lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [<thread-prev] [day] [month] [year] [list]
Message-ID: <7b10341d-b5a3-4a37-a2b1-fa7826ea116b@baylibre.com>
Date: Fri, 29 Aug 2025 17:02:04 -0500
From: David Lechner <dlechner@...libre.com>
To: Antoniu Miclaus <antoniu.miclaus@...log.com>, jic23@...nel.org,
 robh@...nel.org, conor+dt@...nel.org, linux-iio@...r.kernel.org,
 linux-kernel@...r.kernel.org, devicetree@...r.kernel.org
Subject: Re: [PATCH v6 4/6] iio: adc: add ade9000 support

On 8/29/25 6:41 AM, Antoniu Miclaus wrote:
> Add driver support for the ade9000. highly accurate,
> fully integrated, multiphase energy and power quality
> monitoring device.
> 
> Signed-off-by: Antoniu Miclaus <antoniu.miclaus@...log.com>
> ---
> changes in v6:
>  - remove unused constants and buffers
>  - use local buffers for SPI instead of state structure
>  - add better comments explaining registers
>  - disable all interrupts by default
>  - add event lookup table for IRQ1 handler
>  - replace switch statement with table lookup
>  - separate event specs by channel type
>  - add dedicated power factor channels
>  - fix duplicate calibscale in voltage channels
>  - add scale and calibbias to RMS channels
>  - simplify waveform buffer config function
>  - improve error handling in IRQ functions
>  - use calibbias consistently for all calibration
>  - improve code formatting and readability
>  - remove energy ready event handling
>  - simplify event enable/disable logic
>  drivers/iio/adc/Kconfig   |   19 +
>  drivers/iio/adc/Makefile  |    1 +
>  drivers/iio/adc/ade9000.c | 1845 +++++++++++++++++++++++++++++++++++++
>  3 files changed, 1865 insertions(+)
>  create mode 100644 drivers/iio/adc/ade9000.c
> 
> diff --git a/drivers/iio/adc/Kconfig b/drivers/iio/adc/Kconfig
> index 6de2abad0197..53bdd34a5899 100644
> --- a/drivers/iio/adc/Kconfig
> +++ b/drivers/iio/adc/Kconfig
> @@ -507,6 +507,25 @@ config AD9467
>  	  To compile this driver as a module, choose M here: the module will be
>  	  called ad9467.
>  
> +config ADE9000
> +	tristate "Analog Devices ADE9000 Multiphase Energy, and Power Quality Monitoring IC Driver"
> +	depends on SPI
> +	select REGMAP_SPI
> +	select IIO_BUFFER
> +	select IIO_KFIFO_BUF
> +	help
> +	  Say yes here to build support for the Analog Devices ADE9000,
> +	  a highly accurate, multiphase energy and power quality monitoring
> +	  integrated circuit.
> +
> +	  The device features high-precision analog-to-digital converters
> +	  and digital signal processing to compute RMS values, power factor,
> +	  frequency, and harmonic analysis. It supports SPI communication
> +	  and provides buffered data output through the IIO framework.
> +
> +	  To compile this driver as a module, choose M here: the module will
> +	  be called ade9000.
> +
>  config ADI_AXI_ADC
>  	tristate "Analog Devices Generic AXI ADC IP core driver"
>  	depends on MICROBLAZE || NIOS2 || ARCH_ZYNQ || ARCH_ZYNQMP || ARCH_INTEL_SOCFPGA || COMPILE_TEST
> diff --git a/drivers/iio/adc/Makefile b/drivers/iio/adc/Makefile
> index 1c6ca5fd4b6d..e3ef416a3b5b 100644
> --- a/drivers/iio/adc/Makefile
> +++ b/drivers/iio/adc/Makefile
> @@ -46,6 +46,7 @@ obj-$(CONFIG_AD7944) += ad7944.o
>  obj-$(CONFIG_AD7949) += ad7949.o
>  obj-$(CONFIG_AD799X) += ad799x.o
>  obj-$(CONFIG_AD9467) += ad9467.o
> +obj-$(CONFIG_ADE9000) += ade9000.o
>  obj-$(CONFIG_ADI_AXI_ADC) += adi-axi-adc.o
>  obj-$(CONFIG_ASPEED_ADC) += aspeed_adc.o
>  obj-$(CONFIG_AT91_ADC) += at91_adc.o
> diff --git a/drivers/iio/adc/ade9000.c b/drivers/iio/adc/ade9000.c
> new file mode 100644
> index 000000000000..b39023be390c
> --- /dev/null
> +++ b/drivers/iio/adc/ade9000.c
> @@ -0,0 +1,1845 @@
> +// SPDX-License-Identifier: GPL-2.0-only
> +/**
> + * ADE9000 driver
> + *
> + * Copyright 2025 Analog Devices Inc.
> + */
> +
> +#include <linux/bitfield.h>
> +#include <linux/clk.h>
> +#include <linux/clk-provider.h>
> +#include <linux/completion.h>
> +#include <linux/delay.h>
> +#include <linux/gpio/consumer.h>
> +#include <linux/interrupt.h>
> +#include <linux/iio/iio.h>
> +#include <linux/iio/buffer.h>
> +#include <linux/iio/kfifo_buf.h>
> +#include <linux/iio/events.h>
> +#include <linux/iio/sysfs.h>
> +#include <linux/interrupt.h>
> +#include <linux/minmax.h>
> +#include <linux/module.h>
> +#include <linux/property.h>
> +#include <linux/regmap.h>
> +#include <linux/regulator/consumer.h>
> +#include <linux/spi/spi.h>
> +#include <linux/unaligned.h>
> +
> +/* Address of ADE9000 registers */
> +#define ADE9000_REG_AIGAIN		0x000
> +#define ADE9000_REG_AVGAIN		0x00B
> +#define ADE9000_REG_AIRMSOS		0x00C
> +#define ADE9000_REG_AVRMSOS		0x00D
> +#define ADE9000_REG_APGAIN		0x00E
> +#define ADE9000_REG_AWATTOS		0x00F
> +#define ADE9000_REG_AVAROS		0x010
> +#define ADE9000_REG_AFVAROS		0x012
> +#define ADE9000_REG_CONFIG0		0x060
> +#define ADE9000_REG_DICOEFF		0x072
> +#define ADE9000_REG_AI_PCF		0x20A
> +#define ADE9000_REG_AV_PCF		0x20B
> +#define ADE9000_REG_AIRMS		0x20C
> +#define ADE9000_REG_AVRMS		0x20D
> +#define ADE9000_REG_AWATT		0x210
> +#define ADE9000_REG_AVAR		0x211
> +#define ADE9000_REG_AVA			0x212
> +#define ADE9000_REG_AFVAR		0x214
> +#define ADE9000_REG_APF			0x216
> +#define ADE9000_REG_BI_PCF		0x22A
> +#define ADE9000_REG_BV_PCF		0x22B
> +#define ADE9000_REG_BIRMS		0x22C
> +#define ADE9000_REG_BVRMS		0x22D
> +#define ADE9000_REG_CI_PCF		0x24A
> +#define ADE9000_REG_CV_PCF		0x24B
> +#define ADE9000_REG_CIRMS		0x24C
> +#define ADE9000_REG_CVRMS		0x24D
> +#define ADE9000_REG_AWATT_ACC		0x2E5
> +#define ADE9000_REG_AWATTHR_LO		0x2E6
> +#define ADE9000_REG_AVAHR_LO		0x2FA
> +#define ADE9000_REG_AFVARHR_LO		0x30E
> +#define ADE9000_REG_BWATTHR_LO		0x322
> +#define ADE9000_REG_BVAHR_LO		0x336
> +#define ADE9000_REG_BFVARHR_LO		0x34A
> +#define ADE9000_REG_CWATTHR_LO		0x35E
> +#define ADE9000_REG_CVAHR_LO		0x372
> +#define ADE9000_REG_CFVARHR_LO		0x386
> +#define ADE9000_REG_STATUS0		0x402
> +#define ADE9000_REG_STATUS1		0x403
> +#define ADE9000_REG_MASK0		0x405
> +#define ADE9000_REG_MASK1		0x406
> +#define ADE9000_REG_EVENT_MASK		0x407
> +#define ADE9000_REG_VLEVEL		0x40F
> +#define ADE9000_REG_DIP_LVL		0x410
> +#define ADE9000_REG_DIPA		0x411
> +#define ADE9000_REG_DIPB		0x412
> +#define ADE9000_REG_DIPC		0x413
> +#define ADE9000_REG_SWELL_LVL		0x414
> +#define ADE9000_REG_SWELLA		0x415
> +#define ADE9000_REG_SWELLB		0x416
> +#define ADE9000_REG_SWELLC		0x417
> +#define ADE9000_REG_APERIOD		0x418
> +#define ADE9000_REG_BPERIOD		0x419
> +#define ADE9000_REG_CPERIOD		0x41A
> +#define ADE9000_REG_RUN			0x480
> +#define ADE9000_REG_CONFIG1		0x481
> +#define ADE9000_REG_ACCMODE		0x492
> +#define ADE9000_REG_CONFIG3		0x493
> +#define ADE9000_REG_ZXTOUT		0x498
> +#define ADE9000_REG_ZX_LP_SEL		0x49A
> +#define ADE9000_REG_WFB_CFG		0x4A0
> +#define ADE9000_REG_WFB_PG_IRQEN	0x4A1
> +#define ADE9000_REG_WFB_TRG_CFG		0x4A2
> +#define ADE9000_REG_WFB_TRG_STAT	0x4A3
> +#define ADE9000_REG_CONFIG2		0x4AF
> +#define ADE9000_REG_EP_CFG		0x4B0
> +#define ADE9000_REG_EGY_TIME		0x4B2
> +#define ADE9000_REG_PGA_GAIN		0x4B9
> +#define ADE9000_REG_VERSION		0x4FE
> +#define ADE9000_REG_WF_BUFF		0x800
> +#define ADE9000_REG_WF_HALF_BUFF	0xC00
> +
> +#define ADE9000_REG_ADDR_MASK		GENMASK(15, 4)
> +#define ADE9000_REG_READ_BIT_MASK	BIT(3)
> +
> +#define ADE9000_WF_CAP_EN_MASK		BIT(4)
> +#define ADE9000_WF_CAP_SEL_MASK		BIT(5)
> +#define ADE9000_WF_MODE_MASK		GENMASK(7, 6)
> +#define ADE9000_WF_SRC_MASK		GENMASK(9, 8)
> +#define ADE9000_WF_IN_EN_MASK		BIT(12)
> +
> +/* External reference selection bit in CONFIG1 */
> +#define ADE9000_EXT_REF_MASK		BIT(15)
> +
> +/*
> + * Configuration registers
> + */
> +#define ADE9000_PGA_GAIN		0x0000
> +
> +/* Default configuration */
> +
> +#define ADE9000_CONFIG0			0x00000000
> +
> +/* CF3/ZX pin outputs Zero crossing, CF4 = DREADY */
> +#define ADE9000_CONFIG1			0x000E
> +
> +/* Default High pass corner frequency of 1.25Hz */
> +#define ADE9000_CONFIG2			0x0A00
> +
> +/* Peak and overcurrent detection disabled */
> +#define ADE9000_CONFIG3			0x0000
> +
> +/*
> + * 50Hz operation, 3P4W Wye configuration, signed accumulation
> + * 3P4W Wye = 3-Phase 4-Wire star configuration (3 phases + neutral wire)
