[<prev] [next>] [day] [month] [year] [list]
Message-ID: <20250814092532.116762-1-donettom@linux.ibm.com>
Date: Thu, 14 Aug 2025 14:55:32 +0530
From: Donet Tom <donettom@...ux.ibm.com>
To: Madhavan Srinivasan <maddy@...ux.ibm.com>,
Christophe Leroy <christophe.leroy@...roup.eu>,
linuxppc-dev@...ts.ozlabs.org
Cc: Ritesh Harjani <ritesh.list@...il.com>, linux-kernel@...r.kernel.org,
Michael Ellerman <mpe@...erman.id.au>,
Nicholas Piggin <npiggin@...il.com>,
Vishal Chourasia <vishalc@...ux.ibm.com>,
Donet Tom <donettom@...ux.ibm.com>, stable@...r.kernel.org
Subject: [PATCH] powerpc/mm: Fix SLB multihit issue during SLB preload
On systems using the hash MMU, there is a software SLB preload cache that
mirrors the entries loaded into the hardware SLB buffer. This preload
cache is subject to periodic eviction — typically after every 256 context
switches — to remove old entry.
To optimize performance, the kernel skips switch_mmu_context() in
switch_mm_irqs_off() when the prev and next mm_struct are the same.
However, on hash MMU systems, this can lead to inconsistencies between
the hardware SLB and the software preload cache.
If an SLB entry for a process is evicted from the software cache on one
CPU, and the same process later runs on another CPU without executing
switch_mmu_context(), the hardware SLB may retain stale entries. If the
kernel then attempts to reload that entry, it can trigger an SLB
multi-hit error.
The following timeline shows how stale SLB entries are created and can
cause a multi-hit error when a process moves between CPUs without a
MMU context switch.
CPU 0 CPU 1
----- -----
Process P
exec swapper/1
load_elf_binary
begin_new_exc
activate_mm
switch_mm_irqs_off
switch_mmu_context
switch_slb
/*
* This invalidates all
* the entries in the HW
* and setup the new HW
* SLB entries as per the
* preload cache.
*/
context_switch
sched_migrate_task migrates process P to cpu-1
Process swapper/0 context switch (to process P)
(uses mm_struct of Process P) switch_mm_irqs_off()
switch_slb
load_slb++
/*
* load_slb becomes 0 here
* and we evict an entry from
* the preload cache with
* preload_age(). We still
* keep HW SLB and preload
* cache in sync, that is
* because all HW SLB entries
* anyways gets evicted in
* switch_slb during SLBIA.
* We then only add those
* entries back in HW SLB,
* which are currently
* present in preload_cache
* (after eviction).
*/
load_elf_binary continues...
setup_new_exec()
slb_setup_new_exec()
sched_switch event
sched_migrate_task migrates
process P to cpu-0
context_switch from swapper/0 to Process P
switch_mm_irqs_off()
/*
* Since both prev and next mm struct are same we don't call
* switch_mmu_context(). This will cause the HW SLB and SW preload
* cache to go out of sync in preload_new_slb_context. Because there
* was an SLB entry which was evicted from both HW and preload cache
* on cpu-1. Now later in preload_new_slb_context(), when we will try
* to add the same preload entry again, we will add this to the SW
* preload cache and then will add it to the HW SLB. Since on cpu-0
* this entry was never invalidated, hence adding this entry to the HW
* SLB will cause a SLB multi-hit error.
*/
load_elf_binary continues...
START_THREAD
start_thread
preload_new_slb_context
/*
* This tries to add a new EA to preload cache which was earlier
* evicted from both cpu-1 HW SLB and preload cache. This caused the
* HW SLB of cpu-0 to go out of sync with the SW preload cache. The
* reason for this was, that when we context switched back on CPU-0,
* we should have ideally called switch_mmu_context() which will
* bring the HW SLB entries on CPU-0 in sync with SW preload cache
* entries by setting up the mmu context properly. But we didn't do
* that since the prev mm_struct running on cpu-0 was same as the
* next mm_struct (which is true for swapper / kernel threads). So
* now when we try to add this new entry into the HW SLB of cpu-0,
* we hit a SLB multi-hit error.
