[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <6dea7b6a-1534-47e7-94d2-d67417c3d4c1@proton.me>
Date: Mon, 24 Feb 2025 20:07:35 +0000
From: Benno Lossin <benno.lossin@...ton.me>
To: Abdiel Janulgue <abdiel.janulgue@...il.com>, aliceryhl@...gle.com, dakr@...nel.org, robin.murphy@....com, daniel.almeida@...labora.com, rust-for-linux@...r.kernel.org
Cc: Miguel Ojeda <ojeda@...nel.org>, Alex Gaynor <alex.gaynor@...il.com>, Boqun Feng <boqun.feng@...il.com>, Gary Guo <gary@...yguo.net>, Björn Roy Baron <bjorn3_gh@...tonmail.com>, Andreas Hindborg <a.hindborg@...nel.org>, Trevor Gross <tmgross@...ch.edu>, Valentin Obst <kernel@...entinobst.de>, linux-kernel@...r.kernel.org, Christoph Hellwig <hch@....de>, Marek Szyprowski <m.szyprowski@...sung.com>, airlied@...hat.com, iommu@...ts.linux.dev
Subject: Re: [PATCH v12 2/3] rust: add dma coherent allocator abstraction.
On 24.02.25 12:49, Abdiel Janulgue wrote:
> Add a simple dma coherent allocator rust abstraction. Based on
> Andreas Hindborg's dma abstractions from the rnvme driver, which
> was also based on earlier work by Wedson Almeida Filho.
>
> Nacked-by: Christoph Hellwig <hch@....de>
> Signed-off-by: Abdiel Janulgue <abdiel.janulgue@...il.com>
> ---
> rust/bindings/bindings_helper.h | 1 +
> rust/helpers/dma.c | 13 +
> rust/helpers/helpers.c | 1 +
> rust/kernel/dma.rs | 421 ++++++++++++++++++++++++++++++++
> rust/kernel/lib.rs | 1 +
> 5 files changed, 437 insertions(+)
> create mode 100644 rust/helpers/dma.c
> create mode 100644 rust/kernel/dma.rs
>
> diff --git a/rust/bindings/bindings_helper.h b/rust/bindings/bindings_helper.h
> index 55354e4dec14..f69b05025e52 100644
> --- a/rust/bindings/bindings_helper.h
> +++ b/rust/bindings/bindings_helper.h
> @@ -11,6 +11,7 @@
> #include <linux/blk_types.h>
> #include <linux/blkdev.h>
> #include <linux/cred.h>
> +#include <linux/dma-mapping.h>
> #include <linux/errname.h>
> #include <linux/ethtool.h>
> #include <linux/file.h>
> diff --git a/rust/helpers/dma.c b/rust/helpers/dma.c
> new file mode 100644
> index 000000000000..30da079d366c
> --- /dev/null
> +++ b/rust/helpers/dma.c
> @@ -0,0 +1,13 @@
> +// SPDX-License-Identifier: GPL-2.0
> +
> +#include <linux/dma-mapping.h>
> +
> +int rust_helper_dma_set_mask_and_coherent(struct device *dev, u64 mask)
> +{
> + return dma_set_mask_and_coherent(dev, mask);
> +}
> +
> +int rust_helper_dma_set_mask(struct device *dev, u64 mask)
> +{
> + return dma_set_mask(dev, mask);
> +}
> diff --git a/rust/helpers/helpers.c b/rust/helpers/helpers.c
> index 0640b7e115be..8f3808c8b7fe 100644
> --- a/rust/helpers/helpers.c
> +++ b/rust/helpers/helpers.c
> @@ -13,6 +13,7 @@
> #include "build_bug.c"
> #include "cred.c"
> #include "device.c"
> +#include "dma.c"
> #include "err.c"
> #include "fs.c"
> #include "io.c"
> diff --git a/rust/kernel/dma.rs b/rust/kernel/dma.rs
> new file mode 100644
> index 000000000000..b4dd5d411711
> --- /dev/null
> +++ b/rust/kernel/dma.rs
> @@ -0,0 +1,421 @@
> +// SPDX-License-Identifier: GPL-2.0
> +
> +//! Direct memory access (DMA).
