[<prev] [next>] [thread-next>] [day] [month] [year] [list]
Message-ID: <20250502100049.1746335-1-jens.wiklander@linaro.org>
Date: Fri, 2 May 2025 11:59:14 +0200
From: Jens Wiklander <jens.wiklander@...aro.org>
To: linux-kernel@...r.kernel.org,
linux-media@...r.kernel.org,
dri-devel@...ts.freedesktop.org,
linaro-mm-sig@...ts.linaro.org,
op-tee@...ts.trustedfirmware.org,
linux-arm-kernel@...ts.infradead.org
Cc: Olivier Masse <olivier.masse@....com>,
Thierry Reding <thierry.reding@...il.com>,
Yong Wu <yong.wu@...iatek.com>,
Sumit Semwal <sumit.semwal@...aro.org>,
Benjamin Gaignard <benjamin.gaignard@...labora.com>,
Brian Starkey <Brian.Starkey@....com>,
John Stultz <jstultz@...gle.com>,
"T . J . Mercier" <tjmercier@...gle.com>,
Christian König <christian.koenig@....com>,
Sumit Garg <sumit.garg@...nel.org>,
Matthias Brugger <matthias.bgg@...il.com>,
AngeloGioacchino Del Regno <angelogioacchino.delregno@...labora.com>,
azarrabi@....qualcomm.com,
Simona Vetter <simona.vetter@...ll.ch>,
Daniel Stone <daniel@...ishbar.org>,
Rouven Czerwinski <rouven.czerwinski@...aro.org>,
Jens Wiklander <jens.wiklander@...aro.org>
Subject: [PATCH v8 00/14] TEE subsystem for protected dma-buf allocations
Hi,
This patch set allocates the protected DMA-bufs from a DMA-heap
instantiated from the TEE subsystem.
The TEE subsystem handles the DMA-buf allocations since it is the TEE
(OP-TEE, AMD-TEE, TS-TEE, or perhaps a future QTEE) which sets up the
protection for the memory used for the DMA-bufs.
The DMA-heap uses a protected memory pool provided by the backend TEE
driver, allowing it to choose how to allocate the protected physical
memory.
The allocated DMA-bufs must be imported with a new TEE_IOC_SHM_REGISTER_FD
before they can be passed as arguments when requesting services from the
secure world.
Three use-cases (Secure Video Playback, Trusted UI, and Secure Video
Recording) has been identified so far to serve as examples of what can be
expected. The use-cases has predefined DMA-heap names,
"protected,secure-video", "protected,trusted-ui", and
"protected,secure-video-record". The backend driver registers protected
memory pools for the use-cases it supports.
Each use-case has it's own protected memory pool since different use-cases
requires isolation from different parts of the system. A protected memory
pool can be based on a static carveout instantiated while probing the TEE
backend driver, or dynamically allocated from CMA and made protected as
needed by the TEE.
This can be tested on a RockPi 4B+ with the following steps:
repo init -u https://github.com/jenswi-linaro/manifest.git -m rockpi4.xml \
-b prototype/sdp-v8
repo sync -j8
cd build
make toolchains -j$(nproc)
make all -j$(nproc)
# Copy ../out/rockpi4.img to an SD card and boot the RockPi from that
# Connect a monitor to the RockPi
# login and at the prompt:
gst-launch-1.0 videotestsrc ! \
aesenc key=1f9423681beb9a79215820f6bda73d0f \
iv=e9aa8e834d8d70b7e0d254ff670dd718 serialize-iv=true ! \
aesdec key=1f9423681beb9a79215820f6bda73d0f ! \
kmssink
The aesdec module has been hacked to use an OP-TEE TA to decrypt the stream
into protected DMA-bufs which are consumed by the kmssink.
The primitive QEMU tests from previous patch set can be tested on RockPi
in the same way with:
xtest --sdp-basic
The primitive test are tested on QEMU with the following steps:
repo init -u https://github.com/jenswi-linaro/manifest.git -m qemu_v8.xml \
-b prototype/sdp-v8
repo sync -j8
cd build
make toolchains -j$(nproc)
make SPMC_AT_EL=1 all -j$(nproc)
make SPMC_AT_EL=1 run-only
# login and at the prompt:
xtest --sdp-basic
The SPMC_AT_EL=1 parameter configures the build with FF-A and an SPMC at
S-EL1 inside OP-TEE. The parameter can be changed into SPMC_AT_EL=n to test
without FF-A using the original SMC ABI instead. Please remember to do
%rm -rf ../trusted-firmware-a/build/qemu
for TF-A to be rebuilt properly using the new configuration.
https://optee.readthedocs.io/en/latest/building/prerequisites.html
list dependencies needed to build the above.
The tests are pretty basic, mostly checking that a Trusted Application in
the secure world can access and manipulate the memory. There are also some
negative tests for out of bounds buffers etc.
Thanks,
Jens
Changes since V7:
* Adding "dma-buf: dma-heap: export declared functions",
"cma: export cma_alloc() and cma_release()", and
"dma-contiguous: export dma_contiguous_default_area" to export the symbols
needed to keep the TEE subsystem as a load module.
* Removing CONFIG_TEE_DMABUF_HEAP and CONFIG_TEE_CMA since they aren't
needed any longer.
* Addressing review comments in "optee: sync secure world ABI headers"
* Better align protected memory pool initialization between the smc-abi and
ffa-abi parts of the optee driver.
Changes since V6:
* Restricted memory is now known as protected memory since to use the same
term as https://docs.vulkan.org/guide/latest/protected.html. Update all
patches to consistently use protected memory.