> + * Clear bit 8 i.e. ACCMODE=0x00xx for 50Hz operation
> + * ACCMODE=0x0x9x for 3Wire delta when phase B is used as reference
> + * 3Wire delta = 3-Phase 3-Wire triangle configuration (3 phases, no neutral)
> + */
> +#define ADE9000_ACCMODE			0x0000
> +#define ADE9000_ACCMODE_60HZ		0x0100
> +
> +/*Line period and zero crossing obtained from VA */
> +#define ADE9000_ZX_LP_SEL		0x0000
> +
> +/* Interrupt mask values for initialization */
> +#define ADE9000_MASK0_ALL_INT_DIS	0
> +#define ADE9000_MASK1_ALL_INT_DIS	0x00000000
> +
> +/* Events disabled */
> +#define ADE9000_EVENT_DISABLE		0x00000000
> +
> +/*
> + * Assuming Vnom=1/2 of full scale.
> + * Refer to Technical reference manual for detailed calculations.
> + */
> +#define ADE9000_VLEVEL			0x0022EA28
> +
> +/* Set DICOEFF= 0xFFFFE000 when integrator is enabled */
> +#define ADE9000_DICOEFF			0x00000000
> +
> +/* DSP ON */
> +#define ADE9000_RUN_ON			0xFFFFFFFF
> +
> +/*
> + * Energy Accumulation Settings
> + * Enable energy accumulation, accumulate samples at 8ksps
> + * latch energy accumulation after EGYRDY
> + * If accumulation is changed to half line cycle mode, change EGY_TIME
> + */
> +#define ADE9000_EP_CFG			0x0011
> +
> +/* Accumulate 4000 samples */
> +#define ADE9000_EGY_TIME		7999
> +
> +/*
> + * Constant Definitions
> + * ADE9000 FDSP: 8000sps, ADE9000 FDSP: 4000sps
> + */
> +#define ADE9000_FDSP			4000
> +#define ADE9000_DEFAULT_CLK_FREQ_HZ	24576000
> +#define ADE9000_WFB_CFG			0x03E9
> +#define ADE9000_WFB_PAGE_SIZE		128
> +#define ADE9000_WFB_NR_OF_PAGES		16
> +#define ADE9000_WFB_MAX_CHANNELS	8
> +#define ADE9000_WFB_BYTES_IN_SAMPLE	4
> +#define ADE9000_WFB_SAMPLES_IN_PAGE	\
> +	(ADE9000_WFB_PAGE_SIZE / ADE9000_WFB_MAX_CHANNELS)
> +#define ADE9000_WFB_MAX_SAMPLES_CHAN	\
> +	(ADE9000_WFB_SAMPLES_IN_PAGE * ADE9000_WFB_NR_OF_PAGES)
> +#define ADE9000_WFB_FULL_BUFF_NR_SAMPLES \
> +	(ADE9000_WFB_PAGE_SIZE * ADE9000_WFB_NR_OF_PAGES)
> +#define ADE9000_WFB_FULL_BUFF_SIZE	\
> +	(ADE9000_WFB_FULL_BUFF_NR_SAMPLES * ADE9000_WFB_BYTES_IN_SAMPLE)
> +
> +#define ADE9000_SWRST_BIT		BIT(0)
> +
> +/* Status and Mask register bits*/
> +#define ADE9000_ST0_WFB_TRIG_BIT	BIT(16)
> +#define ADE9000_ST0_PAGE_FULL_BIT	BIT(17)
> +#define ADE9000_ST0_EGYRDY		BIT(0)
> +
> +#define ADE9000_ST1_ZXTOVA_BIT		BIT(6)
> +#define ADE9000_ST1_ZXTOVB_BIT		BIT(7)
> +#define ADE9000_ST1_ZXTOVC_BIT		BIT(8)
> +#define ADE9000_ST1_ZXVA_BIT		BIT(9)
> +#define ADE9000_ST1_ZXVB_BIT		BIT(10)
> +#define ADE9000_ST1_ZXVC_BIT		BIT(11)
> +#define ADE9000_ST1_ZXIA_BIT		BIT(13)
> +#define ADE9000_ST1_ZXIB_BIT		BIT(14)
> +#define ADE9000_ST1_ZXIC_BIT		BIT(15)
> +#define ADE9000_ST1_RSTDONE_BIT		BIT(16)
> +#define ADE9000_ST1_SEQERR_BIT		BIT(18)
> +#define ADE9000_ST1_SWELLA_BIT		BIT(20)
> +#define ADE9000_ST1_SWELLB_BIT		BIT(21)
> +#define ADE9000_ST1_SWELLC_BIT		BIT(22)
> +#define ADE9000_ST1_DIPA_BIT		BIT(23)
> +#define ADE9000_ST1_DIPB_BIT		BIT(24)
> +#define ADE9000_ST1_DIPC_BIT		BIT(25)
> +#define ADE9000_ST1_ERROR0_BIT		BIT(28)
> +#define ADE9000_ST1_ERROR1_BIT		BIT(29)
> +#define ADE9000_ST1_ERROR2_BIT		BIT(30)
> +#define ADE9000_ST1_ERROR3_BIT		BIT(31)
> +#define ADE9000_ST_ERROR \
> +	(ADE9000_ST1_ERROR0 | ADE9000_ST1_ERROR1 | \
> +	 ADE9000_ST1_ERROR2 | ADE9000_ST1_ERROR3)
> +#define ADE9000_ST1_CROSSING_FIRST	6
> +#define ADE9000_ST1_CROSSING_DEPTH	25
> +
> +#define ADE9000_WFB_TRG_DIP_BIT		BIT(0)
> +#define ADE9000_WFB_TRG_SWELL_BIT	BIT(1)
> +#define ADE9000_WFB_TRG_ZXIA_BIT	BIT(3)
> +#define ADE9000_WFB_TRG_ZXIB_BIT	BIT(4)
> +#define ADE9000_WFB_TRG_ZXIC_BIT	BIT(5)
> +#define ADE9000_WFB_TRG_ZXVA_BIT	BIT(6)
> +#define ADE9000_WFB_TRG_ZXVB_BIT	BIT(7)
> +#define ADE9000_WFB_TRG_ZXVC_BIT	BIT(8)
> +
> +/* Stop when waveform buffer is full */
> +#define ADE9000_WFB_FULL_MODE		0x0
> +/* Continuous fill—stop only on enabled trigger events */
> +#define ADE9000_WFB_EN_TRIG_MODE	0x1
> +/* Continuous filling—center capture around enabled trigger events */
> +#define ADE9000_WFB_C_EN_TRIG_MODE	0x2
> +/* Continuous fill—used as streaming mode for continuous data output */
> +#define ADE9000_WFB_STREAMING_MODE	0x3
> +
> +#define ADE9000_LAST_PAGE_BIT		BIT(15)
> +#define ADE9000_MIDDLE_PAGE_BIT		BIT(7)
> +
> +/*
> + * Full scale Codes referred from Datasheet. Respective digital codes are
> + * produced when ADC inputs are at full scale.
> + */
> +#define ADE9000_RMS_FULL_SCALE_CODES	52866837
> +#define ADE9000_WATT_FULL_SCALE_CODES	20694066
> +#define ADE9000_PCF_FULL_SCALE_CODES	74770000
> +
> +/* Phase and channel definitions */
> +#define ADE9000_PHASE_A_NR		0
> +#define ADE9000_PHASE_B_NR		1
> +#define ADE9000_PHASE_C_NR		2
> +
> +#define ADE9000_SCAN_POS_IA		BIT(0)
> +#define ADE9000_SCAN_POS_VA		BIT(1)
> +#define ADE9000_SCAN_POS_IB		BIT(2)
> +#define ADE9000_SCAN_POS_VB		BIT(3)
> +#define ADE9000_SCAN_POS_IC		BIT(4)
> +#define ADE9000_SCAN_POS_VC		BIT(5)
> +
> +/* Waveform buffer configuration values */
> +enum ade9000_wfb_cfg {
> +	ADE9000_WFB_CFG_ALL_CHAN = 0x0,
> +	ADE9000_WFB_CFG_IA_VA = 0x1,
> +	ADE9000_WFB_CFG_IB_VB = 0x2,
> +	ADE9000_WFB_CFG_IC_VC = 0x3,
> +	ADE9000_WFB_CFG_IA = 0x8,
> +	ADE9000_WFB_CFG_VA = 0x9,
> +	ADE9000_WFB_CFG_IB = 0xA,
> +	ADE9000_WFB_CFG_VB = 0xB,
> +	ADE9000_WFB_CFG_IC = 0xC,
> +	ADE9000_WFB_CFG_VC = 0xD,
> +};
> +
> +#define ADE9000_PHASE_B_POS_BIT		BIT(5)
> +#define ADE9000_PHASE_C_POS_BIT		BIT(6)
> +
> +#define ADE9000_MAX_PHASE_NR		3
> +#define AD9000_CHANNELS_PER_PHASE	10
> +
> +/*
> + * Calculate register address for multi-phase device.
> + * Phase A (chan 0): base address + 0x00
> + * Phase B (chan 1): base address + 0x20
> + * Phase C (chan 2): base address + 0x40
> + */
> +#define ADE9000_ADDR_ADJUST(addr, chan)					\
> +	(((chan) == 0 ? 0 : (chan) == 1 ? 2 : 4) << 4 | (addr))
> +
> +struct ade9000_state {
> +	struct completion reset_completion;
> +	struct mutex lock; /* Protects SPI transactions */
> +	u8 wf_src;
> +	u32 wfb_trg;
> +	u8 wfb_nr_activ_chan;
> +	u32 wfb_nr_samples;
> +	struct spi_device *spi;
> +	struct clk *clkin;
> +	struct clk_hw clkout_hw;
> +	struct spi_transfer xfer[2];
> +	struct spi_message spi_msg;
> +	struct regmap *regmap;
> +	union{
> +		u8 byte[ADE9000_WFB_FULL_BUFF_SIZE];
> +		__be32 word[ADE9000_WFB_FULL_BUFF_NR_SAMPLES];
> +	} rx_buff __aligned(IIO_DMA_MINALIGN);
> +	u8 tx_buff[2] __aligned(IIO_DMA_MINALIGN);
> +	unsigned int bulk_read_buf[2];
> +};
> +
> +struct ade9000_irq1_event {
> +	u32 bit_mask;
> +	enum iio_chan_type chan_type;
> +	u32 channel;
> +	enum iio_event_type event_type;
> +	enum iio_event_direction event_dir;
> +};
> +
> +static const struct ade9000_irq1_event ade9000_irq1_events[] = {
> +	{ ADE9000_ST1_ZXVA_BIT, IIO_VOLTAGE, ADE9000_PHASE_A_NR, IIO_EV_TYPE_THRESH, IIO_EV_DIR_EITHER },
> +	{ ADE9000_ST1_ZXIA_BIT, IIO_CURRENT, ADE9000_PHASE_A_NR, IIO_EV_TYPE_THRESH, IIO_EV_DIR_EITHER },
> +	{ ADE9000_ST1_ZXVB_BIT, IIO_VOLTAGE, ADE9000_PHASE_B_NR, IIO_EV_TYPE_THRESH, IIO_EV_DIR_EITHER },
> +	{ ADE9000_ST1_ZXIB_BIT, IIO_CURRENT, ADE9000_PHASE_B_NR, IIO_EV_TYPE_THRESH, IIO_EV_DIR_EITHER },
> +	{ ADE9000_ST1_ZXVC_BIT, IIO_VOLTAGE, ADE9000_PHASE_C_NR, IIO_EV_TYPE_THRESH, IIO_EV_DIR_EITHER },
> +	{ ADE9000_ST1_ZXIC_BIT, IIO_CURRENT, ADE9000_PHASE_C_NR, IIO_EV_TYPE_THRESH, IIO_EV_DIR_EITHER },
> +	{ ADE9000_ST1_SWELLA_BIT, IIO_ALTVOLTAGE, ADE9000_PHASE_A_NR, IIO_EV_TYPE_THRESH, IIO_EV_DIR_RISING },
> +	{ ADE9000_ST1_SWELLB_BIT, IIO_ALTVOLTAGE, ADE9000_PHASE_B_NR, IIO_EV_TYPE_THRESH, IIO_EV_DIR_RISING },
> +	{ ADE9000_ST1_SWELLC_BIT, IIO_ALTVOLTAGE, ADE9000_PHASE_C_NR, IIO_EV_TYPE_THRESH, IIO_EV_DIR_RISING },
> +	{ ADE9000_ST1_DIPA_BIT, IIO_ALTVOLTAGE, ADE9000_PHASE_A_NR, IIO_EV_TYPE_THRESH, IIO_EV_DIR_FALLING },
> +	{ ADE9000_ST1_DIPB_BIT, IIO_ALTVOLTAGE, ADE9000_PHASE_B_NR, IIO_EV_TYPE_THRESH, IIO_EV_DIR_FALLING },
> +	{ ADE9000_ST1_DIPC_BIT, IIO_ALTVOLTAGE, ADE9000_PHASE_C_NR, IIO_EV_TYPE_THRESH, IIO_EV_DIR_FALLING },
> +};
> +
> +static unsigned long ade9000_clkout_recalc_rate(struct clk_hw *hw,
> +						unsigned long parent_rate)
> +{
> +	/* CLKOUT provides the same frequency as the crystal/external clock */
> +	return parent_rate ? parent_rate : ADE9000_DEFAULT_CLK_FREQ_HZ;

