[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <20250225210228.GA1801922@joelnvbox>
Date: Tue, 25 Feb 2025 16:02:28 -0500
From: Joel Fernandes <joelagnelf@...dia.com>
To: Danilo Krummrich <dakr@...nel.org>
Cc: Alexandre Courbot <acourbot@...dia.com>,
Dave Airlie <airlied@...il.com>, Gary Guo <gary@...yguo.net>,
Joel Fernandes <joel@...lfernandes.org>,
Boqun Feng <boqun.feng@...il.com>,
John Hubbard <jhubbard@...dia.com>, Ben Skeggs <bskeggs@...dia.com>,
linux-kernel@...r.kernel.org, rust-for-linux@...r.kernel.org,
nouveau@...ts.freedesktop.org, dri-devel@...ts.freedesktop.org,
paulmck@...nel.org, Jason Gunthorpe <jgg@...dia.com>
Subject: Re: [RFC PATCH 0/3] gpu: nova-core: add basic timer subdevice
implementation
On Tue, Feb 25, 2025 at 05:09:35PM +0100, Danilo Krummrich wrote:
> On Tue, Feb 25, 2025 at 10:52:41AM -0500, Joel Fernandes wrote:
> >
> >
> > On 2/24/2025 6:44 PM, Danilo Krummrich wrote:
> > > On Mon, Feb 24, 2025 at 01:45:02PM -0500, Joel Fernandes wrote:
> > >> Hi Danilo,
> > >>
> > >> On Mon, Feb 24, 2025 at 01:11:17PM +0100, Danilo Krummrich wrote:
> > >>> On Mon, Feb 24, 2025 at 01:07:19PM +0100, Danilo Krummrich wrote:
> > >>>> CC: Gary
> > >>>>
> > >>>> On Mon, Feb 24, 2025 at 10:40:00AM +0900, Alexandre Courbot wrote:
> > >>>>> This inability to sleep while we are accessing registers seems very
> > >>>>> constraining to me, if not dangerous. It is pretty common to have
> > >>>>> functions intermingle hardware accesses with other operations that might
> > >>>>> sleep, and this constraint means that in such cases the caller would
> > >>>>> need to perform guard lifetime management manually:
> > >>>>>
> > >>>>> let bar_guard = bar.try_access()?;
> > >>>>> /* do something non-sleeping with bar_guard */
> > >>>>> drop(bar_guard);
> > >>>>>
> > >>>>> /* do something that might sleep */
> > >>>>>
> > >>>>> let bar_guard = bar.try_access()?;
> > >>>>> /* do something non-sleeping with bar_guard */
> > >>>>> drop(bar_guard);
> > >>>>>
> > >>>>> ...
> > >>>>>
> > >>>>> Failure to drop the guard potentially introduces a race condition, which
> > >>>>> will receive no compile-time warning and potentialy not even a runtime
> > >>>>> one unless lockdep is enabled. This problem does not exist with the
> > >>>>> equivalent C code AFAICT
> > >>>
> > >>> Without klint [1] it is exactly the same as in C, where I have to remember to
> > >>> not call into something that might sleep from atomic context.
> > >>>
> > >>
> > >> Sure, but in C, a sequence of MMIO accesses don't need to be constrained to
> > >> not sleeping?
> > >
> > > It's not that MMIO needs to be constrained to not sleeping in Rust either. It's
> > > just that the synchronization mechanism (RCU) used for the Revocable type
> > > implies that.
> > >
> > > In C we have something that is pretty similar with drm_dev_enter() /
> > > drm_dev_exit() even though it is using SRCU instead and is specialized to DRM.
> > >
> > > In DRM this is used to prevent accesses to device resources after the device has
> > > been unplugged.
> >
> > Thanks a lot for the response. Might it make more sense to use SRCU then? The
> > use of RCU seems overly restrictive due to the no-sleep-while-guard-held thing.
>
> Allowing to hold on to the guard for too long is a bit contradictive to the goal
> of detecting hotunplug I guess.
