lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <af3b230c-7aeb-44bf-8db3-3538dfb1b93c@redhat.com>
Date: Tue, 18 Feb 2025 16:44:28 +0100
From: David Hildenbrand <david@...hat.com>
To: Zi Yan <ziy@...dia.com>
Cc: linux-mm@...ck.org, Andrew Morton <akpm@...ux-foundation.org>,
 "Kirill A . Shutemov" <kirill.shutemov@...ux.intel.com>,
 "Matthew Wilcox (Oracle)" <willy@...radead.org>,
 Ryan Roberts <ryan.roberts@....com>, Hugh Dickins <hughd@...gle.com>,
 Yang Shi <yang@...amperecomputing.com>, Miaohe Lin <linmiaohe@...wei.com>,
 Kefeng Wang <wangkefeng.wang@...wei.com>, Yu Zhao <yuzhao@...gle.com>,
 John Hubbard <jhubbard@...dia.com>,
 Baolin Wang <baolin.wang@...ux.alibaba.com>,
 linux-kselftest@...r.kernel.org, linux-kernel@...r.kernel.org
Subject: Re: [PATCH v7 1/8] xarray: add xas_try_split() to split a multi-index
 entry.

On 17.02.25 23:05, Zi Yan wrote:
> On 17 Feb 2025, at 16:44, David Hildenbrand wrote:
> 
>> On 11.02.25 16:50, Zi Yan wrote:
>>> It is a preparation patch for non-uniform folio split, which always split
>>> a folio into half iteratively, and minimal xarray entry split.
>>>
>>> Currently, xas_split_alloc() and xas_split() always split all slots from a
>>> multi-index entry. They cost the same number of xa_node as the to-be-split
>>> slots. For example, to split an order-9 entry, which takes 2^(9-6)=8
>>> slots, assuming XA_CHUNK_SHIFT is 6 (!CONFIG_BASE_SMALL), 8 xa_node are
>>> needed. Instead xas_try_split() is intended to be used iteratively to split
>>> the order-9 entry into 2 order-8 entries, then split one order-8 entry,
>>> based on the given index, to 2 order-7 entries, ..., and split one order-1
>>> entry to 2 order-0 entries. When splitting the order-6 entry and a new
>>> xa_node is needed, xas_try_split() will try to allocate one if possible.
>>> As a result, xas_try_split() would only need one xa_node instead of 8.
>>>
>>> When a new xa_node is needed during the split, xas_try_split() can try to
>>> allocate one but no more. -ENOMEM will be return if a node cannot be
>>> allocated. -EINVAL will be return if a sibling node is split or
>>> cascade split happens, where two or more new nodes are needed, and these
>>> are not supported by xas_try_split().
>>>
>>> xas_split_alloc() and xas_split() split an order-9 to order-0:
>>>
>>>            ---------------------------------
>>>            |   |   |   |   |   |   |   |   |
>>>            | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
>>>            |   |   |   |   |   |   |   |   |
>>>            ---------------------------------
>>>              |   |                   |   |
>>>        -------   ---               ---   -------
>>>        |           |     ...       |           |
>>>        V           V               V           V
>>> ----------- -----------     ----------- -----------
>>> | xa_node | | xa_node | ... | xa_node | | xa_node |
>>> ----------- -----------     ----------- -----------
>>>
>>> xas_try_split() splits an order-9 to order-0:
>>>      ---------------------------------
>>>      |   |   |   |   |   |   |   |   |
>>>      | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
>>>      |   |   |   |   |   |   |   |   |
>>>      ---------------------------------
>>>        |
>>>        |
>>>        V
>>> -----------
>>> | xa_node |
>>> -----------
>>>
>>> Signed-off-by: Zi Yan <ziy@...dia.com>
>>> ---
>>>    Documentation/core-api/xarray.rst |  14 ++-
>>>    include/linux/xarray.h            |   7 ++
>>>    lib/test_xarray.c                 |  47 +++++++++++
>>>    lib/xarray.c                      | 136 ++++++++++++++++++++++++++----
>>>    tools/testing/radix-tree/Makefile |   1 +
>>>    5 files changed, 188 insertions(+), 17 deletions(-)
>>>
>>> diff --git a/Documentation/core-api/xarray.rst b/Documentation/core-api/xarray.rst
>>> index f6a3eef4fe7f..c6c91cbd0c3c 100644
>>> --- a/Documentation/core-api/xarray.rst
>>> +++ b/Documentation/core-api/xarray.rst
>>> @@ -489,7 +489,19 @@ Storing ``NULL`` into any index of a multi-index entry will set the
>>>    entry at every index to ``NULL`` and dissolve the tie.  A multi-index
>>>    entry can be split into entries occupying smaller ranges by calling
>>>    xas_split_alloc() without the xa_lock held, followed by taking the lock
>>> -and calling xas_split().
>>> +and calling xas_split() or calling xas_try_split() with xa_lock. The