> +//!
> +//! C header: [`include/linux/dma-mapping.h`](srctree/include/linux/dma-mapping.h)
> +
> +use crate::{
> + bindings, build_assert,
> + device::Device,
> + error::code::*,
> + error::Result,
> + transmute::{AsBytes, FromBytes},
> + types::ARef,
> +};
> +
> +/// Inform the kernel about the device's DMA addressing capabilities. This will set the mask for
> +/// both streaming and coherent APIs together.
> +pub fn dma_set_mask_and_coherent(dev: &Device, mask: u64) -> i32 {
> + // SAFETY: device pointer is guaranteed as valid by invariant on `Device`.
> + unsafe { bindings::dma_set_mask_and_coherent(dev.as_raw(), mask) }
> +}
> +
> +/// Same as `dma_set_mask_and_coherent`, but set the mask only for streaming mappings.
> +pub fn dma_set_mask(dev: &Device, mask: u64) -> i32 {
> + // SAFETY: device pointer is guaranteed as valid by invariant on `Device`.
> + unsafe { bindings::dma_set_mask(dev.as_raw(), mask) }
> +}
Why aren't these methods on `Device`? (i.e. inside of an `impl Device`
block)
> +
> +/// Possible attributes associated with a DMA mapping.
> +///
> +/// They can be combined with the operators `|`, `&`, and `!`.
> +///
> +/// Values can be used from the [`attrs`] module.
> +#[derive(Clone, Copy, PartialEq)]
> +#[repr(transparent)]
> +pub struct Attrs(u32);
> +
> +impl Attrs {
> + /// Get the raw representation of this attribute.
> + pub(crate) fn as_raw(self) -> crate::ffi::c_ulong {
> + self.0 as _
> + }
> +
> + /// Check whether `flags` is contained in `self`.
> + pub fn contains(self, flags: Attrs) -> bool {
> + (self & flags) == flags
> + }
> +}
> +
> +impl core::ops::BitOr for Attrs {
> + type Output = Self;
> + fn bitor(self, rhs: Self) -> Self::Output {
> + Self(self.0 | rhs.0)
> + }
> +}
> +
> +impl core::ops::BitAnd for Attrs {
> + type Output = Self;
> + fn bitand(self, rhs: Self) -> Self::Output {
> + Self(self.0 & rhs.0)
> + }
> +}
> +
> +impl core::ops::Not for Attrs {
> + type Output = Self;
> + fn not(self) -> Self::Output {
> + Self(!self.0)
> + }
> +}
> +
> +/// DMA mapping attrributes.
> +pub mod attrs {
> + use super::Attrs;
> +
> + /// Specifies that reads and writes to the mapping may be weakly ordered, that is that reads
> + /// and writes may pass each other.
> + pub const DMA_ATTR_WEAK_ORDERING: Attrs = Attrs(bindings::DMA_ATTR_WEAK_ORDERING);
> +
> + /// Specifies that writes to the mapping may be buffered to improve performance.
> + pub const DMA_ATTR_WRITE_COMBINE: Attrs = Attrs(bindings::DMA_ATTR_WRITE_COMBINE);
> +
> + /// Lets the platform to avoid creating a kernel virtual mapping for the allocated buffer.
> + pub const DMA_ATTR_NO_KERNEL_MAPPING: Attrs = Attrs(bindings::DMA_ATTR_NO_KERNEL_MAPPING);
> +
> + /// Allows platform code to skip synchronization of the CPU cache for the given buffer assuming
> + /// that it has been already transferred to 'device' domain.
> + pub const DMA_ATTR_SKIP_CPU_SYNC: Attrs = Attrs(bindings::DMA_ATTR_SKIP_CPU_SYNC);
> +
> + /// Forces contiguous allocation of the buffer in physical memory.
> + pub const DMA_ATTR_FORCE_CONTIGUOUS: Attrs = Attrs(bindings::DMA_ATTR_FORCE_CONTIGUOUS);
> +
> + /// This is a hint to the DMA-mapping subsystem that it's probably not worth the time to try
> + /// to allocate memory to in a way that gives better TLB efficiency.
