[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <af3b230c-7aeb-44bf-8db3-3538dfb1b93c@redhat.com>
Date: Tue, 18 Feb 2025 16:44:28 +0100
From: David Hildenbrand <david@...hat.com>
To: Zi Yan <ziy@...dia.com>
Cc: linux-mm@...ck.org, Andrew Morton <akpm@...ux-foundation.org>,
"Kirill A . Shutemov" <kirill.shutemov@...ux.intel.com>,
"Matthew Wilcox (Oracle)" <willy@...radead.org>,
Ryan Roberts <ryan.roberts@....com>, Hugh Dickins <hughd@...gle.com>,
Yang Shi <yang@...amperecomputing.com>, Miaohe Lin <linmiaohe@...wei.com>,
Kefeng Wang <wangkefeng.wang@...wei.com>, Yu Zhao <yuzhao@...gle.com>,
John Hubbard <jhubbard@...dia.com>,
Baolin Wang <baolin.wang@...ux.alibaba.com>,
linux-kselftest@...r.kernel.org, linux-kernel@...r.kernel.org
Subject: Re: [PATCH v7 1/8] xarray: add xas_try_split() to split a multi-index
entry.
On 17.02.25 23:05, Zi Yan wrote:
> On 17 Feb 2025, at 16:44, David Hildenbrand wrote:
>
>> On 11.02.25 16:50, Zi Yan wrote:
>>> It is a preparation patch for non-uniform folio split, which always split
>>> a folio into half iteratively, and minimal xarray entry split.
>>>
>>> Currently, xas_split_alloc() and xas_split() always split all slots from a
>>> multi-index entry. They cost the same number of xa_node as the to-be-split
>>> slots. For example, to split an order-9 entry, which takes 2^(9-6)=8
>>> slots, assuming XA_CHUNK_SHIFT is 6 (!CONFIG_BASE_SMALL), 8 xa_node are
>>> needed. Instead xas_try_split() is intended to be used iteratively to split
>>> the order-9 entry into 2 order-8 entries, then split one order-8 entry,
>>> based on the given index, to 2 order-7 entries, ..., and split one order-1
>>> entry to 2 order-0 entries. When splitting the order-6 entry and a new
>>> xa_node is needed, xas_try_split() will try to allocate one if possible.
>>> As a result, xas_try_split() would only need one xa_node instead of 8.
>>>
>>> When a new xa_node is needed during the split, xas_try_split() can try to
>>> allocate one but no more. -ENOMEM will be return if a node cannot be
>>> allocated. -EINVAL will be return if a sibling node is split or
>>> cascade split happens, where two or more new nodes are needed, and these
>>> are not supported by xas_try_split().
>>>
>>> xas_split_alloc() and xas_split() split an order-9 to order-0:
>>>
>>> ---------------------------------
>>> | | | | | | | | |
>>> | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
>>> | | | | | | | | |
>>> ---------------------------------
>>> | | | |
>>> ------- --- --- -------
>>> | | ... | |
>>> V V V V
>>> ----------- ----------- ----------- -----------
>>> | xa_node | | xa_node | ... | xa_node | | xa_node |
>>> ----------- ----------- ----------- -----------
>>>
>>> xas_try_split() splits an order-9 to order-0:
>>> ---------------------------------
>>> | | | | | | | | |
>>> | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
>>> | | | | | | | | |
>>> ---------------------------------
>>> |
>>> |
>>> V
>>> -----------
>>> | xa_node |
>>> -----------
>>>
>>> Signed-off-by: Zi Yan <ziy@...dia.com>
>>> ---
>>> Documentation/core-api/xarray.rst | 14 ++-
>>> include/linux/xarray.h | 7 ++
>>> lib/test_xarray.c | 47 +++++++++++
>>> lib/xarray.c | 136 ++++++++++++++++++++++++++----
>>> tools/testing/radix-tree/Makefile | 1 +
>>> 5 files changed, 188 insertions(+), 17 deletions(-)
>>>
>>> diff --git a/Documentation/core-api/xarray.rst b/Documentation/core-api/xarray.rst
>>> index f6a3eef4fe7f..c6c91cbd0c3c 100644
>>> --- a/Documentation/core-api/xarray.rst
>>> +++ b/Documentation/core-api/xarray.rst
>>> @@ -489,7 +489,19 @@ Storing ``NULL`` into any index of a multi-index entry will set the
>>> entry at every index to ``NULL`` and dissolve the tie. A multi-index
>>> entry can be split into entries occupying smaller ranges by calling
>>> xas_split_alloc() without the xa_lock held, followed by taking the lock
>>> -and calling xas_split().