>>> +difference between xas_split_alloc()+xas_split() and xas_try_alloc() is
>>> +that xas_split_alloc() + xas_split() split the entry from the original
>>> +order to the new order in one shot uniformly, whereas xas_try_split()
>>> +iteratively splits the entry containing the index non-uniformly.
>>> +For example, to split an order-9 entry, which takes 2^(9-6)=8 slots,
>>> +assuming ``XA_CHUNK_SHIFT`` is 6, xas_split_alloc() + xas_split() need
>>> +8 xa_node. xas_try_split() splits the order-9 entry into
>>> +2 order-8 entries, then split one order-8 entry, based on the given index,
>>> +to 2 order-7 entries, ..., and split one order-1 entry to 2 order-0 entries.
>>> +When splitting the order-6 entry and a new xa_node is needed, xas_try_split()
>>> +will try to allocate one if possible. As a result, xas_try_split() would only
>>> +need 1 xa_node instead of 8.
>>>     Functions and structures
>>>    ========================
>>> diff --git a/include/linux/xarray.h b/include/linux/xarray.h
>>> index 0b618ec04115..9eb8c7425090 100644
>>> --- a/include/linux/xarray.h
>>> +++ b/include/linux/xarray.h
>>> @@ -1555,6 +1555,8 @@ int xa_get_order(struct xarray *, unsigned long index);
>>>    int xas_get_order(struct xa_state *xas);
>>>    void xas_split(struct xa_state *, void *entry, unsigned int order);
>>>    void xas_split_alloc(struct xa_state *, void *entry, unsigned int order, gfp_t);
>>> +void xas_try_split(struct xa_state *xas, void *entry, unsigned int order,
>>> +		gfp_t gfp);
>>>    #else
>>>    static inline int xa_get_order(struct xarray *xa, unsigned long index)
>>>    {
>>> @@ -1576,6 +1578,11 @@ static inline void xas_split_alloc(struct xa_state *xas, void *entry,
>>>    		unsigned int order, gfp_t gfp)
>>>    {
>>>    }
>>> +
>>> +static inline void xas_try_split(struct xa_state *xas, void *entry,
>>> +		unsigned int order, gfp_t gfp)
>>> +{
>>> +}
>>>    #endif
>>>     /**
>>> diff --git a/lib/test_xarray.c b/lib/test_xarray.c
>>> index 6932a26f4927..598ca38a2f5b 100644
>>> --- a/lib/test_xarray.c
>>> +++ b/lib/test_xarray.c
>>> @@ -1857,6 +1857,49 @@ static void check_split_1(struct xarray *xa, unsigned long index,
>>>    	xa_destroy(xa);
>>>    }
>>>   +static void check_split_2(struct xarray *xa, unsigned long index,
>>> +				unsigned int order, unsigned int new_order)
>>> +{
>>> +	XA_STATE_ORDER(xas, xa, index, new_order);
>>> +	unsigned int i, found;
>>> +	void *entry;
>>> +
>>> +	xa_store_order(xa, index, order, xa, GFP_KERNEL);
>>> +	xa_set_mark(xa, index, XA_MARK_1);
>>> +
>>> +	xas_lock(&xas);
>>> +	xas_try_halve(&xas, xa, order, GFP_KERNEL);
>>> +	if (((new_order / XA_CHUNK_SHIFT) < (order / XA_CHUNK_SHIFT)) &&
>>> +	    new_order < order - 1) {
>>> +		XA_BUG_ON(xa, !xas_error(&xas) || xas_error(&xas) != -EINVAL);
>>> +		xas_unlock(&xas);
>>> +		goto out;
>>> +	}
>>> +	for (i = 0; i < (1 << order); i += (1 << new_order))
>>> +		__xa_store(xa, index + i, xa_mk_index(index + i), 0);
>>> +	xas_unlock(&xas);
>>> +
>>> +	for (i = 0; i < (1 << order); i++) {
>>> +		unsigned int val = index + (i & ~((1 << new_order) - 1));
>>> +		XA_BUG_ON(xa, xa_load(xa, index + i) != xa_mk_index(val));
>>> +	}
>>> +
>>> +	xa_set_mark(xa, index, XA_MARK_0);
>>> +	XA_BUG_ON(xa, !xa_get_mark(xa, index, XA_MARK_0));
>>> +
>>> +	xas_set_order(&xas, index, 0);
>>> +	found = 0;
>>> +	rcu_read_lock();
>>> +	xas_for_each_marked(&xas, entry, ULONG_MAX, XA_MARK_1) {
>>> +		found++;
>>> +		XA_BUG_ON(xa, xa_is_internal(entry));
>>> +	}
>>> +	rcu_read_unlock();
>>> +	XA_BUG_ON(xa, found != 1 << (order - new_order));
>>> +out:
>>> +	xa_destroy(xa);
>>> +}
>>> +
>>>    static noinline void check_split(struct xarray *xa)
>>>    {
>>>    	unsigned int order, new_order;
>>> @@ -1868,6 +1911,10 @@ static noinline void check_split(struct xarray *xa)
>>>    			check_split_1(xa, 0, order, new_order);
>>>    			check_split_1(xa, 1UL << order, order, new_order);
>>>    			check_split_1(xa, 3UL << order, order, new_order);
>>> +
>>> +			check_split_2(xa, 0, order, new_order);
>>> +			check_split_2(xa, 1UL << order, order, new_order);
>>> +			check_split_2(xa, 3UL << order, order, new_order);
>>>    		}
>>>    	}
>>>    }
>>> diff --git a/lib/xarray.c b/lib/xarray.c
>>> index 116e9286c64e..c38beca77830 100644
>>> --- a/lib/xarray.c
>>> +++ b/lib/xarray.c
>>> @@ -1007,6 +1007,31 @@ static void node_set_marks(struct xa_node *node, unsigned int offset,
>>>    	}
>>>    }