> + pub const DMA_ATTR_ALLOC_SINGLE_PAGES: Attrs = Attrs(bindings::DMA_ATTR_ALLOC_SINGLE_PAGES);
> +
> + /// This tells the DMA-mapping subsystem to suppress allocation failure reports (similarly to
> + /// __GFP_NOWARN).
> + pub const DMA_ATTR_NO_WARN: Attrs = Attrs(bindings::DMA_ATTR_NO_WARN);
> +
> + /// Used to indicate that the buffer is fully accessible at an elevated privilege level (and
> + /// ideally inaccessible or at least read-only at lesser-privileged levels).
> + pub const DMA_ATTR_PRIVILEGED: Attrs = Attrs(bindings::DMA_ATTR_PRIVILEGED);
> +}
> +
> +/// An abstraction of the `dma_alloc_coherent` API.
> +///
> +/// This is an abstraction around the `dma_alloc_coherent` API which is used to allocate and map
> +/// large consistent DMA regions.
> +///
> +/// A [`CoherentAllocation`] instance contains a pointer to the allocated region (in the
> +/// processor's virtual address space) and the device address which can be given to the device
> +/// as the DMA address base of the region. The region is released once [`CoherentAllocation`]
> +/// is dropped.
> +///
> +/// # Invariants
> +///
> +/// For the lifetime of an instance of [`CoherentAllocation`], the cpu address is a valid pointer
"the cpu address" -> "`cpu_addr`"
You can shorten this to "`cpu_addr` is a valid pointer to [...]".
> +/// to an allocated region of consistent memory and we hold a reference to the device.
Isn't the "we hold a reference to the device" part ensured by the
`ARef<Device>`? Or did you want to specify that `cpu_addr` must come
from `dev`?
> +pub struct CoherentAllocation<T: AsBytes + FromBytes> {
> + dev: ARef<Device>,
> + dma_handle: bindings::dma_addr_t,
> + count: usize,
> + cpu_addr: *mut T,
> + dma_attrs: Attrs,
> +}
> +
> +impl<T: AsBytes + FromBytes> CoherentAllocation<T> {
> + /// Allocates a region of `size_of::<T> * count` of consistent memory.
> + ///
> + /// # Examples
> + ///
> + /// ```
> + /// use kernel::device::Device;
> + /// use kernel::dma::{attrs::*, CoherentAllocation};
> + ///
> + /// # fn test(dev: &Device) -> Result {
> + /// let c: CoherentAllocation<u64> = CoherentAllocation::alloc_attrs(dev.into(), 4, GFP_KERNEL,
> + /// DMA_ATTR_NO_WARN)?;
> + /// # Ok::<(), Error>(()) }
> + /// ```
> + pub fn alloc_attrs(
> + dev: ARef<Device>,
> + count: usize,
> + gfp_flags: kernel::alloc::Flags,
> + dma_attrs: Attrs,
> + ) -> Result<CoherentAllocation<T>> {
> + build_assert!(
> + core::mem::size_of::<T>() > 0,
> + "It doesn't make sense for the allocated type to be a ZST"
> + );
Is this a safety requirement? I.e. the `dma_alloc_attrs` function cannot
handle a size of 0?
> +
> + let size = count
> + .checked_mul(core::mem::size_of::<T>())
> + .ok_or(EOVERFLOW)?;
> + let mut dma_handle = 0;
> + // SAFETY: device pointer is guaranteed as valid by invariant on `Device`.
> + // We ensure that we catch the failure on this function and throw an ENOMEM
The second sentence is not part of a safety requirement.
> + let ret = unsafe {
> + bindings::dma_alloc_attrs(
> + dev.as_raw(),
> + size,
> + &mut dma_handle,
> + gfp_flags.as_raw(),
> + dma_attrs.as_raw(),
> + )
> + };
> + if ret.is_null() {
> + return Err(ENOMEM);
> + }
> + // INVARIANT: We just successfully allocated a coherent region which is accessible for
> + // `count` elements, hence the cpu address is valid. We also hold a refcounted reference
> + // to the device.
> + Ok(Self {
> + dev,
> + dma_handle,
> + count,
> + cpu_addr: ret as *mut T,
> + dma_attrs,
> + })
> + }
> +
> + /// Performs the same functionality as `alloc_attrs`, except the `dma_attrs` is 0 by default.
