[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-Id: <20250605142306.1930831-10-dongsheng.yang@linux.dev>
Date: Thu, 5 Jun 2025 14:23:04 +0000
From: Dongsheng Yang <dongsheng.yang@...ux.dev>
To: mpatocka@...hat.com,
agk@...hat.com,
snitzer@...nel.org,
axboe@...nel.dk,
hch@....de,
dan.j.williams@...el.com,
Jonathan.Cameron@...wei.com
Cc: linux-block@...r.kernel.org,
linux-kernel@...r.kernel.org,
linux-cxl@...r.kernel.org,
nvdimm@...ts.linux.dev,
dm-devel@...ts.linux.dev,
Dongsheng Yang <dongsheng.yang@...ux.dev>
Subject: [RFC PATCH 09/11] dm-pcache: add cache_req
Introduce cache_req.c, the high-level engine that
drives I/O requests through dm-pcache. It decides whether data is served
from the cache or fetched from the backing device, allocates new cache
space on writes, and flushes dirty ksets when required.
* Read path
- Traverses the striped RB-trees to locate cached extents.
- Generates backing READ requests for gaps and inserts placeholder
“empty” keys to avoid duplicate fetches.
- Copies valid data directly from pmem into the caller’s bio; CRC and
generation checks guard against stale segments.
* Write path
- Allocates space in the current data segment via cache_data_alloc().
- Copies data from the bio into pmem, then inserts or updates keys,
splitting or trimming overlapped ranges as needed.
- Adds each new key to the active kset; forces kset close when FUA is
requested or the kset is full.
* Miss handling
- create_cache_miss_req() builds a backing READ, optionally attaching
an empty key.
- miss_read_end_req() replaces the placeholder with real data once the
READ completes, or deletes it on error.
* Flush support
- cache_flush() iterates over all ksets and forces them to close,
ensuring data durability when REQ_PREFLUSH is received.
Signed-off-by: Dongsheng Yang <dongsheng.yang@...ux.dev>
---
drivers/md/dm-pcache/cache_req.c | 810 +++++++++++++++++++++++++++++++
1 file changed, 810 insertions(+)
create mode 100644 drivers/md/dm-pcache/cache_req.c
diff --git a/drivers/md/dm-pcache/cache_req.c b/drivers/md/dm-pcache/cache_req.c
new file mode 100644
index 000000000000..ab4dd4446d70
--- /dev/null
+++ b/drivers/md/dm-pcache/cache_req.c
@@ -0,0 +1,810 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+
+#include "cache.h"
+#include "backing_dev.h"
+#include "cache_dev.h"
+#include "dm_pcache.h"
+
+static int cache_data_head_init(struct pcache_cache *cache)
+{
+ struct pcache_cache_segment *next_seg;
+ struct pcache_cache_data_head *data_head;
+
+ data_head = get_data_head(cache);
+ next_seg = get_cache_segment(cache);
+ if (!next_seg)
+ return -EBUSY;
+
+ cache_seg_get(next_seg);
+ data_head->head_pos.cache_seg = next_seg;
+ data_head->head_pos.seg_off = 0;
+
+ return 0;
+}
+
+/*
+ * cache_data_alloc - Allocate data for a cache key.
+ * @cache: Pointer to the cache structure.
+ * @key: Pointer to the cache key to allocate data for.
+ *
+ * This function tries to allocate space from the cache segment specified by the
+ * data head. If the remaining space in the segment is insufficient to allocate
+ * the requested length for the cache key, it will allocate whatever is available
+ * and adjust the key's length accordingly. This function does not allocate
+ * space that crosses segment boundaries.