>>> +and calling xas_split() or calling xas_try_split() with xa_lock. The
>>> +difference between xas_split_alloc()+xas_split() and xas_try_alloc() is
>>> +that xas_split_alloc() + xas_split() split the entry from the original
>>> +order to the new order in one shot uniformly, whereas xas_try_split()
>>> +iteratively splits the entry containing the index non-uniformly.
>>> +For example, to split an order-9 entry, which takes 2^(9-6)=8 slots,
>>> +assuming ``XA_CHUNK_SHIFT`` is 6, xas_split_alloc() + xas_split() need
>>> +8 xa_node. xas_try_split() splits the order-9 entry into
>>> +2 order-8 entries, then split one order-8 entry, based on the given index,
>>> +to 2 order-7 entries, ..., and split one order-1 entry to 2 order-0 entries.
>>> +When splitting the order-6 entry and a new xa_node is needed, xas_try_split()
>>> +will try to allocate one if possible. As a result, xas_try_split() would only
>>> +need 1 xa_node instead of 8.
>>> Functions and structures
>>> ========================
>>> diff --git a/include/linux/xarray.h b/include/linux/xarray.h
>>> index 0b618ec04115..9eb8c7425090 100644
>>> --- a/include/linux/xarray.h
>>> +++ b/include/linux/xarray.h
>>> @@ -1555,6 +1555,8 @@ int xa_get_order(struct xarray *, unsigned long index);
>>> int xas_get_order(struct xa_state *xas);
>>> void xas_split(struct xa_state *, void *entry, unsigned int order);
>>> void xas_split_alloc(struct xa_state *, void *entry, unsigned int order, gfp_t);
>>> +void xas_try_split(struct xa_state *xas, void *entry, unsigned int order,
>>> + gfp_t gfp);
>>> #else
>>> static inline int xa_get_order(struct xarray *xa, unsigned long index)
>>> {
>>> @@ -1576,6 +1578,11 @@ static inline void xas_split_alloc(struct xa_state *xas, void *entry,
>>> unsigned int order, gfp_t gfp)
>>> {
>>> }
>>> +
>>> +static inline void xas_try_split(struct xa_state *xas, void *entry,
>>> + unsigned int order, gfp_t gfp)
>>> +{
>>> +}
>>> #endif
>>> /**
>>> diff --git a/lib/test_xarray.c b/lib/test_xarray.c
>>> index 6932a26f4927..598ca38a2f5b 100644
>>> --- a/lib/test_xarray.c
>>> +++ b/lib/test_xarray.c
>>> @@ -1857,6 +1857,49 @@ static void check_split_1(struct xarray *xa, unsigned long index,
>>> xa_destroy(xa);
>>> }
>>> +static void check_split_2(struct xarray *xa, unsigned long index,
>>> + unsigned int order, unsigned int new_order)
>>> +{
>>> + XA_STATE_ORDER(xas, xa, index, new_order);
>>> + unsigned int i, found;
>>> + void *entry;
>>> +
>>> + xa_store_order(xa, index, order, xa, GFP_KERNEL);
>>> + xa_set_mark(xa, index, XA_MARK_1);
>>> +
>>> + xas_lock(&xas);
>>> + xas_try_halve(&xas, xa, order, GFP_KERNEL);
>>> + if (((new_order / XA_CHUNK_SHIFT) < (order / XA_CHUNK_SHIFT)) &&
>>> + new_order < order - 1) {
>>> + XA_BUG_ON(xa, !xas_error(&xas) || xas_error(&xas) != -EINVAL);
>>> + xas_unlock(&xas);
>>> + goto out;
>>> + }
>>> + for (i = 0; i < (1 << order); i += (1 << new_order))
>>> + __xa_store(xa, index + i, xa_mk_index(index + i), 0);
>>> + xas_unlock(&xas);
>>> +
>>> + for (i = 0; i < (1 << order); i++) {
>>> + unsigned int val = index + (i & ~((1 << new_order) - 1));
>>> + XA_BUG_ON(xa, xa_load(xa, index + i) != xa_mk_index(val));
>>> + }
>>> +
>>> + xa_set_mark(xa, index, XA_MARK_0);
>>> + XA_BUG_ON(xa, !xa_get_mark(xa, index, XA_MARK_0));
>>> +
>>> + xas_set_order(&xas, index, 0);
>>> + found = 0;
>>> + rcu_read_lock();
>>> + xas_for_each_marked(&xas, entry, ULONG_MAX, XA_MARK_1) {
>>> + found++;
>>> + XA_BUG_ON(xa, xa_is_internal(entry));
>>> + }