> + pub fn alloc_coherent(
> + dev: ARef<Device>,
> + count: usize,
> + gfp_flags: kernel::alloc::Flags,
> + ) -> Result<CoherentAllocation<T>> {
> + CoherentAllocation::alloc_attrs(dev, count, gfp_flags, Attrs(0))
> + }
> +
> + /// Create a duplicate of the `CoherentAllocation` object but prevent it from being dropped.
> + pub fn skip_drop(self) -> CoherentAllocation<T> {
Why does this method exist? It doesn't do anything.
> + let me = core::mem::ManuallyDrop::new(self);
> + Self {
> + // SAFETY: The refcount of `dev` will not be decremented because this doesn't actually
> + // duplicafe `ARef` and the use of `ManuallyDrop` forgets the originals.
> + dev: unsafe { core::ptr::read(&me.dev) },
> + dma_handle: me.dma_handle,
> + count: me.count,
> + cpu_addr: me.cpu_addr,
> + dma_attrs: me.dma_attrs,
> + }
> + }
> +
> + /// Returns the base address to the allocated region in the CPU's virtual address space.
> + pub fn start_ptr(&self) -> *const T {
> + self.cpu_addr
> + }
> +
> + /// Returns the base address to the allocated region in the CPU's virtual address space as
> + /// a mutable pointer.
> + pub fn start_ptr_mut(&mut self) -> *mut T {
> + self.cpu_addr
> + }
> +
> + /// Returns a DMA handle which may given to the device as the DMA address base of
> + /// the region.
> + pub fn dma_handle(&self) -> bindings::dma_addr_t {
> + self.dma_handle
> + }
> +
> + /// Returns the data from the region starting from `offset` as a slice.
> + /// `offset` and `count` are in units of `T`, not the number of bytes.
> + ///
> + /// Due to the safety requirements of slice, the caller should consider that the region could
> + /// be modified by the device at anytime (see the safety block below). For ringbuffer type of
What is a safety block?
> + /// r/w access or use-cases where the pointer to the live data is needed, `start_ptr()` or
> + /// `start_ptr_mut()` could be used instead.
> + ///
> + /// # Safety
> + ///
> + /// Callers must ensure that no hardware operations that involve the buffer are currently
> + /// taking place while the returned slice is live.
> + pub unsafe fn as_slice(&self, offset: usize, count: usize) -> Result<&[T]> {
> + let end = offset.checked_add(count).ok_or(EOVERFLOW)?;
> + if end >= self.count {
> + return Err(EINVAL);
> + }
> + // SAFETY:
> + // - The pointer is valid due to type invariant on `CoherentAllocation`,
> + // we've just checked that the range and index is within bounds. The immutability of the
> + // of data is also guaranteed by the safety requirements of the function.
> + // - `offset` can't overflow since it is smaller than `self.count` and we've checked
> + // that `self.count` won't overflow early in the constructor.
> + Ok(unsafe { core::slice::from_raw_parts(self.cpu_addr.add(offset), count) })
> + }
> +
> + /// Performs the same functionality as `as_slice`, except that a mutable slice is returned.
> + /// See that method for documentation and safety requirements.
I don't think this is good documentation style. I think copy-pasting the
first line and second paragraph is better.
> + ///
> + /// # Safety
> + ///
> + /// It is the callers responsibility to avoid separate read and write accesses to the region
> + /// while the returned slice is live.
This safety requirement is worded quite differently compared to the one
on `as_slice`, why?
> + pub unsafe fn as_slice_mut(&self, offset: usize, count: usize) -> Result<&mut [T]> {
> + let end = offset.checked_add(count).ok_or(EOVERFLOW)?;
> + if end >= self.count {
> + return Err(EINVAL);
> + }
> + // SAFETY:
> + // - The pointer is valid due to type invariant on `CoherentAllocation`,
> + // we've just checked that the range and index is within bounds. The immutability of the
> + // of data is also guaranteed by the safety requirements of the function.
> + // - `offset` can't overflow since it is smaller than `self.count` and we've checked
> + // that `self.count` won't overflow early in the constructor.