+ */
+static int cache_data_alloc(struct pcache_cache *cache, struct pcache_cache_key *key)
+{
+ struct pcache_cache_data_head *data_head;
+ struct pcache_cache_pos *head_pos;
+ struct pcache_cache_segment *cache_seg;
+ u32 seg_remain;
+ u32 allocated = 0, to_alloc;
+ int ret = 0;
+
+ preempt_disable();
+ data_head = get_data_head(cache);
+again:
+ if (!data_head->head_pos.cache_seg) {
+ seg_remain = 0;
+ } else {
+ cache_pos_copy(&key->cache_pos, &data_head->head_pos);
+ key->seg_gen = key->cache_pos.cache_seg->gen;
+
+ head_pos = &data_head->head_pos;
+ cache_seg = head_pos->cache_seg;
+ seg_remain = cache_seg_remain(head_pos);
+ to_alloc = key->len - allocated;
+ }
+
+ if (seg_remain > to_alloc) {
+ /* If remaining space in segment is sufficient for the cache key, allocate it. */
+ cache_pos_advance(head_pos, to_alloc);
+ allocated += to_alloc;
+ cache_seg_get(cache_seg);
+ } else if (seg_remain) {
+ /* If remaining space is not enough, allocate the remaining space and adjust the cache key length. */
+ cache_pos_advance(head_pos, seg_remain);
+ key->len = seg_remain;
+
+ /* Get for key: obtain a reference to the cache segment for the key. */
+ cache_seg_get(cache_seg);
+ /* Put for head_pos->cache_seg: release the reference for the current head's segment. */
+ cache_seg_put(head_pos->cache_seg);
+ head_pos->cache_seg = NULL;
+ } else {
+ /* Initialize a new data head if no segment is available. */
+ ret = cache_data_head_init(cache);
+ if (ret)
+ goto out;
+
+ goto again;
+ }
+
+out:
+ preempt_enable();
+
+ return ret;
+}
+
+static int cache_copy_from_req_bio(struct pcache_cache *cache, struct pcache_cache_key *key,
+ struct pcache_request *pcache_req, u32 bio_off)
+{
+ struct pcache_cache_pos *pos = &key->cache_pos;
+ struct pcache_segment *segment;
+
+ segment = &pos->cache_seg->segment;
+
+ return segment_copy_from_bio(segment, pos->seg_off, key->len, pcache_req->bio, bio_off);
+}
+
+static int cache_copy_to_req_bio(struct pcache_cache *cache, struct pcache_request *pcache_req,
+ u32 bio_off, u32 len, struct pcache_cache_pos *pos, u64 key_gen)
+{
+ struct pcache_cache_segment *cache_seg = pos->cache_seg;
+ struct pcache_segment *segment = &cache_seg->segment;
+ int ret;
+
+ spin_lock(&cache_seg->gen_lock);
+ if (key_gen < cache_seg->gen) {
+ spin_unlock(&cache_seg->gen_lock);
+ return -EINVAL;
+ }
+
+ ret = segment_copy_to_bio(segment, pos->seg_off, len, pcache_req->bio, bio_off);
+ spin_unlock(&cache_seg->gen_lock);
+
+ return ret;
+}
+
+/**
+ * miss_read_end_req - Handle the end of a miss read request.
+ * @pcache_req: Pointer to the request structure.
+ * @read_ret: Return value of read.
+ *
+ * This function is called when a backing request to read data from
+ * the backing_dev is completed. If the key associated with the request
+ * is empty (a placeholder), it allocates cache space for the key,
+ * copies the data read from the bio into the cache, and updates
+ * the key's status. If the key has been overwritten by a write
+ * request during this process, it will be deleted from the cache
+ * tree and no further action will be taken.