ade9000_setup_clkout() says that the crystal can't be CLKOUT because
it uses both pins. So only option would be to pass through the CLKIN
clock.

> +}
> +
> +static const struct clk_ops ade9000_clkout_ops = {
> +	.recalc_rate = ade9000_clkout_recalc_rate,
> +};
> +

Would be nice to move this clock stuff closer to ade9000_setup_clkout().


> +/* Voltage events (zero crossing on instantaneous voltage) */
> +static const struct iio_event_spec ade9000_voltage_events[] = {
> +	{
> +		/* Zero crossing detection - datasheet: ZXV interrupts */
> +		.type = IIO_EV_TYPE_THRESH,
> +		.dir = IIO_EV_DIR_EITHER,
> +		.mask_separate = BIT(IIO_EV_INFO_ENABLE),
> +	},
> +};
> +
> +/* Current events (zero crossing on instantaneous current) */
> +static const struct iio_event_spec ade9000_current_events[] = {
> +	{
> +		/* Zero crossing detection - datasheet: ZXI interrupts */
> +		.type = IIO_EV_TYPE_THRESH,
> +		.dir = IIO_EV_DIR_EITHER,
> +		.mask_separate = BIT(IIO_EV_INFO_ENABLE),
> +	},
> +};
> +
> +/* RMS voltage events (swell/sag detection on RMS values) */
> +static const struct iio_event_spec ade9000_rms_voltage_events[] = {
> +	{
> +		.type = IIO_EV_TYPE_THRESH,
> +		.dir = IIO_EV_DIR_RISING, /* RMS swell detection */
> +		.mask_separate = BIT(IIO_EV_INFO_ENABLE) | BIT(IIO_EV_INFO_VALUE),
> +	},
> +	{
> +		.type = IIO_EV_TYPE_THRESH,
> +		.dir = IIO_EV_DIR_FALLING, /* RMS sag/dip detection */
> +		.mask_separate = BIT(IIO_EV_INFO_ENABLE) | BIT(IIO_EV_INFO_VALUE),
> +	},
> +};
> +
> +static const char * const ade9000_filter_type_items[] = {
> +	"sinc4", "sinc4+lp",
> +};
> +
> +static const int ade9000_filter_type_values[] = {
> +	0, 2,
> +};
> +
> +static int ade9000_filter_type_get(struct iio_dev *indio_dev,
> +				   const struct iio_chan_spec *chan)
> +{
> +	struct ade9000_state *st = iio_priv(indio_dev);
> +	u32 val;
> +	int ret;
> +	unsigned int i;
> +
> +	ret = regmap_read(st->regmap, ADE9000_REG_WFB_CFG, &val);
> +	if (ret)
> +		return ret;
> +
> +	val = FIELD_GET(ADE9000_WF_SRC_MASK, val);
> +
> +	for (i = 0; i < ARRAY_SIZE(ade9000_filter_type_values); i++) {
> +		if (ade9000_filter_type_values[i] == val)
> +			return i;
> +	}
> +
> +	return -EINVAL;
> +}
> +
> +static int ade9000_filter_type_set(struct iio_dev *indio_dev,
> +				   const struct iio_chan_spec *chan,
> +				   unsigned int index)
> +{
> +	struct ade9000_state *st = iio_priv(indio_dev);
> +	int ret, val;
> +
> +	if (index >= ARRAY_SIZE(ade9000_filter_type_values))
> +		return -EINVAL;
> +
> +	val = ade9000_filter_type_values[index];
> +
> +	/* Update the WFB_CFG register with the new filter type */
> +	ret = regmap_update_bits(st->regmap, ADE9000_REG_WFB_CFG,
> +				 ADE9000_WF_SRC_MASK,
> +				 FIELD_PREP(ADE9000_WF_SRC_MASK, val));
> +	if (ret)
> +		return ret;
> +
> +	/* Update cached value */
> +	st->wf_src = val;
> +
> +	return 0;
> +}
> +
> +static const struct iio_enum ade9000_filter_type_enum = {
> +	.items = ade9000_filter_type_items,
> +	.num_items = ARRAY_SIZE(ade9000_filter_type_items),
> +	.get = ade9000_filter_type_get,
> +	.set = ade9000_filter_type_set,
> +};
> +
> +static const struct iio_chan_spec_ext_info ade9000_ext_info[] = {
> +	IIO_ENUM("filter_type", IIO_SHARED_BY_ALL, &ade9000_filter_type_enum),
> +	IIO_ENUM_AVAILABLE("filter_type", IIO_SHARED_BY_ALL, &ade9000_filter_type_enum),
> +	{ }
> +};
> +
> +#define ADE9000_CURRENT_CHANNEL(num) {					\
> +	.type = IIO_CURRENT,						\
> +	.channel = num,							\
> +	.address = ADE9000_ADDR_ADJUST(ADE9000_REG_AI_PCF, num),	\
> +	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |			\
> +			      BIT(IIO_CHAN_INFO_SCALE) |		\
> +			      BIT(IIO_CHAN_INFO_CALIBSCALE),		\
> +	.event_spec = ade9000_current_events,				\
> +	.num_event_specs = ARRAY_SIZE(ade9000_current_events),		\
> +	.scan_index = num,						\
> +	.indexed = 1,							\
> +	.scan_type = {							\
> +		.sign = 's',						\
> +		.realbits = 32,						\
> +		.storagebits = 32,					\
> +		.endianness = IIO_BE,					\
> +	},								\
> +}
> +
> +#define ADE9000_VOLTAGE_CHANNEL(num) {					\
> +	.type = IIO_VOLTAGE,						\
> +	.channel = num,							\
> +	.address = ADE9000_ADDR_ADJUST(ADE9000_REG_AV_PCF, num),	\
> +	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |			\
> +			      BIT(IIO_CHAN_INFO_SCALE) |		\
> +			      BIT(IIO_CHAN_INFO_CALIBSCALE) |		\
> +			      BIT(IIO_CHAN_INFO_FREQUENCY),		\
> +	.event_spec = ade9000_voltage_events,				\
> +	.num_event_specs = ARRAY_SIZE(ade9000_voltage_events),		\
> +	.scan_index = num + 1,	/* interleave with current channels */	\
> +	.indexed = 1,							\
> +	.scan_type = {							\
> +		.sign = 's',						\
> +		.realbits = 32,						\
> +		.storagebits = 32,					\
> +		.endianness = IIO_BE,					\
> +	},								\
> +	.ext_info = ade9000_ext_info,					\
> +}
> +
> +#define ADE9000_ALTCURRENT_RMS_CHANNEL(num) {				\
> +	.type = IIO_ALTCURRENT,						\
> +	.channel = num,							\
> +	.address = ADE9000_ADDR_ADJUST(ADE9000_REG_AIRMS, num),		\
> +	.channel2 = IIO_MOD_RMS,					\
> +	.modified = 1,							\
> +	.indexed = 1,							\
> +	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |			\
> +			      BIT(IIO_CHAN_INFO_SCALE) |		\
> +			      BIT(IIO_CHAN_INFO_CALIBBIAS),		\
> +	.scan_index = -1						\
> +}
> +
> +#define ADE9000_ALTVOLTAGE_RMS_CHANNEL(num) {				\
> +	.type = IIO_ALTVOLTAGE,						\
> +	.channel = num,							\
> +	.address = ADE9000_ADDR_ADJUST(ADE9000_REG_AVRMS, num),		\
> +	.channel2 = IIO_MOD_RMS,					\
> +	.modified = 1,							\
> +	.indexed = 1,							\
> +	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |			\
> +			      BIT(IIO_CHAN_INFO_SCALE) |		\
> +			      BIT(IIO_CHAN_INFO_CALIBBIAS),		\
> +	.event_spec = ade9000_rms_voltage_events,			\
> +	.num_event_specs = ARRAY_SIZE(ade9000_rms_voltage_events),	\
> +	.scan_index = -1						\
> +}
> +
> +#define ADE9000_POWER_ACTIVE_CHANNEL(num) {				\
> +	.type = IIO_POWER,						\
> +	.channel = num,							\
> +	.address = ADE9000_ADDR_ADJUST(ADE9000_REG_AWATT, num),		\
> +	.channel2 = IIO_MOD_ACTIVE,					\
> +	.modified = 1,							\
> +	.indexed = 1,							\
> +	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |			\
> +			      BIT(IIO_CHAN_INFO_SCALE) |		\
> +			      BIT(IIO_CHAN_INFO_CALIBBIAS) |		\
> +			      BIT(IIO_CHAN_INFO_CALIBSCALE),		\
> +	.scan_index = -1						\
> +}
> +
> +#define ADE9000_POWER_REACTIVE_CHANNEL(num) {				\
> +	.type = IIO_POWER,						\
> +	.channel = num,							\
> +	.address = ADE9000_ADDR_ADJUST(ADE9000_REG_AVAR, num),		\
> +	.channel2 = IIO_MOD_REACTIVE,					\
> +	.modified = 1,							\
> +	.indexed = 1,							\
> +	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |			\
> +			      BIT(IIO_CHAN_INFO_SCALE) |		\
> +			      BIT(IIO_CHAN_INFO_CALIBBIAS),		\
> +	.scan_index = -1						\
> +}
> +
> +#define ADE9000_POWER_APPARENT_CHANNEL(num) {				\
> +	.type = IIO_POWER,						\
> +	.channel = num,							\
> +	.address = ADE9000_ADDR_ADJUST(ADE9000_REG_AVA, num),		\
> +	.channel2 = IIO_MOD_APPARENT,					\
> +	.modified = 1,							\
> +	.indexed = 1,							\
> +	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |			\
> +			      BIT(IIO_CHAN_INFO_SCALE),			\
> +	.scan_index = -1						\
> +}
> +
> + #define ADE9000_ENERGY_ACTIVE_CHANNEL(num, addr) {			\
> +	.type = IIO_ENERGY,						\
> +	.channel = num,							\
> +	.address = addr,						\
> +	.channel2 = IIO_MOD_ACTIVE,					\
> +	.modified = 1,							\
> +	.indexed = 1,							\
> +	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),			\
> +	.scan_index = -1						\
> +}
> +
> +#define ADE9000_ENERGY_APPARENT_CHANNEL(num, addr) {			\
> +	.type = IIO_ENERGY,						\
> +	.channel = num,							\
> +	.address = addr,						\
> +	.channel2 = IIO_MOD_APPARENT,					\
> +	.modified = 1,							\
> +	.indexed = 1,							\
> +	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),			\
> +	.scan_index = -1						\
> +}
> +
> +#define ADE9000_ENERGY_REACTIVE_CHANNEL(num, addr) {			\
> +	.type = IIO_ENERGY,						\
> +	.channel = num,							\
> +	.address = addr,						\
> +	.channel2 = IIO_MOD_REACTIVE,					\
> +	.modified = 1,							\
> +	.indexed = 1,							\
> +	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),			\
> +	.scan_index = -1						\
> +}
> +
> +#define ADE9000_POWER_FACTOR_CHANNEL(num) {				\
> +	.type = IIO_POWER,						\
> +	.channel = num,							\
> +	.address = ADE9000_ADDR_ADJUST(ADE9000_REG_APF, num),		\
> +	.indexed = 1,							\
> +	.info_mask_separate = BIT(IIO_CHAN_INFO_POWERFACTOR),		\
> +	.scan_index = -1						\
> +}
> +
> +static const struct iio_chan_spec ade9000_channels[] = {
> +	/* Phase A channels */
> +	ADE9000_CURRENT_CHANNEL(ADE9000_PHASE_A_NR),
> +	ADE9000_VOLTAGE_CHANNEL(ADE9000_PHASE_A_NR),
> +	ADE9000_ALTCURRENT_RMS_CHANNEL(ADE9000_PHASE_A_NR),
> +	ADE9000_ALTVOLTAGE_RMS_CHANNEL(ADE9000_PHASE_A_NR),
> +	ADE9000_POWER_ACTIVE_CHANNEL(ADE9000_PHASE_A_NR),
> +	ADE9000_POWER_REACTIVE_CHANNEL(ADE9000_PHASE_A_NR),
> +	ADE9000_POWER_APPARENT_CHANNEL(ADE9000_PHASE_A_NR),
> +	ADE9000_ENERGY_ACTIVE_CHANNEL(ADE9000_PHASE_A_NR, ADE9000_REG_AWATTHR_LO),
> +	ADE9000_ENERGY_APPARENT_CHANNEL(ADE9000_PHASE_A_NR, ADE9000_REG_AVAHR_LO),
> +	ADE9000_ENERGY_REACTIVE_CHANNEL(ADE9000_PHASE_A_NR, ADE9000_REG_AFVARHR_LO),
> +	ADE9000_POWER_FACTOR_CHANNEL(ADE9000_PHASE_A_NR),
> +	/* Phase B channels */
> +	ADE9000_CURRENT_CHANNEL(ADE9000_PHASE_B_NR),
> +	ADE9000_VOLTAGE_CHANNEL(ADE9000_PHASE_B_NR),
> +	ADE9000_ALTCURRENT_RMS_CHANNEL(ADE9000_PHASE_B_NR),
> +	ADE9000_ALTVOLTAGE_RMS_CHANNEL(ADE9000_PHASE_B_NR),
> +	ADE9000_POWER_ACTIVE_CHANNEL(ADE9000_PHASE_B_NR),
> +	ADE9000_POWER_REACTIVE_CHANNEL(ADE9000_PHASE_B_NR),
> +	ADE9000_POWER_APPARENT_CHANNEL(ADE9000_PHASE_B_NR),
> +	ADE9000_ENERGY_ACTIVE_CHANNEL(ADE9000_PHASE_B_NR, ADE9000_REG_BWATTHR_LO),
> +	ADE9000_ENERGY_APPARENT_CHANNEL(ADE9000_PHASE_B_NR, ADE9000_REG_BVAHR_LO),
> +	ADE9000_ENERGY_REACTIVE_CHANNEL(ADE9000_PHASE_B_NR, ADE9000_REG_BFVARHR_LO),
> +	ADE9000_POWER_FACTOR_CHANNEL(ADE9000_PHASE_B_NR),
> +	/* Phase C channels */
> +	ADE9000_CURRENT_CHANNEL(ADE9000_PHASE_C_NR),
> +	ADE9000_VOLTAGE_CHANNEL(ADE9000_PHASE_C_NR),
> +	ADE9000_ALTCURRENT_RMS_CHANNEL(ADE9000_PHASE_C_NR),
> +	ADE9000_ALTVOLTAGE_RMS_CHANNEL(ADE9000_PHASE_C_NR),
> +	ADE9000_POWER_ACTIVE_CHANNEL(ADE9000_PHASE_C_NR),
> +	ADE9000_POWER_REACTIVE_CHANNEL(ADE9000_PHASE_C_NR),
> +	ADE9000_POWER_APPARENT_CHANNEL(ADE9000_PHASE_C_NR),
> +	ADE9000_ENERGY_ACTIVE_CHANNEL(ADE9000_PHASE_C_NR, ADE9000_REG_CWATTHR_LO),
> +	ADE9000_ENERGY_APPARENT_CHANNEL(ADE9000_PHASE_C_NR, ADE9000_REG_CVAHR_LO),
> +	ADE9000_ENERGY_REACTIVE_CHANNEL(ADE9000_PHASE_C_NR, ADE9000_REG_CFVARHR_LO),
> +	ADE9000_POWER_FACTOR_CHANNEL(ADE9000_PHASE_C_NR),
> +	/* System frequency (50Hz/60Hz) and PGA gain configuration channel */