>
> Besides that I don't really see why we can't just re-acquire it after we sleep?
> Rust provides good options to implement it ergonimcally I think.
>
> >
> > Another colleague told me RDMA also uses SRCU for a similar purpose as well.
>
> See the reasoning against SRCU from Sima [1], what's the reasoning of RDMA?
>
> [1] https://lore.kernel.org/nouveau/Z7XVfnnrRKrtQbB6@phenom.ffwll.local/
Hmm, so you're saying SRCU sections blocking indefinitely is a concern as per
that thread. But I think SRCU GPs should not be stalled in normal operation.
If it is, that is a bug anyway. Stalling SRCU grace periods is not really a
good thing anyway, you could run out of memory (even though stalling RCU is
even more dangerous).
For RDMA, I will ask Jason Gunthorpe to chime in, I CC'd him. Jason, correct
me if I'm wrong about the RDMA user but this is what I recollect discussing
with you.
> >
> > >> I am fairly new to rust, could you help elaborate more about why these MMIO
> > >> accesses need to have RevocableGuard in Rust? What problem are we trying to
> > >> solve that C has but Rust doesn't with the aid of a RCU read-side section? I
> > >> vaguely understand we are trying to "wait for an MMIO access" using
> > >> synchronize here, but it is just a guest.
> > >
> > > Similar to the above, in Rust it's a safety constraint to prevent MMIO accesses
> > > to unplugged devices.
> > >
> > > The exact type in Rust in this case is Devres<pci::Bar>. Within Devres, the
> > > pci::Bar is placed in a Revocable. The Revocable is revoked when the device
> > > is detached from the driver (for instance because it has been unplugged).
> >
> > I guess the Devres concept of revoking resources on driver detach is not a rust
> > thing (even for PCI)... but correct me if I'm wrong.
>
> I'm not sure what you mean with that, can you expand a bit?
I was reading the devres documentation earlier. It mentios that one of its
use is to clean up resources. Maybe I mixed up the meaning of "clean up" and
"revoke" as I was reading it.
Honestly, I am still confused a bit by the difference between "revoking" and
"cleaning up".
> >
> > > By revoking the Revocable, the pci::Bar is dropped, which implies that it's also
> > > unmapped; a subsequent call to try_access() would fail.
> > >
> > > But yes, if the device is unplugged while holding the RCU guard, one is on their
> > > own; that's also why keeping the critical sections short is desirable.
> >
> > I have heard some concern around whether Rust is changing the driver model when
> > it comes to driver detach / driver remove. Can you elaborate may be a bit about
> > how Rust changes that mechanism versus C, when it comes to that?
>
> I think that one is simple, Rust does *not* change the driver model.
>
> What makes you think so?
Well, the revocable concept for one is rust-only right?
It is also possibly just some paranoia based on discussions, but I'm not sure
at the moment.
> > Ideally we
> > would not want Rust drivers to have races with user space accesses when they are
> > detached/remove. But we also don't want accesses to be non-sleepable sections
> > where this guard is held, it seems restrictive (though to your point the
> > sections are expected to be small).
>
> In the very extreme case, nothing prevents you from implementing a wrapper like:
>
> fn my_write32(bar: &Devres<pci::Bar>, offset: usize) -> Result<u32> {
> let bar = bar.try_access()?;
> bar.read32(offset);
> }
>
> Which limits the RCU read side critical section to my_write32().
>
> Similarly you can have custom functions for short sequences of I/O ops, or use
> closures. I don't understand the concern.
Yeah, this is certainly possible. I think one concern is similar to what you
raised on the other thread you shared [1]:
"Maybe we even want to replace it with SRCU entirely to ensure that drivers
can't stall the RCU grace period for too long by accident."
[1] https://lore.kernel.org/nouveau/Z7XVfnnrRKrtQbB6@phenom.ffwll.local/
thanks,
- Joel
Powered by blists - more mailing lists