+ */
+static void miss_read_end_req(struct pcache_backing_dev_req *backing_req, int read_ret)
+{
+ void *priv_data = backing_req->priv_data;
+ struct pcache_request *pcache_req = backing_req->req.upper_req;
+ struct pcache_cache *cache = backing_req->backing_dev->cache;
+ int ret;
+
+ if (priv_data) {
+ struct pcache_cache_key *key;
+ struct pcache_cache_subtree *cache_subtree;
+
+ key = (struct pcache_cache_key *)priv_data;
+ cache_subtree = key->cache_subtree;
+
+ /* if this key was deleted from cache_subtree by a write, key->flags should be cleared,
+ * so if cache_key_empty() return true, this key is still in cache_subtree
+ */
+ spin_lock(&cache_subtree->tree_lock);
+ if (cache_key_empty(key)) {
+ /* Check if the backing request was successful. */
+ if (read_ret) {
+ cache_key_delete(key);
+ goto unlock;
+ }
+
+ /* Allocate cache space for the key and copy data from the backing_dev. */
+ ret = cache_data_alloc(cache, key);
+ if (ret) {
+ cache_key_delete(key);
+ goto unlock;
+ }
+
+ ret = cache_copy_from_req_bio(cache, key, pcache_req, backing_req->req.bio_off);
+ if (ret) {
+ cache_seg_put(key->cache_pos.cache_seg);
+ cache_key_delete(key);
+ goto unlock;
+ }
+ key->flags &= ~PCACHE_CACHE_KEY_FLAGS_EMPTY;
+ key->flags |= PCACHE_CACHE_KEY_FLAGS_CLEAN;
+
+ /* Append the key to the cache. */
+ ret = cache_key_append(cache, key, false);
+ if (ret) {
+ cache_seg_put(key->cache_pos.cache_seg);
+ cache_key_delete(key);
+ goto unlock;
+ }
+ }
+unlock:
+ spin_unlock(&cache_subtree->tree_lock);
+ cache_key_put(key);
+ }
+}
+
+/**
+ * submit_cache_miss_req - Submit a backing request when cache data is missing
+ * @cache: The cache context that manages cache operations
+ * @pcache_req: The cache request containing information about the read request
+ *
+ * This function is used to handle cases where a cache read request cannot locate
+ * the required data in the cache. When such a miss occurs during `cache_subtree_walk`,
+ * it triggers a backing read request to fetch data from the backing storage.
+ *
+ * If `pcache_req->priv_data` is set, it points to a `pcache_cache_key`, representing
+ * a new cache key to be inserted into the cache. The function calls `cache_key_insert`
+ * to attempt adding the key. On insertion failure, it releases the key reference and
+ * clears `priv_data` to avoid further processing.
+ */
+static void submit_cache_miss_req(struct pcache_cache *cache, struct pcache_backing_dev_req *backing_req)
+{
+ int ret;
+
+ if (backing_req->priv_data) {
+ struct pcache_cache_key *key;
+
+ /* Attempt to insert the key into the cache if priv_data is set */
+ key = (struct pcache_cache_key *)backing_req->priv_data;
+ ret = cache_key_insert(&cache->req_key_tree, key, true);
+ if (ret) {
+ /* Release the key if insertion fails */
+ cache_key_put(key);
+ backing_req->priv_data = NULL;
+ backing_req->ret = ret;
+ backing_dev_req_end(backing_req);
+ return;
+ }
+ }
+ backing_dev_req_submit(backing_req, false);
+}
+
+/**
+ * create_cache_miss_req - Create a backing read request for a cache miss
+ * @cache: The cache structure that manages cache operations
+ * @parent: The parent request structure initiating the miss read
+ * @off: Offset in the parent request to read from
+ * @len: Length of data to read from the backing_dev
+ * @insert_key: Determines whether to insert a placeholder empty key in the cache tree
+ *
+ * This function generates a new backing read request when a cache miss occurs. The
+ * `insert_key` parameter controls whether a placeholder (empty) cache key should be
+ * added to the cache tree to prevent multiple backing requests for the same missing
+ * data. Generally, when the miss read occurs in a cache segment that doesn't contain
+ * the requested data, a placeholder key is created and inserted.
+ *
+ * However, if the cache tree already has an empty key at the location for this
+ * read, there is no need to create another. Instead, this function just send the
+ * new request without adding a duplicate placeholder.
+ *
+ * Returns:
+ * A pointer to the newly created request structure on success, or NULL on failure.
+ * If an empty key is created, it will be released if any errors occur during the
+ * process to ensure proper cleanup.