> + Ok(unsafe { core::slice::from_raw_parts_mut(self.cpu_addr.add(offset), count) })
> + }
> +
> + /// Writes data to the region starting from `offset`. `offset` is in units of `T`, not the
> + /// number of bytes.
> + ///
> + /// # Examples
> + ///
> + /// ```
> + /// # fn test(alloc: &mut kernel::dma::CoherentAllocation<u8>) -> Result {
> + /// let somedata: [u8; 4] = [0xf; 4];
> + /// let buf: &[u8] = &somedata;
> + /// alloc.write(buf, 0)?;
> + /// # Ok::<(), Error>(()) }
> + /// ```
> + pub fn write(&self, src: &[T], offset: usize) -> Result {
> + let end = offset.checked_add(src.len()).ok_or(EOVERFLOW)?;
> + if end >= self.count {
> + return Err(EINVAL);
> + }
> + // SAFETY:
> + // - The pointer is valid due to type invariant on `CoherentAllocation`
> + // and we've just checked that the range and index is within bounds.
> + // - `offset` can't overflow since it is smaller than `self.count` and we've checked
> + // that `self.count` won't overflow early in the constructor.
> + unsafe {
> + core::ptr::copy_nonoverlapping(src.as_ptr(), self.cpu_addr.add(offset), src.len())
Why are there no concurrent write or read operations on `cpu_addr`?
> + };
> + Ok(())
> + }
> +
> + /// Retrieve a single entry from the region with bounds checking. `offset` is in units of `T`,
> + /// not the number of bytes.
Please add some information on the returned raw pointer, ie when it can
be accessed.
> + pub fn item_from_index(&self, offset: usize) -> Result<*mut T> {
> + if offset >= self.count {
> + return Err(EINVAL);
> + }
> + // SAFETY:
> + // - The pointer is valid due to type invariant on `CoherentAllocation`
> + // and we've just checked that the range and index is within bounds.
> + // - `offset` can't overflow since it is smaller than `self.count` and we've checked
> + // that `self.count` won't overflow early in the constructor.
> + Ok(unsafe { &mut *self.cpu_addr.add(offset) })
Why do you take `&mut` here? The return type is a `*mut T`.
> + }
> +
> + /// Reads the value of `field` and ensures that its type is `FromBytes`
> + ///
> + /// # Safety:
> + ///
> + /// This must be called from the `dma_read` macro which ensures that the `field` pointer is
> + /// validated beforehand.
> + ///
> + /// Public but hidden since it should only be used from `dma_read` macro.
> + #[doc(hidden)]
> + pub unsafe fn field_read<F: FromBytes>(&self, field: *const F) -> F {
> + // SAFETY: By the safety requirements field is valid
> + unsafe { field.read() }
> + }
> +
> + /// Writes a value to `field` and ensures that its type is `AsBytes`
> + ///
> + /// # Safety:
> + ///
> + /// This must be called from the `dma_write` macro which ensures that the `field` pointer is
> + /// validated beforehand.
> + ///
> + /// Public but hidden since it should only be used from `dma_write` macro.
> + #[doc(hidden)]
> + pub unsafe fn field_write<F: AsBytes>(&self, field: *mut F, val: F) {
> + // SAFETY: By the safety requirements field is valid
> + unsafe { field.write(val) }
> + }
> +}
> +
> +/// Reads a field of an item from an allocated region of structs.
> +/// # Examples
> +///
> +/// ```
> +/// struct MyStruct { field: u32, }
> +/// // SAFETY: All bit patterns are acceptable values for MyStruct.
> +/// unsafe impl kernel::transmute::FromBytes for MyStruct{};
> +/// // SAFETY: Instances of MyStruct have no uninitialized portions.