>>>   +static struct xa_node *__xas_alloc_node_for_split(struct xa_state *xas,
>>> +		void *entry, gfp_t gfp)
>>> +{
>>> +	unsigned int i;
>>> +	void *sibling = NULL;
>>> +	struct xa_node *node;
>>> +	unsigned int mask = xas->xa_sibs;
>>> +
>>> +	node = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
>>> +	if (!node)
>>> +		return NULL;
>>> +	node->array = xas->xa;
>>> +	for (i = 0; i < XA_CHUNK_SIZE; i++) {
>>> +		if ((i & mask) == 0) {
>>> +			RCU_INIT_POINTER(node->slots[i], entry);
>>> +			sibling = xa_mk_sibling(i);
>>> +		} else {
>>> +			RCU_INIT_POINTER(node->slots[i], sibling);
>>> +		}
>>> +	}
>>> +	RCU_INIT_POINTER(node->parent, xas->xa_alloc);
>>> +
>>> +	return node;
>>> +}
>>> +
>>>    /**
>>>     * xas_split_alloc() - Allocate memory for splitting an entry.
>>>     * @xas: XArray operation state.
>>> @@ -1025,7 +1050,6 @@ void xas_split_alloc(struct xa_state *xas, void *entry, unsigned int order,
>>>    		gfp_t gfp)
>>>    {
>>>    	unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1;
>>> -	unsigned int mask = xas->xa_sibs;
>>>     	/* XXX: no support for splitting really large entries yet */
>>>    	if (WARN_ON(xas->xa_shift + 2 * XA_CHUNK_SHIFT <= order))
>>> @@ -1034,23 +1058,9 @@ void xas_split_alloc(struct xa_state *xas, void *entry, unsigned int order,
>>>    		return;
>>>     	do {
>>> -		unsigned int i;
>>> -		void *sibling = NULL;
>>> -		struct xa_node *node;
>>> -
>>> -		node = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
>>> +		struct xa_node *node = __xas_alloc_node_for_split(xas, entry, gfp);
>>>    		if (!node)
>>>    			goto nomem;
>>> -		node->array = xas->xa;
>>> -		for (i = 0; i < XA_CHUNK_SIZE; i++) {
>>> -			if ((i & mask) == 0) {
>>> -				RCU_INIT_POINTER(node->slots[i], entry);
>>> -				sibling = xa_mk_sibling(i);
>>> -			} else {
>>> -				RCU_INIT_POINTER(node->slots[i], sibling);
>>> -			}
>>> -		}
>>> -		RCU_INIT_POINTER(node->parent, xas->xa_alloc);
>>>    		xas->xa_alloc = node;
>>>    	} while (sibs-- > 0);
>>>   @@ -1122,6 +1132,100 @@ void xas_split(struct xa_state *xas, void *entry, unsigned int order)
>>>    	xas_update(xas, node);
>>>    }
>>>    EXPORT_SYMBOL_GPL(xas_split);
>>> +
>>> +/**
>>> + * xas_try_split() - Try to split a multi-index entry.
>>> + * @xas: XArray operation state.
>>> + * @entry: New entry to store in the array.
>>> + * @order: Current entry order.
>>> + * @gfp: Memory allocation flags.
>>> + *
>>> + * The size of the new entries is set in @xas.  The value in @entry is
>>> + * copied to all the replacement entries. If and only if one xa_node needs to
>>> + * be allocated, the function will use @gfp to get one. If more xa_node are
>>> + * needed, the function gives EINVAL error.
>>> + *
>>> + * Context: Any context.  The caller should hold the xa_lock.
>>> + */
>>> +void xas_try_split(struct xa_state *xas, void *entry, unsigned int order,
>>> +		gfp_t gfp)
>>> +{
>>> +	unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1;
>>> +	unsigned int offset, marks;
>>> +	struct xa_node *node;
>>> +	void *curr = xas_load(xas);
>>> +	int values = 0;
>>> +
>>> +	node = xas->xa_node;
>>> +	if (xas_top(node))
>>> +		return;
>>> +
>>> +	if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
>>> +		gfp |= __GFP_ACCOUNT;
>>> +
>>> +	marks = node_get_marks(node, xas->xa_offset);
>>> +
>>> +	offset = xas->xa_offset + sibs;
>>> +	do {
>>> +		if (xas->xa_shift < node->shift) {
>>> +			struct xa_node *child = xas->xa_alloc;
>>> +			unsigned int expected_sibs =
>>> +				(1 << ((order - 1) % XA_CHUNK_SHIFT)) - 1;
>>> +
>>> +			/*
>>> +			 * No support for splitting sibling entries
>>> +			 * (horizontally) or cascade split (vertically), which
>>> +			 * requires two or more new xa_nodes.
>>> +			 * Since if one xa_node allocation fails,
>>> +			 * it is hard to free the prior allocations.
>>> +			 */
>>> +			if (sibs || xas->xa_sibs != expected_sibs) {
>>> +				xas_destroy(xas);
>>> +				xas_set_err(xas, -EINVAL);
>>> +				return;
>>> +			}
>>> +
>>> +			if (!child) {
>>> +				child = __xas_alloc_node_for_split(xas, entry,
>>> +						gfp);
>>> +				if (!child) {
>>> +					xas_destroy(xas);
>>> +					xas_set_err(xas, -ENOMEM);
>>> +					return;
>>> +				}
>>> +			}
>>
>> No expert on this, just wondering ...
>>
>> ... what is the effect if we halfway-through fail the split? Is it okay to leave that "partially split" thing in place? Can callers deal with that?
> 
> Good question.
> 