+ */
+static struct pcache_backing_dev_req *create_cache_miss_req(struct pcache_cache *cache, struct pcache_request *parent,
+ u32 off, u32 len, bool insert_key)
+{
+ struct pcache_backing_dev *backing_dev = cache->backing_dev;
+ struct pcache_backing_dev_req *backing_req;
+ struct pcache_cache_key *key = NULL;
+ struct pcache_backing_dev_req_opts req_opts = { 0 };
+
+ req_opts.type = BACKING_DEV_REQ_TYPE_REQ;
+ req_opts.gfp_mask = GFP_NOWAIT;
+ req_opts.req.upper_req = parent;
+ req_opts.req.req_off = off;
+ req_opts.req.len = len;
+ req_opts.end_fn = miss_read_end_req;
+
+ backing_req = backing_dev_req_create(backing_dev, &req_opts);
+ if (!backing_req)
+ goto out;
+
+ /* Allocate a new empty key if insert_key is set */
+ if (insert_key) {
+ key = cache_key_alloc(&cache->req_key_tree);
+ if (!key) {
+ backing_req->ret = -ENOMEM;
+ goto end_req;
+ }
+
+ /* Initialize the empty key with offset, length, and empty flag */
+ key->off = parent->off + off;
+ key->len = len;
+ key->flags |= PCACHE_CACHE_KEY_FLAGS_EMPTY;
+ }
+
+ /* Attach the empty key to the request if it was created */
+ if (key) {
+ cache_key_get(key);
+ backing_req->priv_data = key;
+ }
+
+ return backing_req;
+
+end_req:
+ backing_dev_req_end(backing_req);
+out:
+ return NULL;
+}
+
+static int send_cache_miss_req(struct pcache_cache *cache, struct pcache_request *pcache_req,
+ u32 off, u32 len, bool insert_key)
+{
+ struct pcache_backing_dev_req *backing_req;
+
+ backing_req = create_cache_miss_req(cache, pcache_req, off, len, insert_key);
+ if (!backing_req)
+ return -ENOMEM;
+
+ submit_cache_miss_req(cache, backing_req);
+
+ return 0;
+}
+
+/*
+ * In the process of walking the cache tree to locate cached data, this
+ * function handles the situation where the requested data range lies
+ * entirely before an existing cache node (`key_tmp`). This outcome
+ * signifies that the target data is absent from the cache (cache miss).
+ *
+ * To fulfill this portion of the read request, the function creates a
+ * backing request (`backing_req`) for the missing data range represented
+ * by `key`. It then appends this request to the submission list in the
+ * `ctx`, which will later be processed to retrieve the data from backing
+ * storage. After setting up the backing request, `req_done` in `ctx` is
+ * updated to reflect the length of the handled range, and the range
+ * in `key` is adjusted by trimming off the portion that is now handled.
+ *
+ * The scenario handled here:
+ *
+ * |--------| key_tmp (existing cached range)
+ * |====| key (requested range, preceding key_tmp)
+ *
+ * Since `key` is before `key_tmp`, it signifies that the requested data
+ * range is missing in the cache (cache miss) and needs retrieval from
+ * backing storage.
+ */
+static int read_before(struct pcache_cache_key *key, struct pcache_cache_key *key_tmp,
+ struct pcache_cache_subtree_walk_ctx *ctx)
+{
+ struct pcache_backing_dev_req *backing_req;
+ int ret;
+
+ /*
+ * In this scenario, `key` represents a range that precedes `key_tmp`,
+ * meaning the requested data range is missing from the cache tree
+ * and must be retrieved from the backing_dev.
+ */
+ backing_req = create_cache_miss_req(ctx->cache_tree->cache, ctx->pcache_req, ctx->req_done, key->len, true);
+ if (!backing_req) {
+ ret = -ENOMEM;
+ goto out;
+ }
+
+ list_add(&backing_req->node, ctx->submit_req_list);
+ ctx->req_done += key->len;
+ cache_key_cutfront(key, key->len);
+
+ return 0;
+out:
+ return ret;
+}
+
+/*
+ * During cache_subtree_walk, this function manages a scenario where part of the
+ * requested data range overlaps with an existing cache node (`key_tmp`).
+ *
+ * |----------------| key_tmp (existing cached range)
+ * |===========| key (requested range, overlapping the tail of key_tmp)
+ */
+static int read_overlap_tail(struct pcache_cache_key *key, struct pcache_cache_key *key_tmp,
+ struct pcache_cache_subtree_walk_ctx *ctx)
+{
+ struct pcache_backing_dev_req *backing_req;
+ u32 io_len;
+ int ret;
+
+ /*
+ * Calculate the length of the non-overlapping portion of `key`
+ * before `key_tmp`, representing the data missing in the cache.