Maybe I missed a previous discussion, but this channel looks a bit
suspicious since it isn't actually a measurement channel.

> +	{
> +		.type = IIO_ALTVOLTAGE,
> +		.channel = 0,
> +		.indexed = 1,

Indexed doesn't sound right here.

> +		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_FREQUENCY) |
> +					   BIT(IIO_CHAN_INFO_SCALE),

This global scale could probably be avoided by having 4 scale_available
values on all of the other channels. When changing one channel, it will
change all channels.

> +		.scan_index = -1
> +	},
> +};
> +
> +static const struct reg_sequence ade9000_reg_sequence[] = {

ade9000_initialization_sequence would be a more informative name.

> +	{ ADE9000_REG_PGA_GAIN, ADE9000_PGA_GAIN },
> +	{ ADE9000_REG_CONFIG0, ADE9000_CONFIG0 },
> +	{ ADE9000_REG_CONFIG1, ADE9000_CONFIG1 },
> +	{ ADE9000_REG_CONFIG2, ADE9000_CONFIG2 },
> +	{ ADE9000_REG_CONFIG3, ADE9000_CONFIG3 },
> +	{ ADE9000_REG_ACCMODE, ADE9000_ACCMODE },
> +	{ ADE9000_REG_ZX_LP_SEL, ADE9000_ZX_LP_SEL },
> +	{ ADE9000_REG_MASK0, ADE9000_MASK0_ALL_INT_DIS },
> +	{ ADE9000_REG_MASK1, ADE9000_MASK1_ALL_INT_DIS },
> +	{ ADE9000_REG_EVENT_MASK, ADE9000_EVENT_DISABLE },
> +	{ ADE9000_REG_WFB_CFG, ADE9000_WFB_CFG },
> +	{ ADE9000_REG_VLEVEL, ADE9000_VLEVEL },
> +	{ ADE9000_REG_DICOEFF, ADE9000_DICOEFF },
> +	{ ADE9000_REG_EGY_TIME, ADE9000_EGY_TIME },
> +	{ ADE9000_REG_EP_CFG, ADE9000_EP_CFG },
> +	{ ADE9000_REG_RUN, ADE9000_RUN_ON }
> +};
> +
> +static int ade9000_spi_write_reg(void *context, unsigned int reg,
> +				 unsigned int val)
> +{
> +	struct ade9000_state *st = context;
> +	u8 tx_buf[6];
> +	u16 addr;
> +	int ret, len;
> +
> +	guard(mutex)(&st->lock);
> +
> +	addr = FIELD_PREP(ADE9000_REG_ADDR_MASK, reg);
> +	put_unaligned_be16(addr, tx_buf);
> +
> +	if (reg > ADE9000_REG_RUN && reg < ADE9000_REG_VERSION) {
> +		put_unaligned_be16(val, &tx_buf[2]);
> +		len = 4;
> +	} else {
> +		put_unaligned_be32(val, &tx_buf[2]);
> +		len = 6;
> +	}
> +
> +	ret = spi_write_then_read(st->spi, tx_buf, len, NULL, 0);
> +	if (ret)
> +		dev_err(&st->spi->dev, "problem when writing register 0x%x\n", reg);
> +
> +	return ret;
> +}
> +
> +static int ade9000_spi_read_reg(void *context, unsigned int reg,
> +				unsigned int *val)
> +{
> +	struct ade9000_state *st = context;
> +	u8 tx_buf[2];
> +	u8 rx_buf[4];
> +	u16 addr;
> +	int ret, rx_len;
> +
> +	guard(mutex)(&st->lock);
> +
> +	addr = FIELD_PREP(ADE9000_REG_ADDR_MASK, reg) |
> +	       ADE9000_REG_READ_BIT_MASK;
> +
> +	put_unaligned_be16(addr, tx_buf);
> +
> +	/* Skip CRC bytes - only read actual data */
> +	if (reg > ADE9000_REG_RUN && reg < ADE9000_REG_VERSION)
> +		rx_len = 2;
> +	else
> +		rx_len = 4;
> +
> +	ret = spi_write_then_read(st->spi, tx_buf, 2, rx_buf, rx_len);
> +	if (ret) {
> +		dev_err(&st->spi->dev, "error reading register 0x%x\n", reg);
> +		return ret;
> +	}
> +
> +	if (reg > ADE9000_REG_RUN && reg < ADE9000_REG_VERSION)
> +		*val = get_unaligned_be16(rx_buf);
> +	else
> +		*val = get_unaligned_be32(rx_buf);
> +
> +	return 0;
> +}
> +
> +static bool ade9000_is_volatile_reg(struct device *dev, unsigned int reg)
> +{
> +	switch (reg) {
> +	case ADE9000_REG_STATUS0:
> +	case ADE9000_REG_STATUS1:

Aren't status registers volatile since the chip can change the value?

