).
+
+ // First step of Barrett reduction: Compute floor(t0 / G). This is the
+ // polynomial by which G needs to be multiplied to cancel out the x^n
+ // and higher terms of t0, i.e. to reduce t0 mod G. First do:
+ //
+ // t1 := floor(x^(63+n) / G) * x * floor(t0 / x^n)
+ //
+ // Then the desired value floor(t0 / G) is floor(t1 / x^64). The 63 in
+ // x^(63+n) is the maximum degree of floor(t0 / x^n) and thus the lowest
+ // value that makes enough precision be carried through the calculation.
+ //
+ // The '* x' makes it so the result is floor(t1 / x^64) rather than
+ // floor(t1 / x^63), making it qword-aligned in HI64_TERMS so that it
+ // can be extracted much more easily in the next step. In the lsb-first
+ // case the '* x' happens implicitly. In the msb-first case it must be
+ // done explicitly; floor(x^(63+n) / G) * x is a 65-bit constant, so the
+ // constant passed to pclmulqdq is (floor(x^(63+n) / G) * x) - x^64, and
+ // the multiplication by the x^64 term is handled using a pxor. The
+ // pxor causes the low 64 terms of t1 to be wrong, but they are unused.
+ _cond_vex movdqa, OFFSETOF_BARRETT_REDUCTION_CONSTS(CONSTS_PTR), CONSTS_XMM
+ _pclmulqdq CONSTS_XMM, HI64_TERMS, %xmm0, HI64_TERMS, %xmm1
+.if !LSB_CRC
+ _cond_vex pxor, %xmm0, %xmm1, %xmm1
+.endif
+ // The HI64_TERMS of %xmm1 now contain floor(t1 / x^64) = floor(t0 / G).
+
+ // Second step of Barrett reduction: Cancel out the x^n and higher terms
+ // of t0 by subtracting the needed multiple of G. This gives the CRC:
+ //
+ // crc := t0 - (G * floor(t0 / G))
+ //
+ // But %xmm0 contains t0 * x^(64-n), so it's more convenient to do:
+ //
+ // crc := ((t0 * x^(64-n)) - ((G * x^(64-n)) * floor(t0 / G))) / x^(64-n)
+ //
+ // Furthermore, since the resulting CRC is n-bit, if mod x^n is
+ // explicitly applied to it then the x^n term of G makes no difference
+ // in the result and can be omitted. This helps keep the constant
+ // multiplier in 64 bits in most cases. This gives the following:
+ //
+ // %xmm0 := %xmm0 - (((G - x^n) * x^(64-n)) * floor(t0 / G))
+ // crc := (%xmm0 / x^(64-n)) mod x^n
+ //
+ // In the lsb-first case, each pclmulqdq implicitly introduces
+ // an extra factor of x, so in that case the constant that needs to be
+ // passed to pclmulqdq is actually '(G - x^n) * x^(63-n)' when n <= 63.
+ // For lsb-first CRCs where n=64, the extra factor of x cannot be as
+ // easily avoided. In that case, instead pass '(G - x^n - x^0) / x' to
+ // pclmulqdq and handle the x^0 term (i.e. 1) separately. (All CRC
+ // polynomials have nonzero x^n and x^0 terms.) It works out as: the
+ // CRC has be XORed with the physically low qword of %xmm1, representing
+ // floor(t0 / G). The most efficient way to do that is to move it to
+ // the physically high qword and use a ternlog to combine the two XORs.
+.if LSB_CRC && \n == 64
+ _cond_vex punpcklqdq, %xmm1, %xmm2, %xmm2
+ _pclmulqdq CONSTS_XMM, LO64_TERMS, %xmm1, HI64_TERMS, %xmm1
+ .if AVX_LEVEL < 10
+ _cond_vex pxor, %xmm2, %xmm0, %xmm0
+ _cond_vex pxor, %xmm1, %xmm0, %xmm0
+ .else
+ vpternlogq $0x96, %xmm2, %xmm1, %xmm0
+ .endif
+ _cond_vex "pextrq $1,", %xmm0, %rax // (%xmm0 / x^0) mod x^64
+.else
+ _pclmulqdq CONSTS_XMM, LO64_TERMS, %xmm1, HI64_TERMS, %xmm1
+ _cond_vex pxor, %xmm1, %xmm0, %xmm0
+ .if \n == 8
+ _cond_vex "pextrb $7 + LSB_CRC,", %xmm0, %eax // (%xmm0 / x^56) mod x^8
+ .elseif \n == 16
+ _cond_vex "pextrw $3 + LSB_CRC,", %xmm0, %eax // (%xmm0 / x^48) mod x^16
+ .elseif \n == 32
+ _cond_vex "pextrd $1 + LSB_CRC,", %xmm0, %eax // (%xmm0 / x^32) mod x^32
+ .else // \n == 64 && !LSB_CRC
+ _cond_vex movq, %xmm0, %rax // (%xmm0 / x^0) mod x^64
+ .endif
+.endif
+
+.if VL > 16
+ vzeroupper // Needed when ymm or zmm registers may have been used.