*/
WARNING: CPU: 0 PID: 1810970 at arch/powerpc/mm/book3s64/slb.c:62
assert_slb_presence+0x2c/0x50(48 results) 02:47:29 [20157/42149]
Modules linked in:
CPU: 0 UID: 0 PID: 1810970 Comm: dd Not tainted 6.16.0-rc3-dirty #12
VOLUNTARY
Hardware name: IBM pSeries (emulated by qemu) POWER8 (architected)
0x4d0200 0xf000004 of:SLOF,HEAD hv:linux,kvm pSeries
NIP: c00000000015426c LR: c0000000001543b4 CTR: 0000000000000000
REGS: c0000000497c77e0 TRAP: 0700 Not tainted (6.16.0-rc3-dirty)
MSR: 8000000002823033 <SF,VEC,VSX,FP,ME,IR,DR,RI,LE> CR: 28888482 XER: 00000000
CFAR: c0000000001543b0 IRQMASK: 3
<...>
NIP [c00000000015426c] assert_slb_presence+0x2c/0x50
LR [c0000000001543b4] slb_insert_entry+0x124/0x390
Call Trace:
0x7fffceb5ffff (unreliable)
preload_new_slb_context+0x100/0x1a0
start_thread+0x26c/0x420
load_elf_binary+0x1b04/0x1c40
bprm_execve+0x358/0x680
do_execveat_common+0x1f8/0x240
sys_execve+0x58/0x70
system_call_exception+0x114/0x300
system_call_common+0x160/0x2c4
>From the above analysis, during early exec the hardware SLB is cleared,
and entries from the software preload cache are reloaded into hardware
by switch_slb. However, preload_new_slb_context and slb_setup_new_exec
also attempt to load some of the same entries, which can trigger a
multi-hit. In most cases, these additional preloads simply hit existing
entries and add nothing new. Removing these functions avoids redundant
preloads and eliminates the multi-hit issue. This patch removes these
two functions.
We tested process switching performance using the context_switch
benchmark on POWER9/hash, and observed no regression.
Without this patch: 129041 ops/sec
With this patch: 129341 ops/sec
We also measured SLB faults during boot, and the counts are essentially
the same with and without this patch.
SLB faults without this patch: 19727
SLB faults with this patch: 19786
Fixes: 5434ae74629a ("powerpc/64s/hash: Add a SLB preload cache")
cc: stable@...r.kernel.org
Suggested-by: Nicholas Piggin <npiggin@...il.com>
Signed-off-by: Donet Tom <donettom@...ux.ibm.com>
---
arch/powerpc/include/asm/book3s/64/mmu-hash.h | 1 -
arch/powerpc/kernel/process.c | 5 --
arch/powerpc/mm/book3s64/internal.h | 2 -
arch/powerpc/mm/book3s64/mmu_context.c | 2 -
arch/powerpc/mm/book3s64/slb.c | 88 -------------------
5 files changed, 98 deletions(-)
diff --git a/arch/powerpc/include/asm/book3s/64/mmu-hash.h b/arch/powerpc/include/asm/book3s/64/mmu-hash.h
index 1c4eebbc69c9..e1f77e2eead4 100644
--- a/arch/powerpc/include/asm/book3s/64/mmu-hash.h
+++ b/arch/powerpc/include/asm/book3s/64/mmu-hash.h
@@ -524,7 +524,6 @@ void slb_save_contents(struct slb_entry *slb_ptr);
void slb_dump_contents(struct slb_entry *slb_ptr);
extern void slb_vmalloc_update(void);
-void preload_new_slb_context(unsigned long start, unsigned long sp);
#ifdef CONFIG_PPC_64S_HASH_MMU
void slb_set_size(u16 size);
diff --git a/arch/powerpc/kernel/process.c b/arch/powerpc/kernel/process.c
index 855e09886503..2b9799157eb4 100644
--- a/arch/powerpc/kernel/process.c
+++ b/arch/powerpc/kernel/process.c
@@ -1897,8 +1897,6 @@ int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
return 0;
}
-void preload_new_slb_context(unsigned long start, unsigned long sp);
-
/*
* Set up a thread for executing a new program
*/
@@ -1906,9 +1904,6 @@ void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
{
#ifdef CONFIG_PPC64
unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
-
- if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && !radix_enabled())
- preload_new_slb_context(start, sp);
#endif
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