> +	case ADE9000_REG_MASK0:
> +	case ADE9000_REG_MASK1:
> +	case ADE9000_REG_WFB_PG_IRQEN:

I would expect a lot more non-volatile registers. Pretty much any
R/W register that isn't an interrupt/error status register.

> +		return false;
> +	default:
> +		return true;
> +	}
> +}
> +
> +static void ade9000_configure_scan(struct iio_dev *indio_dev, u32 wfb_addr)
> +{
> +	struct ade9000_state *st = iio_priv(indio_dev);
> +	u16 addr;
> +
> +	addr = FIELD_PREP(ADE9000_REG_ADDR_MASK, wfb_addr) |
> +	       ADE9000_REG_READ_BIT_MASK;
> +
> +	put_unaligned_be16(addr, st->tx_buff);
> +
> +	st->xfer[0].tx_buf = &st->tx_buff[0];
> +	st->xfer[0].len = 2;
> +
> +	st->xfer[1].rx_buf = st->rx_buff.byte;
> +
> +	/* Always use streaming mode */
> +	st->xfer[1].len = (st->wfb_nr_samples / 2) * 4;
> +
> +	spi_message_init_with_transfers(&st->spi_msg, st->xfer, ARRAY_SIZE(st->xfer));
> +}
> +
> +static int ade9000_iio_push_streaming(struct iio_dev *indio_dev)
> +{
> +	struct ade9000_state *st = iio_priv(indio_dev);
> +	struct device *dev = &st->spi->dev;
> +	u32 current_page, i;
> +	int ret;
> +
> +	guard(mutex)(&st->lock);
> +
> +	ret = spi_sync(st->spi, &st->spi_msg);
> +	if (ret) {
> +		dev_err(dev, "SPI fail in trigger handler\n");
> +		return ret;
> +	}
> +
> +	/* In streaming mode, only half the buffer is filled per interrupt */
> +	for (i = 0; i < st->wfb_nr_samples / 2; i += st->wfb_nr_activ_chan)
> +		iio_push_to_buffers(indio_dev, &st->rx_buff.word[i]);
> +
> +	ret = regmap_read(st->regmap, ADE9000_REG_WFB_PG_IRQEN, &current_page);
> +	if (ret) {
> +		dev_err(dev, "IRQ0 WFB read fail\n");
> +		return ret;
> +	}
> +
> +	if (current_page & ADE9000_MIDDLE_PAGE_BIT) {
> +		ret = regmap_write(st->regmap, ADE9000_REG_WFB_PG_IRQEN,
> +				   ADE9000_LAST_PAGE_BIT);
> +		if (ret) {
> +			dev_err(dev, "IRQ0 WFB write fail\n");
> +			return ret;
> +		}
> +
> +		ade9000_configure_scan(indio_dev,
> +				       ADE9000_REG_WF_HALF_BUFF);
> +	} else {
> +		ret = regmap_write(st->regmap, ADE9000_REG_WFB_PG_IRQEN,
> +				   ADE9000_MIDDLE_PAGE_BIT);
> +		if (ret) {
> +			dev_err(dev, "IRQ0 WFB write fail");
> +			return IRQ_HANDLED;
> +		}
> +
> +		ade9000_configure_scan(indio_dev,
> +				       ADE9000_REG_WF_BUFF);
> +	}
> +
> +	return 0;
> +}
> +
> +static int ade9000_iio_push_buffer(struct iio_dev *indio_dev)
> +{
> +	struct ade9000_state *st = iio_priv(indio_dev);
> +	int ret;
> +	u32 i;
> +
> +	guard(mutex)(&st->lock);
> +
> +	ret = spi_sync(st->spi, &st->spi_msg);
> +	if (ret) {
> +		dev_err(&st->spi->dev, "SPI fail in trigger handler\n");
> +		return ret;
> +	}
> +
> +	for (i = 0; i < st->wfb_nr_samples; i += st->wfb_nr_activ_chan)
> +		iio_push_to_buffers(indio_dev, &st->rx_buff.word[i]);
> +
> +	return 0;
> +}
> +
> +static irqreturn_t ade9000_irq0_thread(int irq, void *data)
> +{
> +	struct iio_dev *indio_dev = data;
> +	struct ade9000_state *st = iio_priv(indio_dev);
> +	struct device *dev = &st->spi->dev;
> +	u32 handled_irq = 0;
> +	u32 interrupts, status;
> +	int ret;
> +
> +	ret = regmap_read(st->regmap, ADE9000_REG_STATUS0, &status);
> +	if (ret) {
> +		dev_err(dev, "IRQ0 read status fail\n");
> +		return IRQ_HANDLED;
> +	}
> +
> +	ret = regmap_read(st->regmap, ADE9000_REG_MASK0, &interrupts);
> +	if (ret) {
> +		dev_err(dev, "IRQ0 read mask fail\n");
> +		return IRQ_HANDLED;
> +	}
> +
> +	if ((status & ADE9000_ST0_PAGE_FULL_BIT) &&
> +	    (interrupts & ADE9000_ST0_PAGE_FULL_BIT)) {
> +		/* Always use streaming mode */
> +		ret = ade9000_iio_push_streaming(indio_dev);
> +		if (ret) {
> +			dev_err(dev, "IRQ0 IIO push fail\n");
> +			return IRQ_HANDLED;
> +		}
> +
> +		handled_irq |= ADE9000_ST0_PAGE_FULL_BIT;
> +	}
> +
> +	if ((status & ADE9000_ST0_WFB_TRIG_BIT) &&
> +	    (interrupts & ADE9000_ST0_WFB_TRIG_BIT)) {
> +		ret = regmap_update_bits(st->regmap, ADE9000_REG_WFB_CFG,
> +					 ADE9000_WF_CAP_EN_MASK, 0);
> +		if (ret) {
> +			dev_err(dev, "IRQ0 WFB fail\n");
> +			return IRQ_HANDLED;
> +		}
> +
> +		if (iio_buffer_enabled(indio_dev)) {
> +			ret = ade9000_iio_push_buffer(indio_dev);
> +			if (ret) {
> +				dev_err(dev, "IRQ0 IIO push fail @ WFB TRIG\n");
> +				return IRQ_HANDLED;
> +			}
> +		}
> +
> +		handled_irq |= ADE9000_ST0_WFB_TRIG_BIT;
> +	}
> +
> +	ret = regmap_write(st->regmap, ADE9000_REG_STATUS0, handled_irq);
> +	if (ret)
> +		dev_err(dev, "IRQ0 write status fail\n");
> +
> +	return IRQ_HANDLED;
> +}
> +
> +static irqreturn_t ade9000_irq1_thread(int irq, void *data)
> +{
> +	struct iio_dev *indio_dev = data;
> +	struct ade9000_state *st = iio_priv(indio_dev);
> +	unsigned int bit = ADE9000_ST1_CROSSING_FIRST;
> +	s64 timestamp = iio_get_time_ns(indio_dev);
> +	u32 handled_irq = 0;
> +	u32 interrupts, result, status, tmp;
> +	unsigned long interrupt_bits;
> +	const struct ade9000_irq1_event *event;
> +	int ret, i;
> +
> +	if (!completion_done(&st->reset_completion)) {
> +		ret = regmap_read(st->regmap, ADE9000_REG_STATUS1, &result);
> +		if (ret) {
> +			dev_err(&st->spi->dev, "IRQ1 read status fail\n");
> +			return IRQ_HANDLED;
> +		}
> +
> +		if (result & ADE9000_ST1_RSTDONE_BIT)
> +			complete(&st->reset_completion);
> +		else
> +			dev_err(&st->spi->dev, "Error testing reset done\n");
> +

We don't need to clear the status here?

> +		return IRQ_HANDLED;
> +	}
> +
> +	ret = regmap_read(st->regmap, ADE9000_REG_STATUS1, &status);
> +	if (ret) {
> +		dev_err(&st->spi->dev, "IRQ1 read status fail\n");
> +		return IRQ_HANDLED;
> +	}
> +
> +	ret = regmap_read(st->regmap, ADE9000_REG_MASK1, &interrupts);
> +	if (ret) {
> +		dev_err(&st->spi->dev, "IRQ1 read mask fail\n");
> +		return IRQ_HANDLED;
> +	}
> +
> +	interrupt_bits = interrupts;

bitmap_from_arr32() would make a bit more sense. Otherwise looks a bit
like unnecessary copying.

> +	for_each_set_bit_from(bit, &interrupt_bits,
> +			      ADE9000_ST1_CROSSING_DEPTH) {
> +		tmp = status & BIT(bit);
> +		if (tmp) {
> +			event = NULL;
> +
> +			/* Find corresponding event in lookup table */
> +			for (i = 0; i < ARRAY_SIZE(ade9000_irq1_events); i++) {
> +				if (ade9000_irq1_events[i].bit_mask == tmp) {
> +					event = &ade9000_irq1_events[i];
> +					break;
> +				}
> +			}
> +
> +			if (event) {
> +				iio_push_event(indio_dev,
> +					       IIO_UNMOD_EVENT_CODE(event->chan_type,
> +								    event->channel,
> +								    event->event_type,
> +								    event->event_dir),
> +								    timestamp);
> +			}
> +			handled_irq |= tmp;
> +		}
> +	}
> +
> +	ret = regmap_write(st->regmap, ADE9000_REG_STATUS1, handled_irq);
> +	if (ret)
> +		dev_err(&st->spi->dev, "IRQ1 write status fail\n");
> +

Probably should use rate limited version of dev_err() everywhere in this
function in case there is an "interrupt storm". Applies to all functions
called by the irq handlers as well.