* In "tee: implement protected DMA-heap" add the hidden config option
TEE_DMABUF_HEAP to tell if the DMABUF_HEAPS functions are available
for the TEE subsystem
* Adding "tee: refactor params_from_user()", broken out from the patch
"tee: new ioctl to a register tee_shm from a dmabuf file descriptor"
* For "tee: new ioctl to a register tee_shm from a dmabuf file descriptor":
- Update commit message to mention protected memory
- Remove and open code tee_shm_get_parent_shm() in param_from_user_memref()
* In "tee: add tee_shm_alloc_cma_phys_mem" add the hidden config option
TEE_CMA to tell if the CMA functions are available for the TEE subsystem
* For "tee: tee_device_alloc(): copy dma_mask from parent device" and
"optee: pass parent device to tee_device_alloc", added
Reviewed-by: Sumit Garg <sumit.garg@...nel.org>
Changes since V5:
* Removing "tee: add restricted memory allocation" and
"tee: add TEE_IOC_RSTMEM_FD_INFO"
* Adding "tee: implement restricted DMA-heap",
"tee: new ioctl to a register tee_shm from a dmabuf file descriptor",
"tee: add tee_shm_alloc_cma_phys_mem()",
"optee: pass parent device to tee_device_alloc()", and
"tee: tee_device_alloc(): copy dma_mask from parent device"
* The two TEE driver OPs "rstmem_alloc()" and "rstmem_free()" are replaced
with a struct tee_rstmem_pool abstraction.
* Replaced the the TEE_IOC_RSTMEM_ALLOC user space API with the DMA-heap API
Changes since V4:
* Adding the patch "tee: add TEE_IOC_RSTMEM_FD_INFO" needed by the
GStreamer demo
* Removing the dummy CPU access and mmap functions from the dma_buf_ops
* Fixing a compile error in "optee: FF-A: dynamic restricted memory allocation"
reported by kernel test robot <lkp@...el.com>
Changes since V3:
* Make the use_case and flags field in struct tee_shm u32's instead of
u16's
* Add more description for TEE_IOC_RSTMEM_ALLOC in the header file
* Import namespace DMA_BUF in module tee, reported by lkp@...el.com
* Added a note in the commit message for "optee: account for direction
while converting parameters" why it's needed
* Factor out dynamic restricted memory allocation from
"optee: support restricted memory allocation" into two new commits
"optee: FF-A: dynamic restricted memory allocation" and
"optee: smc abi: dynamic restricted memory allocation"
* Guard CMA usage with #ifdef CONFIG_CMA, effectively disabling dynamic
restricted memory allocate if CMA isn't configured
Changes since the V2 RFC:
* Based on v6.12
* Replaced the flags for SVP and Trusted UID memory with a u32 field with
unique id for each use case
* Added dynamic allocation of restricted memory pools
* Added OP-TEE ABI both with and without FF-A for dynamic restricted memory
* Added support for FF-A with FFA_LEND
Changes since the V1 RFC:
* Based on v6.11
* Complete rewrite, replacing the restricted heap with TEE_IOC_RSTMEM_ALLOC
Changes since Olivier's post [2]:
* Based on Yong Wu's post [1] where much of dma-buf handling is done in
the generic restricted heap
* Simplifications and cleanup
* New commit message for "dma-buf: heaps: add Linaro restricted dmabuf heap
support"
* Replaced the word "secure" with "restricted" where applicable
Etienne Carriere (1):
tee: new ioctl to a register tee_shm from a dmabuf file descriptor
Jens Wiklander (13):
tee: tee_device_alloc(): copy dma_mask from parent device
optee: pass parent device to tee_device_alloc()
optee: account for direction while converting parameters
optee: sync secure world ABI headers
dma-buf: dma-heap: export declared functions
tee: implement protected DMA-heap
tee: refactor params_from_user()
cma: export cma_alloc() and cma_release()
dma-contiguous: export dma_contiguous_default_area
tee: add tee_shm_alloc_cma_phys_mem()
optee: support protected memory allocation
optee: FF-A: dynamic protected memory allocation
optee: smc abi: dynamic protected memory allocation
drivers/dma-buf/dma-heap.c | 3 +
drivers/tee/Makefile | 1 +
drivers/tee/optee/Makefile | 1 +
drivers/tee/optee/call.c | 10 +-
drivers/tee/optee/core.c | 1 +
drivers/tee/optee/ffa_abi.c | 198 ++++++++++++-
drivers/tee/optee/optee_ffa.h | 27 +-
drivers/tee/optee/optee_msg.h | 83 +++++-
drivers/tee/optee/optee_private.h | 55 +++-
drivers/tee/optee/optee_smc.h | 69 ++++-
drivers/tee/optee/protmem.c | 330 +++++++++++++++++++++
drivers/tee/optee/rpc.c | 31 +-
drivers/tee/optee/smc_abi.c | 191 ++++++++++--
drivers/tee/tee_core.c | 157 +++++++---
drivers/tee/tee_heap.c | 470 ++++++++++++++++++++++++++++++
drivers/tee/tee_private.h | 16 +
drivers/tee/tee_shm.c | 164 ++++++++++-
include/linux/tee_core.h | 70 +++++
include/linux/tee_drv.h | 10 +
include/uapi/linux/tee.h | 31 ++
kernel/dma/contiguous.c | 1 +
mm/cma.c | 2 +
22 files changed, 1789 insertions(+), 132 deletions(-)
create mode 100644 drivers/tee/optee/protmem.c
create mode 100644 drivers/tee/tee_heap.c
base-commit: b4432656b36e5cc1d50a1f2dc15357543add530e
--
2.43.0
Powered by blists - more mailing lists