+ */
+ io_len = cache_key_lstart(key_tmp) - cache_key_lstart(key);
+ if (io_len) {
+ backing_req = create_cache_miss_req(ctx->cache_tree->cache, ctx->pcache_req, ctx->req_done, io_len, true);
+ if (!backing_req) {
+ ret = -ENOMEM;
+ goto out;
+ }
+
+ list_add(&backing_req->node, ctx->submit_req_list);
+ ctx->req_done += io_len;
+ cache_key_cutfront(key, io_len);
+ }
+
+ /*
+ * Handle the overlapping portion by calculating the length of
+ * the remaining data in `key` that coincides with `key_tmp`.
+ */
+ io_len = cache_key_lend(key) - cache_key_lstart(key_tmp);
+ if (cache_key_empty(key_tmp)) {
+ ret = send_cache_miss_req(ctx->cache_tree->cache, ctx->pcache_req, ctx->req_done, io_len, false);
+ if (ret)
+ goto out;
+ } else {
+ ret = cache_copy_to_req_bio(ctx->cache_tree->cache, ctx->pcache_req, ctx->req_done,
+ io_len, &key_tmp->cache_pos, key_tmp->seg_gen);
+ if (ret) {
+ list_add(&key_tmp->list_node, ctx->delete_key_list);
+ goto out;
+ }
+ }
+
+ ctx->req_done += io_len;
+ cache_key_cutfront(key, io_len);
+
+ return 0;
+
+out:
+ return ret;
+}
+
+/**
+ * The scenario handled here:
+ *
+ * |----| key_tmp (existing cached range)
+ * |==========| key (requested range)
+ */
+static int read_overlap_contain(struct pcache_cache_key *key, struct pcache_cache_key *key_tmp,
+ struct pcache_cache_subtree_walk_ctx *ctx)
+{
+ struct pcache_backing_dev_req *backing_req;
+ u32 io_len;
+ int ret;
+
+ /*
+ * Calculate the non-overlapping part of `key` before `key_tmp`
+ * to identify the missing data length.
+ */
+ io_len = cache_key_lstart(key_tmp) - cache_key_lstart(key);
+ if (io_len) {
+ backing_req = create_cache_miss_req(ctx->cache_tree->cache, ctx->pcache_req, ctx->req_done, io_len, true);
+ if (!backing_req) {
+ ret = -ENOMEM;
+ goto out;
+ }
+ list_add(&backing_req->node, ctx->submit_req_list);
+
+ ctx->req_done += io_len;
+ cache_key_cutfront(key, io_len);
+ }
+
+ /*
+ * Handle the overlapping portion between `key` and `key_tmp`.
+ */
+ io_len = key_tmp->len;
+ if (cache_key_empty(key_tmp)) {
+ ret = send_cache_miss_req(ctx->cache_tree->cache, ctx->pcache_req, ctx->req_done, io_len, false);
+ if (ret)
+ goto out;
+ } else {
+ ret = cache_copy_to_req_bio(ctx->cache_tree->cache, ctx->pcache_req, ctx->req_done,
+ io_len, &key_tmp->cache_pos, key_tmp->seg_gen);
+ if (ret) {
+ list_add(&key_tmp->list_node, ctx->delete_key_list);
+ goto out;
+ }
+ }
+
+ ctx->req_done += io_len;
+ cache_key_cutfront(key, io_len);
+
+ return 0;
+out:
+ return ret;
+}
+
+/*
+ * |-----------| key_tmp (existing cached range)
+ * |====| key (requested range, fully within key_tmp)
+ *
+ * If `key_tmp` contains valid cached data, this function copies the relevant
+ * portion to the request's bio. Otherwise, it sends a backing request to
+ * fetch the required data range.
+ */
+static int read_overlap_contained(struct pcache_cache_key *key, struct pcache_cache_key *key_tmp,
+ struct pcache_cache_subtree_walk_ctx *ctx)
+{
+ struct pcache_cache_pos pos;
+ int ret;
+
+ /*
+ * Check if `key_tmp` is empty, indicating a miss. If so, initiate
+ * a backing request to fetch the required data for `key`.