> +	return IRQ_HANDLED;
> +}
> +
> +static irqreturn_t ade9000_dready_thread(int irq, void *data)
> +{
> +	struct iio_dev *indio_dev = data;
> +
> +	/* Handle data ready interrupt from C4/EVENT/DREADY pin */
> +	if (!iio_device_claim_buffer_mode(indio_dev)) {
> +		ade9000_iio_push_buffer(indio_dev);
> +		iio_device_release_buffer_mode(indio_dev);
> +	}
> +
> +	return IRQ_HANDLED;
> +}
> +
> +static int ade9000_read_raw(struct iio_dev *indio_dev,
> +			    struct iio_chan_spec const *chan,
> +			    int *val,
> +			    int *val2,
> +			    long mask)
> +{
> +	struct ade9000_state *st = iio_priv(indio_dev);
> +	unsigned int reg, measured;
> +	int ret;
> +
> +	switch (mask) {
> +	case IIO_CHAN_INFO_FREQUENCY:
> +		if (chan->type == IIO_VOLTAGE) {
> +			int period_reg;
> +			int period;
> +
> +			switch (chan->channel) {
> +			case ADE9000_PHASE_A_NR:
> +				period_reg = ADE9000_REG_APERIOD;
> +				break;
> +			case ADE9000_PHASE_B_NR:
> +				period_reg = ADE9000_REG_BPERIOD;
> +				break;
> +			case ADE9000_PHASE_C_NR:
> +				period_reg = ADE9000_REG_CPERIOD;
> +				break;
> +			default:
> +				return -EINVAL;
> +			}
> +			ret = regmap_read(st->regmap, period_reg, &period);
> +			if (ret)
> +				return ret;
> +			/*
> +			 * Frequency = (4MHz * 65536) / (PERIOD + 1)
> +			 * 4MHz = ADC sample rate, 65536 = 2^16 period register scaling
> +			 * See ADE9000 datasheet section on period measurement
> +			 */
> +			*val = 4000 * 65536;
> +			*val2 = period + 1;
> +			return IIO_VAL_FRACTIONAL;
> +		}
> +
> +		ret = regmap_read(st->regmap, ADE9000_REG_ACCMODE, &reg);
> +		if (ret)
> +			return ret;
> +		*val = (reg & ADE9000_ACCMODE_60HZ) ? 60 : 50;
> +		return IIO_VAL_INT;
> +	case IIO_CHAN_INFO_RAW:
> +		if (chan->type == IIO_ENERGY) {
> +			u16 lo_reg = chan->address;
> +
> +			ret = regmap_bulk_read(st->regmap, lo_reg,
> +					       st->bulk_read_buf, 2);
> +			if (ret)
> +				return ret;
> +
> +			*val = st->bulk_read_buf[0];  /* Lower 32 bits */
> +			*val2 = st->bulk_read_buf[1]; /* Upper 32 bits */
> +			return IIO_VAL_INT_64;
> +		}
> +
> +		ret = iio_device_claim_direct(indio_dev);
> +		if (ret)
> +			return ret;
> +
> +		ret = regmap_read(st->regmap, chan->address, &measured);
> +		iio_device_release_direct(indio_dev);
> +		if (ret)
> +			return ret;
> +
> +		*val = measured;
> +
> +		return IIO_VAL_INT;
> +
> +	case IIO_CHAN_INFO_POWERFACTOR:
> +		ret = iio_device_claim_direct(indio_dev);
> +		if (ret)
> +			return ret;
> +
> +		ret = regmap_read(st->regmap, chan->address, &measured);
> +		iio_device_release_direct(indio_dev);
> +		if (ret)
> +			return ret;
> +
> +		*val = measured;
> +
> +		return IIO_VAL_INT;
> +
> +	case IIO_CHAN_INFO_SCALE:
> +		if (chan->info_mask_shared_by_all) {
> +			/* Shared PGA gain read - only for channel with shared frequency */
> +			ret = regmap_read(st->regmap, ADE9000_REG_PGA_GAIN, &reg);
> +			if (ret)
> +				return ret;
> +			*val = min(1 << ((reg >> (8 + chan->channel)) & GENMASK(1, 0)), 4);
> +			return IIO_VAL_INT;
> +		}
> +
> +		if (chan->type == IIO_CURRENT || chan->type == IIO_VOLTAGE ||
> +		    chan->type == IIO_ALTVOLTAGE || chan->type == IIO_ALTCURRENT) {

Could simpilify this with a switch statement.

> +			switch (chan->address) {
> +			case ADE9000_REG_AI_PCF:
> +			case ADE9000_REG_AV_PCF:
> +			case ADE9000_REG_BI_PCF:
> +			case ADE9000_REG_BV_PCF:
> +			case ADE9000_REG_CI_PCF:
> +			case ADE9000_REG_CV_PCF:
> +				*val = 1;
> +				*val2 = ADE9000_PCF_FULL_SCALE_CODES;
> +				return IIO_VAL_FRACTIONAL;
> +			case ADE9000_REG_AIRMS:
> +			case ADE9000_REG_AVRMS:
> +			case ADE9000_REG_BIRMS:
> +			case ADE9000_REG_BVRMS:
> +			case ADE9000_REG_CIRMS:
> +			case ADE9000_REG_CVRMS:
> +				*val = 1;
> +				*val2 = ADE9000_RMS_FULL_SCALE_CODES;
> +				return IIO_VAL_FRACTIONAL;
> +			default:
> +				return -EINVAL;
> +			}
> +		}
> +
> +		if (chan->type == IIO_POWER) {
> +			*val = 1;
> +			*val2 = ADE9000_WATT_FULL_SCALE_CODES;
> +			return IIO_VAL_FRACTIONAL;
> +		}
> +
> +		return -EINVAL;
> +	default:
> +		return -EINVAL;
> +	}
> +}
> +
> +static int ade9000_write_raw(struct iio_dev *indio_dev,
> +			     struct iio_chan_spec const *chan,
> +			     int val,
> +			     int val2,
> +			     long mask)
> +{
> +	struct ade9000_state *st = iio_priv(indio_dev);
> +	u32 addr, tmp;
> +
> +	switch (mask) {
> +	case IIO_CHAN_INFO_FREQUENCY:
> +		switch (val) {
> +		case 50:
> +			return regmap_write(st->regmap, ADE9000_REG_ACCMODE,
> +					    ADE9000_ACCMODE);
> +		case 60:
> +			return regmap_write(st->regmap, ADE9000_REG_ACCMODE,
> +					    ADE9000_ACCMODE_60HZ);
> +		default:
> +			return -EINVAL;
> +		}
> +	case IIO_CHAN_INFO_CALIBBIAS:
> +		switch (chan->type) {
> +		case IIO_CURRENT:
> +			return regmap_write(st->regmap,
> +					    ADE9000_ADDR_ADJUST(ADE9000_REG_AIRMSOS,
> +								chan->channel), val);
> +		case IIO_VOLTAGE:
> +		case IIO_ALTVOLTAGE:
> +			return regmap_write(st->regmap,
> +					    ADE9000_ADDR_ADJUST(ADE9000_REG_AVRMSOS,
> +								chan->channel), val);
> +		case IIO_POWER:
> +			tmp = chan->address;
> +			tmp &= ~ADE9000_PHASE_B_POS_BIT;
> +			tmp &= ~ADE9000_PHASE_C_POS_BIT;
> +
> +			switch (tmp) {
> +			case ADE9000_REG_AWATTOS:
> +				return regmap_write(st->regmap,
> +						    ADE9000_ADDR_ADJUST(ADE9000_REG_AWATTOS,
> +									chan->channel), val);
> +			case ADE9000_REG_AVAR:
> +				return regmap_write(st->regmap,
> +						    ADE9000_ADDR_ADJUST(ADE9000_REG_AVAROS,
> +									chan->channel), val);
> +			case ADE9000_REG_AFVAR:
> +				return regmap_write(st->regmap,
> +						    ADE9000_ADDR_ADJUST(ADE9000_REG_AFVAROS,
> +									chan->channel), val);
> +			default:
> +				return -EINVAL;
> +			}
> +		default:
> +			return -EINVAL;
> +		}
> +	case IIO_CHAN_INFO_CALIBSCALE:
> +		/*
> +		 * Calibration gain registers for fine-tuning measurements.
> +		 * These are separate from PGA gain and applied in the digital domain.
> +		 */
> +		switch (chan->type) {
> +		case IIO_CURRENT:
> +			return regmap_write(st->regmap,
> +					    ADE9000_ADDR_ADJUST(ADE9000_REG_AIGAIN,
> +								chan->channel), val);
> +		case IIO_VOLTAGE:
> +			return regmap_write(st->regmap,
> +					    ADE9000_ADDR_ADJUST(ADE9000_REG_AVGAIN,
> +								chan->channel), val);
> +		case IIO_POWER:
> +			return regmap_write(st->regmap,
> +					    ADE9000_ADDR_ADJUST(ADE9000_REG_APGAIN,
> +								chan->channel), val);
> +		default:
> +			return -EINVAL;
> +		}
> +	case IIO_CHAN_INFO_SCALE:
> +		/* Only shared PGA scale is writable, per-channel scales are read-only */
> +		if (!(chan->info_mask_shared_by_all))
> +			return -EINVAL;
> +
> +		/*
> +		 * PGA (Programmable Gain Amplifier) settings affect the analog
> +		 * input stage scaling, shared by all channels. This is different
> +		 * from the per-channel calibration gains above.
> +		 */
> +		if (val > 4 || val < 1 || val == 3)
> +			return -EINVAL;
> +		addr = ADE9000_REG_PGA_GAIN;
> +		/*
> +		 * PGA gain settings: 1x, 2x, 4x (3x not supported)
> +		 * Each channel uses 2 bits in PGA_GAIN register:
> +		 * - Channel 0: bits [9:8]
> +		 * - Channel 1: bits [11:10]
> +		 * - Channel 2: bits [13:12]
> +		 * Convert gain (1,2,4) to register value (0,1,2) using ilog2()
> +		 */
> +		val = ilog2(val) << (chan->channel * 2 + 8);
> +		tmp = GENMASK(1, 0) << (chan->channel * 2 + 8);
> +		return regmap_update_bits(st->regmap, addr, tmp, val);
> +	default:
> +		return -EINVAL;
> +	}
> +}
> +
> +static int ade9000_reg_access(struct iio_dev *indio_dev,
> +			      unsigned int reg,
> +			      unsigned int tx_val,
> +			      unsigned int *rx_val)
> +{
> +	struct ade9000_state *st = iio_priv(indio_dev);
> +
> +	if (rx_val)
> +		return regmap_read(st->regmap, reg, rx_val);
> +
> +	return regmap_write(st->regmap, reg, tx_val);
> +}
> +
> +static int ade9000_read_event_config(struct iio_dev *indio_dev,
> +				     const struct iio_chan_spec *chan,
> +				     enum iio_event_type type,
> +				     enum iio_event_direction dir)
> +{
> +	struct ade9000_state *st = iio_priv(indio_dev);
> +	u32 interrupts1;
> +	int ret;
> +
> +	/* All events use MASK1 register */
> +	ret = regmap_read(st->regmap, ADE9000_REG_MASK1, &interrupts1);
> +	if (ret)
> +		return ret;
> +
> +	switch (chan->channel) {
> +	case ADE9000_PHASE_A_NR:
> +		if (chan->type == IIO_VOLTAGE && dir == IIO_EV_DIR_EITHER)
> +			return !!(interrupts1 & ADE9000_ST1_ZXVA_BIT);
> +		else if (chan->type == IIO_CURRENT && dir == IIO_EV_DIR_EITHER)
> +			return !!(interrupts1 & ADE9000_ST1_ZXIA_BIT);
> +		else if (chan->type == IIO_ALTVOLTAGE && dir == IIO_EV_DIR_RISING)
> +			return !!(interrupts1 & ADE9000_ST1_SWELLA_BIT);
> +		else if (chan->type == IIO_ALTVOLTAGE && dir == IIO_EV_DIR_FALLING)
> +			return !!(interrupts1 & ADE9000_ST1_DIPA_BIT);
> +		break;

Just return 0; here. Same applies elsewhere.