>>> + rcu_read_unlock();
>>> + XA_BUG_ON(xa, found != 1 << (order - new_order));
>>> +out:
>>> + xa_destroy(xa);
>>> +}
>>> +
>>> static noinline void check_split(struct xarray *xa)
>>> {
>>> unsigned int order, new_order;
>>> @@ -1868,6 +1911,10 @@ static noinline void check_split(struct xarray *xa)
>>> check_split_1(xa, 0, order, new_order);
>>> check_split_1(xa, 1UL << order, order, new_order);
>>> check_split_1(xa, 3UL << order, order, new_order);
>>> +
>>> + check_split_2(xa, 0, order, new_order);
>>> + check_split_2(xa, 1UL << order, order, new_order);
>>> + check_split_2(xa, 3UL << order, order, new_order);
>>> }
>>> }
>>> }
>>> diff --git a/lib/xarray.c b/lib/xarray.c
>>> index 116e9286c64e..c38beca77830 100644
>>> --- a/lib/xarray.c
>>> +++ b/lib/xarray.c
>>> @@ -1007,6 +1007,31 @@ static void node_set_marks(struct xa_node *node, unsigned int offset,
>>> }
>>> }
>>> +static struct xa_node *__xas_alloc_node_for_split(struct xa_state *xas,
>>> + void *entry, gfp_t gfp)
>>> +{
>>> + unsigned int i;
>>> + void *sibling = NULL;
>>> + struct xa_node *node;
>>> + unsigned int mask = xas->xa_sibs;
>>> +
>>> + node = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
>>> + if (!node)
>>> + return NULL;
>>> + node->array = xas->xa;
>>> + for (i = 0; i < XA_CHUNK_SIZE; i++) {
>>> + if ((i & mask) == 0) {
>>> + RCU_INIT_POINTER(node->slots[i], entry);
>>> + sibling = xa_mk_sibling(i);
>>> + } else {
>>> + RCU_INIT_POINTER(node->slots[i], sibling);
>>> + }
>>> + }
>>> + RCU_INIT_POINTER(node->parent, xas->xa_alloc);
>>> +
>>> + return node;
>>> +}
>>> +
>>> /**
>>> * xas_split_alloc() - Allocate memory for splitting an entry.
>>> * @xas: XArray operation state.
>>> @@ -1025,7 +1050,6 @@ void xas_split_alloc(struct xa_state *xas, void *entry, unsigned int order,
>>> gfp_t gfp)
>>> {
>>> unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1;
>>> - unsigned int mask = xas->xa_sibs;
>>> /* XXX: no support for splitting really large entries yet */
>>> if (WARN_ON(xas->xa_shift + 2 * XA_CHUNK_SHIFT <= order))
>>> @@ -1034,23 +1058,9 @@ void xas_split_alloc(struct xa_state *xas, void *entry, unsigned int order,
>>> return;
>>> do {
>>> - unsigned int i;
>>> - void *sibling = NULL;
>>> - struct xa_node *node;
>>> -
>>> - node = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
>>> + struct xa_node *node = __xas_alloc_node_for_split(xas, entry, gfp);
>>> if (!node)
>>> goto nomem;
>>> - node->array = xas->xa;
>>> - for (i = 0; i < XA_CHUNK_SIZE; i++) {
>>> - if ((i & mask) == 0) {
>>> - RCU_INIT_POINTER(node->slots[i], entry);
>>> - sibling = xa_mk_sibling(i);
>>> - } else {
>>> - RCU_INIT_POINTER(node->slots[i], sibling);
>>> - }
>>> - }
>>> - RCU_INIT_POINTER(node->parent, xas->xa_alloc);
>>> xas->xa_alloc = node;
>>> } while (sibs-- > 0);
>>> @@ -1122,6 +1132,100 @@ void xas_split(struct xa_state *xas, void *entry, unsigned int order)
>>> xas_update(xas, node);
>>> }
>>> EXPORT_SYMBOL_GPL(xas_split);
>>> +
>>> +/**
>>> + * xas_try_split() - Try to split a multi-index entry.
>>> + * @xas: XArray operation state.
>>> + * @entry: New entry to store in the array.
>>> + * @order: Current entry order.
>>> + * @gfp: Memory allocation flags.
>>> + *
>>> + * The size of the new entries is set in @xas. The value in @entry is
>>> + * copied to all the replacement entries. If and only if one xa_node needs to
>>> + * be allocated, the function will use @gfp to get one. If more xa_node are
>>> + * needed, the function gives EINVAL error.
