lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <6b73e029.985f.1982d0a122d.Coremail.chenyuan_fl@163.com>
Date: Mon, 21 Jul 2025 20:51:31 +0800 (CST)
From: chenyuan  <chenyuan_fl@....com>
To: "Yonghong Song" <yonghong.song@...ux.dev>
Cc: ast@...nel.org, qmo@...n.net, bpf@...r.kernel.org,
	linux-kernel@...r.kernel.org, "Yuan Chen" <chenyuan@...inos.cn>
Subject: Re:Re: [PATCH v3] bpftool: Add CET-aware symbol matching for x86_64
 architectures

Apologies for any inaccuracies in my previous explanation. Below, I'll provide a brief clarification based
on verification across both ARM64 and x86 platforms:
arm64:
Without kprobe/kprobe_multi Hook:
(gdb) disassemble vfs_read
Dump of assembler code for function vfs_read:
   0xffffc000803ca308 <+0>:	bti	c   // ARM64 BTI security instruction  
   0xffffc000803ca30c <+4>:	nop
   0xffffc000803ca310 <+8>:	nop
   0xffffc000803ca314 <+12>:	paciasp
   0xffffc000803ca318 <+16>:	sub	sp, sp, #0xa0

With kprobe/kprobe_multi Hook:
(gdb) disassemble vfs_read
Dump of assembler code for function vfs_read:
   0xffffc000803ca308 <+0>:	brk	#0x4  // BTI replaced by breakpoint  
   0xffffc000803ca30c <+4>:	mov	x9, x30
   0xffffc000803ca310 <+8>:	nop
   0xffffc000803ca314 <+12>:	paciasp
   0xffffc000803ca318 <+16>:	sub	sp, sp, #0xa0

kprobe directly overwrites the first instruction (bti c → brk #0x4). Hook address (0xffffc000803ca308) matches
the symbol address exactly.

x86_64:
Without kprobe/kprobe_multi Hook:
(gdb) disassemble vfs_read
Dump of assembler code for function vfs_read:
   0xffffffff82112b40 <+0>:     endbr64  // x86 CET security instruction  
   0xffffffff82112b44 <+4>:     nopl   0x0(%rax,%rax,1)
   0xffffffff82112b49 <+9>:     push   %r15
   0xffffffff82112b4b <+11>:    mov    %rsi,%r15
   0xffffffff82112b4e <+14>:    push   %r14
   0xffffffff82112b50 <+16>:    push   %r13

With kprobe/kprobe_multi Hook:
(gdb) disassemble vfs_read
Dump of assembler code for function vfs_read:
   0xffffffff82112b40 <+0>:     endbr64   // Preserved security instruction  
   0xffffffff82112b44 <+4>:     call   0xffffffffa1830000  // Hook replaces nopl
   0xffffffff82112b49 <+9>:     push   %r15
   0xffffffff82112b4b <+11>:    mov    %rsi,%r15
   0xffffffff82112b4e <+14>:    push   %r14
   0xffffffff82112b50 <+16>:    push   %r13

kprobe preserves endbr64 and overwrites the subsequent instruction (nopl → call). Hook address (0xffffffff82112b44) 
requires -4 offset (0xffffffff82112b40) to match the symbol address.

ARM64 hooks replace the very first instruction (including security features like BTI), while x86_64 hooks target the instruction
immediately after endbr64, creating a 4-byte offset that must be compensated for when resolving symbol addresses.