+ */
+ if (cache_key_empty(key_tmp)) {
+ ret = send_cache_miss_req(ctx->cache_tree->cache, ctx->pcache_req, ctx->req_done, key->len, false);
+ if (ret)
+ goto out;
+ } else {
+ cache_pos_copy(&pos, &key_tmp->cache_pos);
+ cache_pos_advance(&pos, cache_key_lstart(key) - cache_key_lstart(key_tmp));
+
+ ret = cache_copy_to_req_bio(ctx->cache_tree->cache, ctx->pcache_req, ctx->req_done,
+ key->len, &pos, key_tmp->seg_gen);
+ if (ret) {
+ list_add(&key_tmp->list_node, ctx->delete_key_list);
+ goto out;
+ }
+ }
+
+ ctx->req_done += key->len;
+ cache_key_cutfront(key, key->len);
+
+ return 0;
+out:
+ return ret;
+}
+
+/*
+ * |--------| key_tmp (existing cached range)
+ * |==========| key (requested range, overlapping the head of key_tmp)
+ */
+static int read_overlap_head(struct pcache_cache_key *key, struct pcache_cache_key *key_tmp,
+ struct pcache_cache_subtree_walk_ctx *ctx)
+{
+ struct pcache_cache_pos pos;
+ u32 io_len;
+ int ret;
+
+ io_len = cache_key_lend(key_tmp) - cache_key_lstart(key);
+
+ if (cache_key_empty(key_tmp)) {
+ ret = send_cache_miss_req(ctx->cache_tree->cache, ctx->pcache_req, ctx->req_done, io_len, false);
+ if (ret)
+ goto out;
+ } else {
+ cache_pos_copy(&pos, &key_tmp->cache_pos);
+ cache_pos_advance(&pos, cache_key_lstart(key) - cache_key_lstart(key_tmp));
+
+ ret = cache_copy_to_req_bio(ctx->cache_tree->cache, ctx->pcache_req, ctx->req_done,
+ io_len, &pos, key_tmp->seg_gen);
+ if (ret) {
+ list_add(&key_tmp->list_node, ctx->delete_key_list);
+ goto out;
+ }
+ }
+
+ ctx->req_done += io_len;
+ cache_key_cutfront(key, io_len);
+
+ return 0;
+out:
+ return ret;
+}
+
+/*
+ * read_walk_finally - Finalizes the cache read tree walk by submitting any
+ * remaining backing requests
+ * @ctx: Context structure holding information about the cache,
+ * read request, and submission list
+ *
+ * This function is called at the end of the `cache_subtree_walk` during a
+ * cache read operation. It completes the walk by checking if any data
+ * requested by `key` was not found in the cache tree, and if so, it sends
+ * a backing request to retrieve that data. Then, it iterates through the
+ * submission list of backing requests created during the walk, removing
+ * each request from the list and submitting it.
+ *
+ * The scenario managed here includes:
+ * - Sending a backing request for the remaining length of `key` if it was
+ * not fulfilled by existing cache entries.
+ * - Iterating through `ctx->submit_req_list` to submit each backing request
+ * enqueued during the walk.
+ *
+ * This ensures all necessary backing requests for cache misses are submitted
+ * to the backing storage to retrieve any data that could not be found in
+ * the cache.
+ */
+static int read_walk_finally(struct pcache_cache_subtree_walk_ctx *ctx)
+{
+ struct pcache_backing_dev_req *backing_req, *next_req;
+ struct pcache_cache_key *key = ctx->key;
+ int ret;
+
+ if (key->len) {
+ ret = send_cache_miss_req(ctx->cache_tree->cache, ctx->pcache_req, ctx->req_done, key->len, true);
+ if (ret)
+ goto out;
+ ctx->req_done += key->len;
+ }
+
+ list_for_each_entry_safe(backing_req, next_req, ctx->submit_req_list, node) {
+ list_del_init(&backing_req->node);
+ submit_cache_miss_req(ctx->cache_tree->cache, backing_req);
+ }
+
+ return 0;
+
+out:
+ return ret;
+}
+
+/*
+ * This function is used within `cache_subtree_walk` to determine whether the
+ * read operation has covered the requested data length. It compares the
+ * amount of data processed (`ctx->req_done`) with the total data length
+ * specified in the original request (`ctx->pcache_req->data_len`).