>>> + *
>>> + * Context: Any context. The caller should hold the xa_lock.
>>> + */
>>> +void xas_try_split(struct xa_state *xas, void *entry, unsigned int order,
>>> + gfp_t gfp)
>>> +{
>>> + unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1;
>>> + unsigned int offset, marks;
>>> + struct xa_node *node;
>>> + void *curr = xas_load(xas);
>>> + int values = 0;
>>> +
>>> + node = xas->xa_node;
>>> + if (xas_top(node))
>>> + return;
>>> +
>>> + if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
>>> + gfp |= __GFP_ACCOUNT;
>>> +
>>> + marks = node_get_marks(node, xas->xa_offset);
>>> +
>>> + offset = xas->xa_offset + sibs;
>>> + do {
>>> + if (xas->xa_shift < node->shift) {
>>> + struct xa_node *child = xas->xa_alloc;
>>> + unsigned int expected_sibs =
>>> + (1 << ((order - 1) % XA_CHUNK_SHIFT)) - 1;
>>> +
>>> + /*
>>> + * No support for splitting sibling entries
>>> + * (horizontally) or cascade split (vertically), which
>>> + * requires two or more new xa_nodes.
>>> + * Since if one xa_node allocation fails,
>>> + * it is hard to free the prior allocations.
>>> + */
>>> + if (sibs || xas->xa_sibs != expected_sibs) {
>>> + xas_destroy(xas);
>>> + xas_set_err(xas, -EINVAL);
>>> + return;
>>> + }
>>> +
>>> + if (!child) {
>>> + child = __xas_alloc_node_for_split(xas, entry,
>>> + gfp);
>>> + if (!child) {
>>> + xas_destroy(xas);
>>> + xas_set_err(xas, -ENOMEM);
>>> + return;
>>> + }
>>> + }
>>
>> No expert on this, just wondering ...
>>
>> ... what is the effect if we halfway-through fail the split? Is it okay to leave that "partially split" thing in place? Can callers deal with that?
>
> Good question.
>
Let me rephrase: In __split_unmapped_folio(), we call xas_try_split().
If that fails, we stop the split and effectively skip over the
__split_folio_to_order(). The folio remains unsplit (no order change:
old_order).
xas_try_split() was instructed to split from old_order -> split_order.
xas_try_split() documents that: "The value in @entry is copied to all
the replacement entries.", meaning after the split, all entries will be
pointing at the folio.
Now, can it happen that xas_try_split() would ever perform a partial
split in any way, when invoked from __split_unmapped_folio(), such that
we run into the do { } while(); loop and fail with -ENOMEM after already
having performed changes -- xas_update().
Or is that simply impossible?
Maybe it's just the do { } while(); loop in there that is confusing me.
(again, no expert)
> xas_try_split() imposes what kind of split it does and is usually used to
> split from order N to order N-1:
You mean that old_order -> split_order will in the case of
__split_unmapped_folio() always be a difference of 1?
>
> 1. when N is a multiplier of XA_CHUNK_SHIFT, a new xa_node is needed, so
> either child (namely xas->xa_alloc) is not NULL, meaning someone called
> xa_nomem() to allocate a xa_node before xas_try_split() or child is NULL
> and an allocation is needed. If child is still NULL after the allocation,
> meaning we are out of memory, no split is done;
>
> 2. when N is not, no new xa_node is needed, xas_try_split() just rewrites
> existing slot values to perform the split (the code after the hunk above).
> No fail will happen. For this split, since no new xa_node is needed,
> the caller is actually allowed to split from N to a value smaller than
> N-1 as long as N-1 is >= (N - N % XA_CHUNK_SHIFT).
>
>
> Various checks make sure xas_try_split() only sees the two above situation:
>
> a. "xas->xa_shift < node->shift" means the split crosses XA_CHUNK_SHIFT,
> at least 1 new xa_node is needed; the else branch only handles the case
> 2 above;
>
> b. for the then branch the "if (sibs || xas->xa_sibs != expected_sibs)"
> check makes sure N is a multiplier of XA_CHUNK_SHIFT and the new order
> has to be N-1. In "if (sibs || xas->xa_sibs != expected_sibs)",
> "sibs != 0" means the from order N covers more than 1 slot, so more than 1
> new xa_node is needed, "xas->xa_sibs != expected_sibs" makes sure
> the new order is N-1 (you can see it from how expected_sibs is assigned).
Thanks!
>
> Let me know if you have any other question.
Thanks for the details!
--
Cheers,
David / dhildenb
Powered by blists - more mailing lists