Let me rephrase: In __split_unmapped_folio(), we call xas_try_split(). 
If that fails, we stop the split and effectively skip over the 
__split_folio_to_order(). The folio remains unsplit (no order change: 
old_order).

xas_try_split() was instructed to split from old_order -> split_order.

xas_try_split() documents that: "The value in @entry is copied to all 
the replacement entries.", meaning after the split, all entries will be 
pointing at the folio.

Now, can it happen that xas_try_split() would ever perform a partial 
split in any way, when invoked from __split_unmapped_folio(), such that 
we run into the do { } while(); loop and fail with -ENOMEM after already 
having performed changes -- xas_update().

Or is that simply impossible?

Maybe it's just the do { } while(); loop in there that is confusing me. 
(again, no expert)

> xas_try_split() imposes what kind of split it does and is usually used to
> split from order N to order N-1:

You mean that old_order -> split_order will in the case of 
__split_unmapped_folio() always be a difference of 1?

> 
> 1. when N is a multiplier of XA_CHUNK_SHIFT, a new xa_node is needed, so
> either child (namely xas->xa_alloc) is not NULL, meaning someone called
> xa_nomem() to allocate a xa_node before xas_try_split() or child is NULL
> and an allocation is needed. If child is still NULL after the allocation,
> meaning we are out of memory, no split is done;
> 
> 2. when N is not, no new xa_node is needed, xas_try_split() just rewrites
> existing slot values to perform the split (the code after the hunk above).
> No fail will happen. For this split, since no new xa_node is needed,
> the caller is actually allowed to split from N to a value smaller than
> N-1 as long as N-1 is >= (N - N % XA_CHUNK_SHIFT).
> 
> 
> Various checks make sure xas_try_split() only sees the two above situation:
> 
> a. "xas->xa_shift < node->shift" means the split crosses XA_CHUNK_SHIFT,
> at least 1 new xa_node is needed; the else branch only handles the case
> 2 above;
> 
> b. for the then branch the "if (sibs || xas->xa_sibs != expected_sibs)"
> check makes sure N is a multiplier of XA_CHUNK_SHIFT and the new order
> has to be N-1. In "if (sibs || xas->xa_sibs != expected_sibs)",
> "sibs != 0" means the from order N covers more than 1 slot, so more than 1
> new xa_node is needed, "xas->xa_sibs != expected_sibs" makes sure
> the new order is N-1 (you can see it from how expected_sibs is assigned).

Thanks!

> 
> Let me know if you have any other question.

Thanks for the details!

-- 
Cheers,

David / dhildenb


Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