[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-Id: <20250414034607.762653-5-ankur.a.arora@oracle.com>
Date: Sun, 13 Apr 2025 20:46:07 -0700
From: Ankur Arora <ankur.a.arora@...cle.com>
To: linux-kernel@...r.kernel.org, linux-mm@...ck.org, x86@...nel.org
Cc: torvalds@...ux-foundation.org, akpm@...ux-foundation.org, bp@...en8.de,
dave.hansen@...ux.intel.com, hpa@...or.com, mingo@...hat.com,
luto@...nel.org, peterz@...radead.org, paulmck@...nel.org,
rostedt@...dmis.org, tglx@...utronix.de, willy@...radead.org,
jon.grimm@....com, bharata@....com, raghavendra.kt@....com,
boris.ostrovsky@...cle.com, konrad.wilk@...cle.com,
ankur.a.arora@...cle.com
Subject: [PATCH v3 4/4] x86/folio_zero_user: multi-page clearing
clear_pages_rep(), clear_pages_erms() use string instructions to zero
memory. When operating on more than a single page, we can use these
more effectively by explicitly advertising the region-size to the
processor, which can use that as a hint to optimize the clearing
(ex. by eliding cacheline allocation.)
As a secondary benefit, string instructions are typically microcoded,
and working with larger regions helps amortize the cost of the decode.
When zeroing the 2MB page, maximize spatial locality by clearing in
three sections: the faulting page and its immediate neighbourhood, the
left and the right regions, with the local neighbourhood cleared last.
Performance
==
Use mmap(MAP_HUGETLB) to demand fault a 64GB region on the local
NUMA node.
Milan (EPYC 7J13, boost=0, preempt=full|lazy):
mm/folio_zero_user x86/folio_zero_user change
(GB/s +- stddev) (GB/s +- stddev)
pg-sz=2MB 11.89 +- 0.78% 16.12 +- 0.12% + 35.5%
pg-sz=1GB 16.51 +- 0.54% 42.80 +- 3.48% + 159.2%
Milan uses a threshold of LLC-size (~32MB) for eliding cacheline
allocation, so we see a dropoff in cacheline-allocations for pg-sz=1GB.
pg-sz=1GB:
- 9,250,034,512 cycles # 2.418 GHz ( +- 0.43% ) (46.16%)
- 544,878,976 instructions # 0.06 insn per cycle
- 2,331,332,516 L1-dcache-loads # 609.471 M/sec ( +- 0.03% ) (46.16%)
- 1,075,122,960 L1-dcache-load-misses # 46.12% of all L1-dcache accesses ( +- 0.01% ) (46.15%)
+ 3,688,681,006 cycles # 2.420 GHz ( +- 3.48% ) (46.01%)
+ 10,979,121 instructions # 0.00 insn per cycle
+ 31,829,258 L1-dcache-loads # 20.881 M/sec ( +- 4.92% ) (46.34%)
+ 13,677,295 L1-dcache-load-misses # 42.97% of all L1-dcache accesses ( +- 6.15% ) (46.32%)
That's not the case with pg-sz=2MB, where we also perform better but
the number of cacheline allocations remain the same.
It's not entirely clear why the performance for pg-sz=2MB improves. We
decode fewer instructions and the hardware prefetcher can do a better
job, but the perf stats for both of those aren't convincing enough to
the extent of ~30%.
pg-sz=2MB:
- 13,110,306,584 cycles # 2.418 GHz ( +- 0.48% ) (46.13%)
- 607,589,360 instructions # 0.05 insn per cycle
- 2,416,130,434 L1-dcache-loads # 445.682 M/sec ( +- 0.08% ) (46.19%)
- 1,080,187,594 L1-dcache-load-misses # 44.71% of all L1-dcache accesses ( +- 0.01% ) (46.18%)
+ 9,624,624,178 cycles # 2.418 GHz ( +- 0.01% ) (46.13%)
+ 277,336,691 instructions # 0.03 insn per cycle
+ 2,251,220,599 L1-dcache-loads # 565.624 M/sec ( +- 0.01% ) (46.20%)
+ 1,092,386,130 L1-dcache-load-misses # 48.52% of all L1-dcache accesses ( +- 0.02% ) (46.19%)
Icelakex (Platinum 8358, no_turbo=1, preempt=full|lazy):
mm/folio_zero_user x86/folio_zero_user change
(GB/s +- stddev) (GB/s +- stddev)
pg-sz=2MB 7.95 +- 0.30% 10.90 +- 0.26% + 37.10%
pg-sz=1GB 8.01 +- 0.24% 11.26 +- 0.48% + 40.57%
For both page-sizes, Icelakex, behaves similarly to Milan pg-sz=2MB: we
see a drop in cycles but there's no drop in cacheline allocation.