+.endif
+#ifdef __i386__
+ pop CONSTS_PTR
+#endif
+ RET
+.endm
+
+#ifdef CONFIG_AS_VPCLMULQDQ
+#define DEFINE_CRC_PCLMUL_FUNCS(prefix, bits, lsb) \
+SYM_FUNC_START(prefix##_pclmul_sse); \
+ _crc_pclmul n=bits, lsb_crc=lsb, vl=16, avx_level=0; \
+SYM_FUNC_END(prefix##_pclmul_sse); \
+ \
+SYM_FUNC_START(prefix##_vpclmul_avx2); \
+ _crc_pclmul n=bits, lsb_crc=lsb, vl=32, avx_level=2; \
+SYM_FUNC_END(prefix##_vpclmul_avx2); \
+ \
+SYM_FUNC_START(prefix##_vpclmul_avx10_256); \
+ _crc_pclmul n=bits, lsb_crc=lsb, vl=32, avx_level=10; \
+SYM_FUNC_END(prefix##_vpclmul_avx10_256); \
+ \
+SYM_FUNC_START(prefix##_vpclmul_avx10_512); \
+ _crc_pclmul n=bits, lsb_crc=lsb, vl=64, avx_level=10; \
+SYM_FUNC_END(prefix##_vpclmul_avx10_512);
+#else
+#define DEFINE_CRC_PCLMUL_FUNCS(prefix, bits, lsb) \
+SYM_FUNC_START(prefix##_pclmul_sse); \
+ _crc_pclmul n=bits, lsb_crc=lsb, vl=16, avx_level=0; \
+SYM_FUNC_END(prefix##_pclmul_sse);
+#endif // !CONFIG_AS_VPCLMULQDQ
diff --git a/arch/x86/lib/crc-pclmul-template.h b/arch/x86/lib/crc-pclmul-template.h
new file mode 100644
index 0000000000000..7b89f0edbc179
--- /dev/null
+++ b/arch/x86/lib/crc-pclmul-template.h
@@ -0,0 +1,81 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+/*
+ * Macros for accessing the [V]PCLMULQDQ-based CRC functions that are
+ * instantiated by crc-pclmul-template.S
+ *
+ * Copyright 2025 Google LLC
+ *
+ * Author: Eric Biggers <ebiggers@...gle.com>
+ */
+#ifndef _CRC_PCLMUL_TEMPLATE_H
+#define _CRC_PCLMUL_TEMPLATE_H
+
+#include <asm/cpufeatures.h>
+#include <asm/simd.h>
+#include <crypto/internal/simd.h>
+#include <linux/static_call.h>
+#include "crc-pclmul-consts.h"
+
+#define DECLARE_CRC_PCLMUL_FUNCS(prefix, crc_t) \
+crc_t prefix##_pclmul_sse(crc_t crc, const u8 *p, size_t len, \
+ const void *consts_ptr); \
+crc_t prefix##_vpclmul_avx2(crc_t crc, const u8 *p, size_t len, \
+ const void *consts_ptr); \
+crc_t prefix##_vpclmul_avx10_256(crc_t crc, const u8 *p, size_t len, \
+ const void *consts_ptr); \
+crc_t prefix##_vpclmul_avx10_512(crc_t crc, const u8 *p, size_t len, \
+ const void *consts_ptr); \
+DEFINE_STATIC_CALL(prefix##_pclmul, prefix##_pclmul_sse)
+
+#define INIT_CRC_PCLMUL(prefix) \
+do { \
+ if (IS_ENABLED(CONFIG_AS_VPCLMULQDQ) && \
+ boot_cpu_has(X86_FEATURE_VPCLMULQDQ) && \
+ boot_cpu_has(X86_FEATURE_AVX2) && \
+ cpu_has_xfeatures(XFEATURE_MASK_YMM, NULL)) { \
+ if (boot_cpu_has(X86_FEATURE_AVX512BW) && \
+ boot_cpu_has(X86_FEATURE_AVX512VL) && \
+ cpu_has_xfeatures(XFEATURE_MASK_AVX512, NULL)) { \
+ if (boot_cpu_has(X86_FEATURE_PREFER_YMM)) \
+ static_call_update(prefix##_pclmul, \
+ prefix##_vpclmul_avx10_256); \
+ else \
+ static_call_update(prefix##_pclmul, \
+ prefix##_vpclmul_avx10_512); \
+ } else { \
+ static_call_update(prefix##_pclmul, \
+ prefix##_vpclmul_avx2); \
+ } \
+ } \
+} while (0)
+
+/*
+ * Call a [V]PCLMULQDQ optimized CRC function if the data length is at least 16
+ * bytes, the CPU has PCLMULQDQ support, and the current context may use SIMD.
+ *
+ * 16 bytes is the minimum length supported by the [V]PCLMULQDQ functions.
+ * There is overhead associated with kernel_fpu_begin() and kernel_fpu_end(),
+ * varying by CPU and factors such as which parts of the "FPU" state userspace
+ * has touched, which could result in a larger cutoff being better. Indeed, a
+ * larger cutoff is usually better for a *single* message. However, the
+ * overhead of the FPU section gets amortized if multiple FPU sections get
+ * executed before returning to userspace, since the XSAVE and XRSTOR occur only
+ * once. Considering that and the fact that the [V]PCLMULQDQ code is lighter on
+ * the dcache than the table-based code is, a 16-byte cutoff seems to work well.
+ */
+#define CRC_PCLMUL(crc, p, len, prefix, consts, have_pclmulqdq) \
+do { \
+ if ((len) >= 16 && static_branch_likely(&(have_pclmulqdq)) && \
+ crypto_simd_usable()) { \
+ const void *consts_ptr; \
+ \
+ consts_ptr = (consts).fold_across_128_bits_consts; \
+ kernel_fpu_begin(); \
+ crc = static_call(prefix##_pclmul)((crc), (p), (len), \
+ consts_ptr); \
+ kernel_fpu_end(); \
+ return crc; \
+ } \
+} while (0)
+
+#endif /* _CRC_PCLMUL_TEMPLATE_H */
--
2.48.1
Powered by blists - more mailing lists