> +/// unsafe impl kernel::transmute::AsBytes for MyStruct{};
> +///
> +/// # fn test(alloc: &kernel::dma::CoherentAllocation<MyStruct>) -> Result {
> +/// let whole = kernel::dma_read!(alloc[2]);
> +/// let field = kernel::dma_read!(alloc[1].field);
> +/// # Ok::<(), Error>(()) }
> +/// ```
> +#[macro_export]
> +macro_rules! dma_read {
> + ($dma:ident [ $idx:expr ] $($field:tt)* ) => {{
> + let item = $dma.item_from_index($idx)?;
Please replace this line with:
let item = $crate::dma::CoherentAllocation::item_from_index(&$dma, $idx)?;
This ensures that you're actually calling the `item_from_index` function
of the `CoherentAllocation` type and not some other user-defined type.
(this is very important for the `unsafe` block and safety comment
below!)
> + // SAFETY: `item_from_index` ensures that `item` is always a valid pointer and can be
> + // dereferenced. The compiler also further validates the expression on whether `field`
> + // is a member of `item` when expanded by the macro.
> + unsafe {
> + let ptr_field = ::core::ptr::addr_of!((*item) $($field)*);
> + $dma.field_read(ptr_field)
$crate::dma::CoherentAllocation::field_read(&$dma, ptr_field)
> + }
> + }};
> +}
> +
> +/// Writes to a field of an item from an allocated region of structs.
> +/// # Examples
> +///
> +/// ```
> +/// struct MyStruct { member: u32, }
> +/// // SAFETY: All bit patterns are acceptable values for MyStruct.
> +/// unsafe impl kernel::transmute::FromBytes for MyStruct{};
> +/// // SAFETY: Instances of MyStruct have no uninitialized portions.
> +/// unsafe impl kernel::transmute::AsBytes for MyStruct{};
> +///
> +/// # fn test(alloc: &mut kernel::dma::CoherentAllocation<MyStruct>) -> Result {
> +/// kernel::dma_write!(alloc[2].member = 0xf);
> +/// kernel::dma_write!(alloc[1] = MyStruct { member: 0xf });
> +/// # Ok::<(), Error>(()) }
> +/// ```
> +#[macro_export]
> +macro_rules! dma_write {
> + ($dma:ident [ $idx:expr ] $($field:tt)*) => {{
> + kernel::dma_write!($dma, $idx, $($field)*);
Please use `$crate::` instead of `kernel::`.
> + }};
> + ($dma:ident, $idx: expr, = $val:expr) => {
> + let item = $dma.item_from_index($idx)?;
Same here as with `dma_read`.
> + // SAFETY: `item_from_index` ensures that `item` is always a valid item.
> + unsafe { $dma.field_write(item, $val) }
Again (and below).
> + };
> + ($dma:ident, $idx: expr, $(.$field:ident)* = $val:expr) => {
> + let item = $dma.item_from_index($idx)?;
> + // SAFETY: `item_from_index` ensures that `item` is always a valid pointer and can be
> + // dereferenced. The compiler also further validates the expression on whether `field`
> + // is a member of `item` when expanded by the macro.
> + unsafe {
> + let ptr_field = ::core::ptr::addr_of_mut!((*item) $(.$field)*);
> + $dma.field_write(ptr_field, $val)
> + }
> + };
> +}
> +
> +impl<T: AsBytes + FromBytes> Drop for CoherentAllocation<T> {
> + fn drop(&mut self) {
> + let size = self.count * core::mem::size_of::<T>();
> + // SAFETY: the device, cpu address, and the dma handle is valid due to the
> + // type invariants on `CoherentAllocation`.
> + unsafe {
> + bindings::dma_free_attrs(
> + self.dev.as_raw(),
> + size,
> + self.cpu_addr as _,
> + self.dma_handle,
> + self.dma_attrs.as_raw(),
> + )
> + }
> + }
> +}
Can you move this drop impl directly below the struct definition?
---
Cheers,
Benno
> diff --git a/rust/kernel/lib.rs b/rust/kernel/lib.rs
> index 496ed32b0911..5081cb66b2f9 100644
> --- a/rust/kernel/lib.rs
> +++ b/rust/kernel/lib.rs
> @@ -44,6 +44,7 @@
> pub mod device;
> pub mod device_id;
> pub mod devres;
> +pub mod dma;
> pub mod driver;
> pub mod error;
> #[cfg(CONFIG_RUST_FW_LOADER_ABSTRACTIONS)]
> --
> 2.43.0
>
Powered by blists - more mailing lists