Performance for preempt=none|voluntary remains unchanged.
Signed-off-by: Ankur Arora <ankur.a.arora@...cle.com>
---
arch/x86/mm/Makefile | 1 +
arch/x86/mm/memory.c | 60 ++++++++++++++++++++++++++++++++++++++++++++
include/linux/mm.h | 1 +
3 files changed, 62 insertions(+)
create mode 100644 arch/x86/mm/memory.c
diff --git a/arch/x86/mm/Makefile b/arch/x86/mm/Makefile
index 32035d5be5a0..e61b4d331cdf 100644
--- a/arch/x86/mm/Makefile
+++ b/arch/x86/mm/Makefile
@@ -55,6 +55,7 @@ obj-$(CONFIG_MMIOTRACE_TEST) += testmmiotrace.o
obj-$(CONFIG_NUMA) += numa.o numa_$(BITS).o
obj-$(CONFIG_AMD_NUMA) += amdtopology.o
obj-$(CONFIG_ACPI_NUMA) += srat.o
+obj-$(CONFIG_PREEMPTION) += memory.o
obj-$(CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS) += pkeys.o
obj-$(CONFIG_RANDOMIZE_MEMORY) += kaslr.o
diff --git a/arch/x86/mm/memory.c b/arch/x86/mm/memory.c
new file mode 100644
index 000000000000..99851c246fcc
--- /dev/null
+++ b/arch/x86/mm/memory.c
@@ -0,0 +1,60 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+#include <linux/mm.h>
+#include <linux/range.h>
+#include <linux/minmax.h>
+
+#ifndef CONFIG_HIGHMEM
+/*
+ * folio_zero_user_preemptible(): multi-page clearing variant of folio_zero_user().
+ *
+ * Taking inspiration from the common code variant, we split the zeroing in
+ * three parts: left of the fault, right of the fault, and up to 5 pages
+ * in the immediate neighbourhood of the target page.
+ *
+ * Cleared in that order to keep cache lines of the target region hot.
+ *
+ * For gigantic pages, there is no expectation of cache locality so just do a
+ * straight zero.
+ */
+void folio_zero_user_preemptible(struct folio *folio, unsigned long addr_hint)
+{
+ unsigned long base_addr = ALIGN_DOWN(addr_hint, folio_size(folio));
+ const long fault_idx = (addr_hint - base_addr) / PAGE_SIZE;
+ const struct range pg = DEFINE_RANGE(0, folio_nr_pages(folio) - 1);
+ int width = 2; /* pages cleared last on either side */
+ struct range r[3];
+ int i;
+
+ if (folio_nr_pages(folio) > MAX_ORDER_NR_PAGES) {
+ clear_pages(page_address(folio_page(folio, 0)), folio_nr_pages(folio));
+ goto out;
+ }
+
+ /*
+ * Faulting page and its immediate neighbourhood. Cleared at the end to
+ * ensure it sticks around in the cache.
+ */
+ r[2] = DEFINE_RANGE(clamp_t(s64, fault_idx - width, pg.start, pg.end),
+ clamp_t(s64, fault_idx + width, pg.start, pg.end));
+
+ /* Region to the left of the fault */
+ r[1] = DEFINE_RANGE(pg.start,
+ clamp_t(s64, r[2].start-1, pg.start-1, r[2].start));
+
+ /* Region to the right of the fault: always valid for the common fault_idx=0 case. */
+ r[0] = DEFINE_RANGE(clamp_t(s64, r[2].end+1, r[2].end, pg.end+1),
+ pg.end);
+
+ for (i = 0; i <= 2; i++) {
+ int len = range_len(&r[i]);
+
+ if (len > 0)
+ clear_pages(page_address(folio_page(folio, r[i].start)), len);
+ }
+
+out:
+ /* Explicitly invoke cond_resched() to handle any live patching necessary. */
+ cond_resched();
+}
+
+#endif /* CONFIG_HIGHMEM */
diff --git a/include/linux/mm.h b/include/linux/mm.h
index b7f13f087954..b57512da8173 100644
--- a/include/linux/mm.h
+++ b/include/linux/mm.h
@@ -4114,6 +4114,7 @@ enum mf_action_page_type {
};
#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
+void folio_zero_user_preemptible(struct folio *fio, unsigned long addr_hint);
void folio_zero_user(struct folio *folio, unsigned long addr_hint);
int copy_user_large_folio(struct folio *dst, struct folio *src,
unsigned long addr_hint,
--
2.31.1
Powered by blists - more mailing lists