diff --git a/arch/powerpc/mm/book3s64/internal.h b/arch/powerpc/mm/book3s64/internal.h
index a57a25f06a21..c26a6f0c90fc 100644
--- a/arch/powerpc/mm/book3s64/internal.h
+++ b/arch/powerpc/mm/book3s64/internal.h
@@ -24,8 +24,6 @@ static inline bool stress_hpt(void)
void hpt_do_stress(unsigned long ea, unsigned long hpte_group);
-void slb_setup_new_exec(void);
-
void exit_lazy_flush_tlb(struct mm_struct *mm, bool always_flush);
#endif /* ARCH_POWERPC_MM_BOOK3S64_INTERNAL_H */
diff --git a/arch/powerpc/mm/book3s64/mmu_context.c b/arch/powerpc/mm/book3s64/mmu_context.c
index 4e1e45420bd4..fb9dcf9ca599 100644
--- a/arch/powerpc/mm/book3s64/mmu_context.c
+++ b/arch/powerpc/mm/book3s64/mmu_context.c
@@ -150,8 +150,6 @@ static int hash__init_new_context(struct mm_struct *mm)
void hash__setup_new_exec(void)
{
slice_setup_new_exec();
-
- slb_setup_new_exec();
}
#else
static inline int hash__init_new_context(struct mm_struct *mm)
diff --git a/arch/powerpc/mm/book3s64/slb.c b/arch/powerpc/mm/book3s64/slb.c
index 6b783552403c..7e053c561a09 100644
--- a/arch/powerpc/mm/book3s64/slb.c
+++ b/arch/powerpc/mm/book3s64/slb.c
@@ -328,94 +328,6 @@ static void preload_age(struct thread_info *ti)
ti->slb_preload_tail = (ti->slb_preload_tail + 1) % SLB_PRELOAD_NR;
}
-void slb_setup_new_exec(void)
-{
- struct thread_info *ti = current_thread_info();
- struct mm_struct *mm = current->mm;
- unsigned long exec = 0x10000000;
-
- WARN_ON(irqs_disabled());
-
- /*
- * preload cache can only be used to determine whether a SLB
- * entry exists if it does not start to overflow.
- */
- if (ti->slb_preload_nr + 2 > SLB_PRELOAD_NR)
- return;
-
- hard_irq_disable();
-
- /*
- * We have no good place to clear the slb preload cache on exec,
- * flush_thread is about the earliest arch hook but that happens
- * after we switch to the mm and have already preloaded the SLBEs.
- *
- * For the most part that's probably okay to use entries from the
- * previous exec, they will age out if unused. It may turn out to
- * be an advantage to clear the cache before switching to it,
- * however.
- */
-
- /*
- * preload some userspace segments into the SLB.
- * Almost all 32 and 64bit PowerPC executables are linked at
- * 0x10000000 so it makes sense to preload this segment.
- */
- if (!is_kernel_addr(exec)) {
- if (preload_add(ti, exec))
- slb_allocate_user(mm, exec);
- }
-
- /* Libraries and mmaps. */
- if (!is_kernel_addr(mm->mmap_base)) {
- if (preload_add(ti, mm->mmap_base))
- slb_allocate_user(mm, mm->mmap_base);
- }
-
- /* see switch_slb */
- asm volatile("isync" : : : "memory");
-
- local_irq_enable();
-}
-
-void preload_new_slb_context(unsigned long start, unsigned long sp)
-{
- struct thread_info *ti = current_thread_info();
- struct mm_struct *mm = current->mm;
- unsigned long heap = mm->start_brk;
-
- WARN_ON(irqs_disabled());
-
- /* see above */
- if (ti->slb_preload_nr + 3 > SLB_PRELOAD_NR)
- return;
-
- hard_irq_disable();
-
- /* Userspace entry address. */
- if (!is_kernel_addr(start)) {
- if (preload_add(ti, start))
- slb_allocate_user(mm, start);
- }
-
- /* Top of stack, grows down. */
- if (!is_kernel_addr(sp)) {
- if (preload_add(ti, sp))
- slb_allocate_user(mm, sp);
- }
-
- /* Bottom of heap, grows up. */
- if (heap && !is_kernel_addr(heap)) {
- if (preload_add(ti, heap))
- slb_allocate_user(mm, heap);
- }
-
- /* see switch_slb */
- asm volatile("isync" : : : "memory");
-
- local_irq_enable();
-}
-
static void slb_cache_slbie_kernel(unsigned int index)
{
unsigned long slbie_data = get_paca()->slb_cache[index];
--
2.47.3
Powered by blists - more mailing lists