> +	case ADE9000_PHASE_B_NR:
> +		if (chan->type == IIO_VOLTAGE && dir == IIO_EV_DIR_EITHER)
> +			return !!(interrupts1 & ADE9000_ST1_ZXVB_BIT);
> +		else if (chan->type == IIO_CURRENT && dir == IIO_EV_DIR_EITHER)
> +			return !!(interrupts1 & ADE9000_ST1_ZXIB_BIT);
> +		else if (chan->type == IIO_ALTVOLTAGE && dir == IIO_EV_DIR_RISING)
> +			return !!(interrupts1 & ADE9000_ST1_SWELLB_BIT);
> +		else if (chan->type == IIO_ALTVOLTAGE && dir == IIO_EV_DIR_FALLING)
> +			return !!(interrupts1 & ADE9000_ST1_DIPB_BIT);
> +		break;
> +	case ADE9000_PHASE_C_NR:
> +		if (chan->type == IIO_VOLTAGE && dir == IIO_EV_DIR_EITHER)
> +			return !!(interrupts1 & ADE9000_ST1_ZXVC_BIT);
> +		else if (chan->type == IIO_CURRENT && dir == IIO_EV_DIR_EITHER)
> +			return !!(interrupts1 & ADE9000_ST1_ZXIC_BIT);
> +		else if (chan->type == IIO_ALTVOLTAGE && dir == IIO_EV_DIR_RISING)
> +			return !!(interrupts1 & ADE9000_ST1_SWELLC_BIT);
> +		else if (chan->type == IIO_ALTVOLTAGE && dir == IIO_EV_DIR_FALLING)
> +			return !!(interrupts1 & ADE9000_ST1_DIPC_BIT);
> +		break;
> +	default:
> +		return -EINVAL;
> +	}
> +
> +	return 0;
> +}
> +
> +static int ade9000_write_event_config(struct iio_dev *indio_dev,
> +				      const struct iio_chan_spec *chan,
> +				      enum iio_event_type type,
> +				      enum iio_event_direction dir,
> +				      bool state)
> +{
> +	struct ade9000_state *st = iio_priv(indio_dev);
> +	u32 bit_mask = 0;
> +	int ret;
> +
> +	/* Clear all pending events in STATUS1 register (write 1 to clear) */
> +	ret = regmap_write(st->regmap, ADE9000_REG_STATUS1, GENMASK(31, 0));
> +	if (ret)
> +		return ret;
> +
> +	/* Determine which interrupt bit to enable/disable */
> +	switch (chan->channel) {
> +	case ADE9000_PHASE_A_NR:
> +		if (chan->type == IIO_VOLTAGE && dir == IIO_EV_DIR_EITHER) {
> +			bit_mask = ADE9000_ST1_ZXVA_BIT;
> +			if (state)
> +				st->wfb_trg |= ADE9000_WFB_TRG_ZXVA_BIT;
> +			else
> +				st->wfb_trg &= ~ADE9000_WFB_TRG_ZXVA_BIT;
> +		} else if (chan->type == IIO_CURRENT && dir == IIO_EV_DIR_EITHER) {
> +			bit_mask = ADE9000_ST1_ZXIA_BIT;
> +			if (state)
> +				st->wfb_trg |= ADE9000_WFB_TRG_ZXIA_BIT;
> +			else
> +				st->wfb_trg &= ~ADE9000_WFB_TRG_ZXIA_BIT;
> +		} else if (chan->type == IIO_ALTVOLTAGE && dir == IIO_EV_DIR_RISING) {
> +			bit_mask = ADE9000_ST1_SWELLA_BIT;
> +			if (state)
> +				st->wfb_trg |= ADE9000_WFB_TRG_SWELL_BIT;
> +			else
> +				st->wfb_trg &= ~ADE9000_WFB_TRG_SWELL_BIT;
> +		} else if (chan->type == IIO_ALTVOLTAGE && dir == IIO_EV_DIR_FALLING) {
> +			bit_mask = ADE9000_ST1_DIPA_BIT;
> +			if (state)
> +				st->wfb_trg |= ADE9000_WFB_TRG_DIP_BIT;
> +			else
> +				st->wfb_trg &= ~ADE9000_WFB_TRG_DIP_BIT;
> +		}
> +		break;
> +	case ADE9000_PHASE_B_NR:
> +		if (chan->type == IIO_VOLTAGE && dir == IIO_EV_DIR_EITHER) {
> +			bit_mask = ADE9000_ST1_ZXVB_BIT;
> +			if (state)
> +				st->wfb_trg |= ADE9000_WFB_TRG_ZXVB_BIT;
> +			else
> +				st->wfb_trg &= ~ADE9000_WFB_TRG_ZXVB_BIT;
> +		} else if (chan->type == IIO_CURRENT && dir == IIO_EV_DIR_EITHER) {
> +			bit_mask = ADE9000_ST1_ZXIB_BIT;
> +			if (state)
> +				st->wfb_trg |= ADE9000_WFB_TRG_ZXIB_BIT;
> +			else
> +				st->wfb_trg &= ~ADE9000_WFB_TRG_ZXIB_BIT;
> +		} else if (chan->type == IIO_ALTVOLTAGE && dir == IIO_EV_DIR_RISING) {
> +			bit_mask = ADE9000_ST1_SWELLB_BIT;
> +			if (state)
> +				st->wfb_trg |= ADE9000_WFB_TRG_SWELL_BIT;
> +			else
> +				st->wfb_trg &= ~ADE9000_WFB_TRG_SWELL_BIT;
> +		} else if (chan->type == IIO_ALTVOLTAGE && dir == IIO_EV_DIR_FALLING) {
> +			bit_mask = ADE9000_ST1_DIPB_BIT;
> +			if (state)
> +				st->wfb_trg |= ADE9000_WFB_TRG_DIP_BIT;
> +			else
> +				st->wfb_trg &= ~ADE9000_WFB_TRG_DIP_BIT;
> +		}
> +		break;
> +	case ADE9000_PHASE_C_NR:
> +		if (chan->type == IIO_VOLTAGE && dir == IIO_EV_DIR_EITHER) {
> +			bit_mask = ADE9000_ST1_ZXVC_BIT;
> +			if (state)
> +				st->wfb_trg |= ADE9000_WFB_TRG_ZXVC_BIT;
> +			else
> +				st->wfb_trg &= ~ADE9000_WFB_TRG_ZXVC_BIT;
> +		} else if (chan->type == IIO_CURRENT && dir == IIO_EV_DIR_EITHER) {
> +			bit_mask = ADE9000_ST1_ZXIC_BIT;
> +			if (state)
> +				st->wfb_trg |= ADE9000_WFB_TRG_ZXIC_BIT;
> +			else
> +				st->wfb_trg &= ~ADE9000_WFB_TRG_ZXIC_BIT;
> +		} else if (chan->type == IIO_ALTVOLTAGE && dir == IIO_EV_DIR_RISING) {
> +			bit_mask = ADE9000_ST1_SWELLC_BIT;
> +			if (state)
> +				st->wfb_trg |= ADE9000_WFB_TRG_SWELL_BIT;
> +			else
> +				st->wfb_trg &= ~ADE9000_WFB_TRG_SWELL_BIT;
> +		} else if (chan->type == IIO_ALTVOLTAGE && dir == IIO_EV_DIR_FALLING) {
> +			bit_mask = ADE9000_ST1_DIPC_BIT;
> +			if (state)
> +				st->wfb_trg |= ADE9000_WFB_TRG_DIP_BIT;
> +			else
> +				st->wfb_trg &= ~ADE9000_WFB_TRG_DIP_BIT;
> +		}
> +		break;
> +	default:
> +		return -EINVAL;
> +	}
> +
> +	if (!bit_mask)
> +		return -EINVAL;
> +
> +	return regmap_assign_bits(st->regmap, ADE9000_REG_MASK1, bit_mask, state ? bit_mask : 0);
> +}
> +
> +static int ade9000_write_event_value(struct iio_dev *indio_dev,
> +				     const struct iio_chan_spec *chan,
> +				     enum iio_event_type type,
> +				     enum iio_event_direction dir,
> +				     enum iio_event_info info,
> +				     int val, int val2)
> +{
> +	struct ade9000_state *st = iio_priv(indio_dev);
> +
> +	switch (info) {
> +	case IIO_EV_INFO_VALUE:
> +		switch (dir) {
> +		case IIO_EV_DIR_FALLING:
> +			return regmap_write(st->regmap, ADE9000_REG_DIP_LVL, val);
> +		case IIO_EV_DIR_RISING:
> +			return regmap_write(st->regmap, ADE9000_REG_SWELL_LVL, val);
> +		default:
> +			return -EINVAL;
> +		}
> +	default:
> +		return -EINVAL;
> +	}
> +}
> +
> +static int ade9000_read_event_value(struct iio_dev *indio_dev,
> +				    const struct iio_chan_spec *chan,
> +				    enum iio_event_type type,
> +				    enum iio_event_direction dir,
> +				    enum iio_event_info info,
> +				    int *val, int *val2)
> +{
> +	struct ade9000_state *st = iio_priv(indio_dev);
> +	unsigned int data;
> +	int ret;
> +
> +	switch (info) {
> +	case IIO_EV_INFO_VALUE:
> +		switch (dir) {
> +		case IIO_EV_DIR_FALLING:
> +			ret = regmap_read(st->regmap, ADE9000_REG_DIP_LVL, &data);
> +			if (ret)
> +				return ret;
> +			*val = data;
> +			return IIO_VAL_INT;
> +		case IIO_EV_DIR_RISING:
> +			ret = regmap_read(st->regmap, ADE9000_REG_SWELL_LVL, &data);
> +			if (ret)
> +				return ret;
> +			*val = data;
> +			return IIO_VAL_INT;
> +		default:
> +			return -EINVAL;
> +		}
> +	default:
> +		return -EINVAL;
> +	}
> +}
> +
> +static int ade9000_waveform_buffer_config(struct iio_dev *indio_dev)
> +{
> +	struct ade9000_state *st = iio_priv(indio_dev);
> +	u32 wfb_cfg_val = 0;
> +	u32 active_scans;
> +
> +	bitmap_to_arr32(&active_scans, indio_dev->active_scan_mask,
> +			indio_dev->masklength);
> +
> +	switch (active_scans) {
> +	case ADE9000_SCAN_POS_IA | ADE9000_SCAN_POS_VA:
> +		wfb_cfg_val = ADE9000_WFB_CFG_IA_VA;
> +		st->wfb_nr_activ_chan = 2;
> +		break;
> +	case ADE9000_SCAN_POS_IB | ADE9000_SCAN_POS_VB:
> +		wfb_cfg_val = ADE9000_WFB_CFG_IB_VB;
> +		st->wfb_nr_activ_chan = 2;
> +		break;
> +	case ADE9000_SCAN_POS_IC | ADE9000_SCAN_POS_VC:
> +		wfb_cfg_val = ADE9000_WFB_CFG_IC_VC;
> +		st->wfb_nr_activ_chan = 2;
> +		break;
> +	case ADE9000_SCAN_POS_IA:
> +		wfb_cfg_val = ADE9000_WFB_CFG_IA;
> +		st->wfb_nr_activ_chan = 1;
> +		break;
> +	case ADE9000_SCAN_POS_VA:
> +		wfb_cfg_val = ADE9000_WFB_CFG_VA;
> +		st->wfb_nr_activ_chan = 1;
> +		break;
> +	case ADE9000_SCAN_POS_IB:
> +		wfb_cfg_val = ADE9000_WFB_CFG_IB;
> +		st->wfb_nr_activ_chan = 1;
> +		break;
> +	case ADE9000_SCAN_POS_VB:
> +		wfb_cfg_val = ADE9000_WFB_CFG_VB;
> +		st->wfb_nr_activ_chan = 1;
> +		break;
> +	case ADE9000_SCAN_POS_IC:
> +		wfb_cfg_val = ADE9000_WFB_CFG_IC;
> +		st->wfb_nr_activ_chan = 1;
> +		break;
> +	case ADE9000_SCAN_POS_VC:
> +		wfb_cfg_val = ADE9000_WFB_CFG_VC;
> +		st->wfb_nr_activ_chan = 1;
> +		break;
> +	case (ADE9000_SCAN_POS_IA | ADE9000_SCAN_POS_VA | ADE9000_SCAN_POS_IB |
> +	      ADE9000_SCAN_POS_VB | ADE9000_SCAN_POS_IC | ADE9000_SCAN_POS_VC):
> +		wfb_cfg_val = ADE9000_WFB_CFG_ALL_CHAN;
> +		st->wfb_nr_activ_chan = 6;
> +		break;
> +	default:
> +		dev_err(&st->spi->dev, "Unsupported combination of scans\n");
> +		return -EINVAL;
> +	}
> +
> +	wfb_cfg_val |= FIELD_PREP(ADE9000_WF_SRC_MASK, st->wf_src);
> +
> +	return regmap_write(st->regmap, ADE9000_REG_WFB_CFG, wfb_cfg_val);
> +}
> +
> +static int ade9000_waveform_buffer_interrupt_setup(struct ade9000_state *st)
> +{
> +	int ret;
> +
> +	ret = regmap_write(st->regmap, ADE9000_REG_WFB_TRG_CFG, 0x0);
> +	if (ret)
> +		return ret;
> +
> +	/* Always use streaming mode setup */
> +	ret = regmap_write(st->regmap, ADE9000_REG_WFB_PG_IRQEN,
> +			   ADE9000_MIDDLE_PAGE_BIT);
> +	if (ret)
> +		return ret;
> +
> +	ret = regmap_write(st->regmap, ADE9000_REG_STATUS0, GENMASK(31, 0));
> +	if (ret)
> +		return ret;
> +
> +	return regmap_set_bits(st->regmap, ADE9000_REG_MASK0,
> +			       ADE9000_ST0_PAGE_FULL_BIT);
> +}
> +
> +static int ade9000_buffer_preenable(struct iio_dev *indio_dev)
> +{
> +	struct ade9000_state *st = iio_priv(indio_dev);
> +	int ret;
> +
> +	ret = ade9000_waveform_buffer_config(indio_dev);