+ *
+ * If `req_done` meets or exceeds the required data length, the function
+ * returns `true`, indicating the walk is complete. Otherwise, it returns `false`,
+ * signaling that additional data processing is needed to fulfill the request.
+ */
+static bool read_walk_done(struct pcache_cache_subtree_walk_ctx *ctx)
+{
+ return (ctx->req_done >= ctx->pcache_req->data_len);
+}
+
+/*
+ * cache_read - Process a read request by traversing the cache tree
+ * @cache: Cache structure holding cache trees and related configurations
+ * @pcache_req: Request structure with information about the data to read
+ *
+ * This function attempts to fulfill a read request by traversing the cache tree(s)
+ * to locate cached data for the requested range. If parts of the data are missing
+ * in the cache, backing requests are generated to retrieve the required segments.
+ *
+ * The function operates by initializing a key for the requested data range and
+ * preparing a context (`walk_ctx`) to manage the cache tree traversal. The context
+ * includes pointers to functions (e.g., `read_before`, `read_overlap_tail`) that handle
+ * specific conditions encountered during the traversal. The `walk_finally` and `walk_done`
+ * functions manage the end stages of the traversal, while the `delete_key_list` and
+ * `submit_req_list` lists track any keys to be deleted or requests to be submitted.
+ *
+ * The function first calculates the requested range and checks if it fits within the
+ * current cache tree (based on the tree's size limits). It then locks the cache tree
+ * and performs a search to locate any matching keys. If there are outdated keys,
+ * these are deleted, and the search is restarted to ensure accurate data retrieval.
+ *
+ * If the requested range spans multiple cache trees, the function moves on to the
+ * next tree once the current range has been processed. This continues until the
+ * entire requested data length has been handled.
+ */
+static int cache_read(struct pcache_cache *cache, struct pcache_request *pcache_req)
+{
+ struct pcache_cache_key key_data = { .off = pcache_req->off, .len = pcache_req->data_len };
+ struct pcache_cache_subtree *cache_subtree;
+ struct pcache_cache_key *key_tmp = NULL, *key_next;
+ struct rb_node *prev_node = NULL;
+ struct pcache_cache_key *key = &key_data;
+ struct pcache_cache_subtree_walk_ctx walk_ctx = { 0 };
+ LIST_HEAD(delete_key_list);
+ LIST_HEAD(submit_req_list);
+ int ret;
+
+ walk_ctx.cache_tree = &cache->req_key_tree;
+ walk_ctx.req_done = 0;
+ walk_ctx.pcache_req = pcache_req;
+ walk_ctx.before = read_before;
+ walk_ctx.overlap_tail = read_overlap_tail;
+ walk_ctx.overlap_head = read_overlap_head;
+ walk_ctx.overlap_contain = read_overlap_contain;
+ walk_ctx.overlap_contained = read_overlap_contained;
+ walk_ctx.walk_finally = read_walk_finally;
+ walk_ctx.walk_done = read_walk_done;
+ walk_ctx.delete_key_list = &delete_key_list;
+ walk_ctx.submit_req_list = &submit_req_list;
+
+next_tree:
+ key->off = pcache_req->off + walk_ctx.req_done;
+ key->len = pcache_req->data_len - walk_ctx.req_done;
+ if (key->len > PCACHE_CACHE_SUBTREE_SIZE - (key->off & PCACHE_CACHE_SUBTREE_SIZE_MASK))
+ key->len = PCACHE_CACHE_SUBTREE_SIZE - (key->off & PCACHE_CACHE_SUBTREE_SIZE_MASK);
+
+ cache_subtree = get_subtree(&cache->req_key_tree, key->off);
+ spin_lock(&cache_subtree->tree_lock);
+
+search:
+ prev_node = cache_subtree_search(cache_subtree, key, NULL, NULL, &delete_key_list);