At 2025-07-12 08:47:32, "Yonghong Song" <yonghong.song@...ux.dev> wrote:
>
>
>On 7/11/25 12:07 AM, chenyuan wrote:
>> Thank you for your feedback! Does ARM64 require similar address adjustment detection? In my ARM64
>>   environment with BTI enabled, bpftool correctly retrieves and prints function symbols. Could my verification
>>   method be flawed?
>> Here’s a detailed explanation:
>>
>> ARM64 BTI vs. x86 CET: Fundamental Differences
>>
>>      x86 CET (Control-flow Enforcement Technology):
>>          Requires endbr32/endbr64 at function entries. Overwriting these instructions breaks CET protection .
>>          Kernel logic (e.g., bpf_trace.c) adjusts symbol addresses by -4 to skip the endbr prefix .
>
>This interpretation is not correct. The adjustment by -4 is not to skip the endbr prefix,
>but to get the actual symbol address. For example,
>
>ffffffff83809cb0 <bpf_fentry_test3>:
>ffffffff83809cb0: f3 0f 1e fa           endbr64
>ffffffff83809cb4: 0f 1f 44 00 00        nopl    (%rax,%rax)
>ffffffff83809cb9: 8d 04 37              leal    (%rdi,%rsi), %eax
>ffffffff83809cbc: 01 d0                 addl    %edx, %eax
>ffffffff83809cbe: 2e e9 6c d3 c8 00     jmp     0xffffffff84497030 <__x86_return_thunk>
>ffffffff83809cc4: 66 66 66 2e 0f 1f 84 00 00 00 00 00   nopw    %cs:(%rax,%rax)
>
>The fentry_ip argument in func get_entry_ip() is 0xffffffff83809cb4. Adding -4
>will get the value 0xffffffff83809cb0 which is the actual start of the function.
>
>>      ARM64 BTI (Branch Target Identification):
>>          Uses BTI instructions as "landing pads" for indirect jumps. Kprobes can safely overwrite BTI instructions without triggering faults because:
>>              Executing BTI, SG, or PACBTI clears EPSR.B (the enforcement flag), allowing subsequent non-BTI instructions .
>>              Non-landing-pad instructions (e.g., probes) only fault if executed before EPSR.B is cleared – which doesn’t occur when probes replace BTI .
>
>I am not super familiar with arm64 bti. But from an arm64 kernel, with my config file (based on bpf CI),
>I didn't find bti insns for tracable functions. So I double arm64 kernel will need address adjustment.
>Otherwise, get_entry_ip() should do adjustment there.
>
>It would be great if you can have an example to show arm64 also needs addr adjustment in bpftool
>as in this patch.
>
>>
>> https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/armv8-1-m-pointer-authentication-and-branch-target-identification-extension
>>
>>
>>
>>
>>
>>
>>
>>
>>
>> At 2025-07-01 10:31:41, "Yonghong Song" <yonghong.song@...ux.dev> wrote:
>>>
>>> On 6/26/25 12:49 AM, Yuan Chen wrote:
>>>> From: Yuan Chen <chenyuan@...inos.cn>
>>>>
>>>> Adjust symbol matching logic to account for Control-flow Enforcement
>>>> Technology (CET) on x86_64 systems. CET prefixes functions with a 4-byte
>>>> 'endbr' instruction, shifting the actual entry point to symbol + 4.
>>>>
>>>> Signed-off-by: Yuan Chen <chenyuan@...inos.cn>
>>>> ---
>>>>    tools/bpf/bpftool/link.c | 30 ++++++++++++++++++++++++++++--
>>>>    1 file changed, 28 insertions(+), 2 deletions(-)
>>>>
>>>> diff --git a/tools/bpf/bpftool/link.c b/tools/bpf/bpftool/link.c
>>>> index 03513ffffb79..dfd192b4c5ad 100644
>>>> --- a/tools/bpf/bpftool/link.c
>>>> +++ b/tools/bpf/bpftool/link.c
>>>> @@ -307,8 +307,21 @@ show_kprobe_multi_json(struct bpf_link_info *info, json_writer_t *wtr)
>>>>    		goto error;
>>>>    
>>>>    	for (i = 0; i < dd.sym_count; i++) {
>>>> -		if (dd.sym_mapping[i].address != data[j].addr)
>>>> +		if (dd.sym_mapping[i].address != data[j].addr) {
>>>> +#if defined(__x86_64__) || defined(__amd64__)
>>>> +			/*
>>>> +			 * On x86_64 architectures with CET (Control-flow Enforcement Technology),
>>>> +			 * function entry points have a 4-byte 'endbr' instruction prefix.
>>>> +			 * This causes the actual function address = symbol address + 4.
>>>> +			 * Here we check if this symbol matches the target address minus 4,
>>>> +			 * indicating we've found a CET-enabled function entry point.
>>>> +			 */
>>>> +			if (dd.sym_mapping[i].address == data[j].addr - 4)
>>>> +				goto found;
>>>> +#endif
>>> In kernel/trace/bpf_trace.c, I see
>>>
>>> static inline unsigned long get_entry_ip(unsigned long fentry_ip)
>>> {
>>> #ifdef CONFIG_X86_KERNEL_IBT
>>>          if (is_endbr((void *)(fentry_ip - ENDBR_INSN_SIZE)))
>>>                  fentry_ip -= ENDBR_INSN_SIZE;
>>> #endif
>>>          return fentry_ip;
>>> }
>>>
>>> Could you explain why arm64 also need to do checking
>>>      if (dd.sym_mapping[i].address == data[j].addr - 4)
>>> like x86_64?
>>>
>>>>    			continue;
>>>> +		}
>>>> +found:
>>>>    		jsonw_start_object(json_wtr);
>>>>    		jsonw_uint_field(json_wtr, "addr", dd.sym_mapping[i].address);
>>>>    		jsonw_string_field(json_wtr, "func", dd.sym_mapping[i].name);
>>>> @@ -744,8 +757,21 @@ static void show_kprobe_multi_plain(struct bpf_link_info *info)
>>>>    
>>>>    	printf("\n\t%-16s %-16s %s", "addr", "cookie", "func [module]");
>>>>    	for (i = 0; i < dd.sym_count; i++) {
>>>> -		if (dd.sym_mapping[i].address != data[j].addr)
>>>> +		if (dd.sym_mapping[i].address != data[j].addr) {
>>>> +#if defined(__x86_64__) || defined(__amd64__)
>>>> +			/*
>>>> +			 * On x86_64 architectures with CET (Control-flow Enforcement Technology),
>>>> +			 * function entry points have a 4-byte 'endbr' instruction prefix.
>>>> +			 * This causes the actual function address = symbol address + 4.
>>>> +			 * Here we check if this symbol matches the target address minus 4,
>>>> +			 * indicating we've found a CET-enabled function entry point.
>>>> +			 */
>>>> +			if (dd.sym_mapping[i].address == data[j].addr - 4)
>>>> +				goto found;
>>>> +#endif
>>>>    			continue;
>>>> +		}
>>>> +found:
>>>>    		printf("\n\t%016lx %-16llx %s",
>>>>    		       dd.sym_mapping[i].address, data[j].cookie, dd.sym_mapping[i].name);
>>>>    		if (dd.sym_mapping[i].module[0] != '\0')

Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