+
+cleanup_tree:
+ if (!list_empty(&delete_key_list)) {
+ list_for_each_entry_safe(key_tmp, key_next, &delete_key_list, list_node) {
+ list_del_init(&key_tmp->list_node);
+ cache_key_delete(key_tmp);
+ }
+ goto search;
+ }
+
+ walk_ctx.start_node = prev_node;
+ walk_ctx.key = key;
+
+ ret = cache_subtree_walk(&walk_ctx);
+ if (ret == -EINVAL)
+ goto cleanup_tree;
+ else if (ret)
+ goto out;
+
+ spin_unlock(&cache_subtree->tree_lock);
+
+ if (walk_ctx.req_done < pcache_req->data_len)
+ goto next_tree;
+
+ return 0;
+out:
+ spin_unlock(&cache_subtree->tree_lock);
+
+ return ret;
+}
+
+static int cache_write(struct pcache_cache *cache, struct pcache_request *pcache_req)
+{
+ struct pcache_cache_subtree *cache_subtree;
+ struct pcache_cache_key *key;
+ u64 offset = pcache_req->off;
+ u32 length = pcache_req->data_len;
+ u32 io_done = 0;
+ int ret;
+
+ while (true) {
+ if (io_done >= length)
+ break;
+
+ key = cache_key_alloc(&cache->req_key_tree);
+ if (!key) {
+ ret = -ENOMEM;
+ goto err;
+ }
+
+ key->off = offset + io_done;
+ key->len = length - io_done;
+ if (key->len > PCACHE_CACHE_SUBTREE_SIZE - (key->off & PCACHE_CACHE_SUBTREE_SIZE_MASK))
+ key->len = PCACHE_CACHE_SUBTREE_SIZE - (key->off & PCACHE_CACHE_SUBTREE_SIZE_MASK);
+
+ ret = cache_data_alloc(cache, key);
+ if (ret) {
+ cache_key_put(key);
+ goto err;
+ }
+
+ ret = cache_copy_from_req_bio(cache, key, pcache_req, io_done);
+ if (ret) {
+ cache_seg_put(key->cache_pos.cache_seg);
+ cache_key_put(key);
+ goto err;
+ }
+
+ cache_subtree = get_subtree(&cache->req_key_tree, key->off);
+ spin_lock(&cache_subtree->tree_lock);
+ ret = cache_key_insert(&cache->req_key_tree, key, true);
+ if (ret) {
+ cache_seg_put(key->cache_pos.cache_seg);
+ cache_key_put(key);
+ goto unlock;
+ }
+
+ ret = cache_key_append(cache, key, pcache_req->bio->bi_opf & REQ_FUA);
+ if (ret) {
+ cache_seg_put(key->cache_pos.cache_seg);
+ cache_key_delete(key);
+ goto unlock;
+ }
+
+ io_done += key->len;
+ spin_unlock(&cache_subtree->tree_lock);
+ }
+
+ return 0;
+unlock:
+ spin_unlock(&cache_subtree->tree_lock);
+err:
+ return ret;
+}
+
+/**
+ * cache_flush - Flush all ksets to persist any pending cache data
+ * @cache: Pointer to the cache structure
+ *
+ * This function iterates through all ksets associated with the provided `cache`
+ * and ensures that any data marked for persistence is written to media. For each
+ * kset, it acquires the kset lock, then invokes `cache_kset_close`, which handles
+ * the persistence logic for that kset.
+ *
+ * If `cache_kset_close` encounters an error, the function exits immediately with
+ * the respective error code, preventing the flush operation from proceeding to
+ * subsequent ksets.
+ */
+int cache_flush(struct pcache_cache *cache)
+{
+ struct pcache_cache_kset *kset;
+ u32 i, ret;
+
+ for (i = 0; i < cache->n_ksets; i++) {
+ kset = get_kset(cache, i);
+
+ spin_lock(&kset->kset_lock);
+ ret = cache_kset_close(cache, kset);
+ spin_unlock(&kset->kset_lock);
+
+ if (ret)
+ return ret;
+ }
+
+ return 0;
+}
+
+int pcache_cache_handle_req(struct pcache_cache *cache, struct pcache_request *pcache_req)
+{
+ struct bio *bio = pcache_req->bio;
+
+ if (unlikely(bio->bi_opf & REQ_PREFLUSH))
+ return cache_flush(cache);
+
+ if (bio_data_dir(bio) == READ)
+ return cache_read(cache, pcache_req);
+
+ return cache_write(cache, pcache_req);
+}
--
2.34.1
Powered by blists - more mailing lists