Should this be .validate_scan_mask callback instead of calling it here?


> +	if (ret)
> +		return ret;
> +
> +	st->wfb_nr_samples = ADE9000_WFB_MAX_SAMPLES_CHAN * st->wfb_nr_activ_chan;
> +
> +	ade9000_configure_scan(indio_dev, ADE9000_REG_WF_BUFF);
> +
> +	ret = ade9000_waveform_buffer_interrupt_setup(st);
> +	if (ret)
> +		return ret;
> +
> +	ret = regmap_set_bits(st->regmap, ADE9000_REG_WFB_CFG,
> +			      ADE9000_WF_CAP_EN_MASK);
> +	if (ret) {
> +		dev_err(&st->spi->dev, "Post-enable waveform buffer enable fail\n");
> +		return ret;
> +	}
> +
> +	return 0;
> +}
> +
> +static int ade9000_buffer_postdisable(struct iio_dev *indio_dev)
> +{
> +	struct ade9000_state *st = iio_priv(indio_dev);
> +	struct device *dev = &st->spi->dev;
> +	u32 interrupts;
> +	int ret;
> +
> +	ret = regmap_clear_bits(st->regmap, ADE9000_REG_WFB_CFG,
> +				ADE9000_WF_CAP_EN_MASK);
> +	if (ret) {
> +		dev_err(dev, "Post-disable waveform buffer disable fail\n");
> +		return ret;
> +	}
> +
> +	ret = regmap_write(st->regmap, ADE9000_REG_WFB_TRG_CFG, 0x0);
> +	if (ret)
> +		return ret;
> +
> +	interrupts = ADE9000_ST0_WFB_TRIG_BIT | ADE9000_ST0_PAGE_FULL_BIT;
> +
> +	ret = regmap_clear_bits(st->regmap, ADE9000_REG_MASK0, interrupts);
> +	if (ret) {
> +		dev_err(dev, "Post-disable update maks0 fail\n");
> +		return ret;
> +	}
> +
> +	return regmap_write(st->regmap, ADE9000_REG_STATUS0, GENMASK(31, 0));
> +}
> +
> +static int ade9000_reset(struct ade9000_state *st)
> +{
> +	struct device *dev = &st->spi->dev;
> +	struct gpio_desc *gpio_reset;
> +	int ret;
> +
> +	gpio_reset = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH);
> +	if (IS_ERR(gpio_reset))
> +		return PTR_ERR(gpio_reset);
> +
> +	/* Software reset via register if no GPIO available */
> +	if (!gpio_reset) {
> +		ret = regmap_set_bits(st->regmap, ADE9000_REG_CONFIG1,
> +				      ADE9000_SWRST_BIT);
> +		if (ret)
> +			return ret;
> +		fsleep(90);
> +		return 0;
> +	}
> +
> +	/* Hardware reset via GPIO */
> +	fsleep(10);
> +	gpiod_set_value_cansleep(gpio_reset, 0);
> +	fsleep(50000);
> +
> +	if (!wait_for_completion_timeout(&st->reset_completion,
> +					 msecs_to_jiffies(1000))) {
> +		dev_err(dev, "Reset timeout after 1s\n");
> +		return -ETIMEDOUT;
> +	}

Interrupts are optional, so this will always be a timeout if we
don't have the interrupt that sets the completion.

> +
> +	return 0;
> +}
> +
> +static int ade9000_setup(struct ade9000_state *st)
> +{
> +	struct device *dev = &st->spi->dev;
> +	int ret;
> +
> +	ret = regmap_multi_reg_write(st->regmap, ade9000_reg_sequence,
> +				     ARRAY_SIZE(ade9000_reg_sequence));
> +	if (ret)
> +		return dev_err_probe(dev, ret, "Failed to write register sequence");
> +
> +	fsleep(2000);
> +
> +	/* Clear all pending status bits by writing 1s */
> +	ret = regmap_write(st->regmap, ADE9000_REG_STATUS0, GENMASK(31, 0));
> +	if (ret)
> +		return dev_err_probe(dev, ret, "Failed to clear STATUS0");
> +
> +	ret = regmap_write(st->regmap, ADE9000_REG_STATUS1, GENMASK(31, 0));
> +	if (ret)
> +		return dev_err_probe(dev, ret, "Failed to clear STATUS1");

Why are these separate from regmap_multi_reg_write()?

> +
> +	return 0;
> +}
> +
> +static const struct iio_buffer_setup_ops ade9000_buffer_ops = {
> +	.preenable = &ade9000_buffer_preenable,
> +	.postdisable = &ade9000_buffer_postdisable,
> +};

Would be nice to move this right after ade9000_buffer_postdisable().

> +
> +static const struct iio_info ade9000_info = {
> +	.read_raw = ade9000_read_raw,
> +	.write_raw = ade9000_write_raw,
> +	.debugfs_reg_access = ade9000_reg_access,
> +	.write_event_config = ade9000_write_event_config,
> +	.read_event_config = ade9000_read_event_config,
> +	.write_event_value = ade9000_write_event_value,
> +	.read_event_value = ade9000_read_event_value,
> +};
> +
> +static const struct regmap_config ade9000_regmap_config = {
> +	.reg_bits = 16,
> +	.val_bits = 32,

	.max_register = ?,

> +	.zero_flag_mask = true,
> +	.cache_type = REGCACHE_RBTREE,
> +	.reg_read = ade9000_spi_read_reg,
> +	.reg_write = ade9000_spi_write_reg,
> +	.volatile_reg = ade9000_is_volatile_reg,
> +};
> +
> +static int ade9000_setup_clkout(struct device *dev, struct ade9000_state *st)
> +{
> +	struct clk_init_data clk_init = {};
> +	struct clk *clkout;
> +	int ret;
> +

This also needs to check CONFIG_COMMON_CLK, otherwise we can get compile
errors with random configurations. For example:

	if (!IS_ENABLED(CONFIG_COMMON_CLK))
		return 0;

> +	/*
> +	 * Only provide clock output when using external CMOS clock.
> +	 * When using crystal, CLKOUT is connected to crystal and shouldn't
> +	 * be used as clock provider for other devices.
> +	 */
> +	if (!device_property_present(dev, "#clock-cells") || !st->clkin)
> +		return 0;
> +
> +	clk_init.name = "clkout";
> +	clk_init.ops = &ade9000_clkout_ops;
> +	clk_init.flags = CLK_GET_RATE_NOCACHE;
> +	clk_init.num_parents = 0;

Isn't clkin a parent?

> +
> +	st->clkout_hw.init = &clk_init;
> +
> +	clkout = devm_clk_register(dev, &st->clkout_hw);
> +	if (IS_ERR(clkout))
> +		return dev_err_probe(dev, PTR_ERR(clkout), "Failed to register clkout");
> +
> +	ret = devm_of_clk_add_hw_provider(dev, of_clk_hw_simple_get, &st->clkout_hw);

Could probably save some code by using devm_clk_hw_register_divider() instead
(with divider of 1).

> +	if (ret)
> +		return dev_err_probe(dev, ret, "Failed to add clock provider");
> +
> +	return 0;
> +}
> +
> +static int ade9000_request_irq(struct device *dev, const char *name,
> +			       irq_handler_t handler, void *dev_id)
> +{
> +	int irq, ret;
> +
> +	irq = fwnode_irq_get_byname(dev_fwnode(dev), name);
> +	if (irq < 0)
> +		return 0;

Probably want to check for specific error here, e.g. if the error
is EPROBE_DEFER, we would want to pass that on. So something like

if (irq == -EINVAL)
	return 0; /* interrutps are optional */
if (irq < 0)
	return dev_err_probe(dev, irq, "Failed to get %s irq", name);

> +
> +	ret = devm_request_threaded_irq(dev, irq, NULL, handler,
> +					IRQF_ONESHOT, KBUILD_MODNAME, dev_id);
> +	if (ret)
> +		return dev_err_probe(dev, ret, "Failed to request %s irq", name);
> +
> +	return 0;
> +}
> +
> +static int ade9000_probe(struct spi_device *spi)
> +{
> +	struct device *dev = &spi->dev;
> +	struct iio_dev *indio_dev;
> +	struct ade9000_state *st;
> +	struct regmap *regmap;
> +	int ret;
> +
> +	indio_dev = devm_iio_device_alloc(dev, sizeof(*st));
> +	if (!indio_dev)
> +		return dev_err_probe(dev, -ENOMEM, "Unable to allocate ADE9000 IIO");

Don't need dev_err_proble() for -ENOMEM.

> +
> +	st = iio_priv(indio_dev);
> +
> +	regmap = devm_regmap_init(dev, NULL, st, &ade9000_regmap_config);
> +	if (IS_ERR(regmap))
> +		return dev_err_probe(dev, PTR_ERR(regmap), "Unable to allocate ADE9000 regmap");
> +
> +	st->regmap = regmap;
> +	st->spi = spi;
> +
> +	init_completion(&st->reset_completion);
> +
> +	ret = ade9000_request_irq(dev, "irq0", ade9000_irq0_thread, indio_dev);
> +	if (ret)
> +		return ret;
> +
> +	ret = ade9000_request_irq(dev, "irq1", ade9000_irq1_thread, indio_dev);
> +	if (ret)
> +		return ret;
> +
> +	ret = ade9000_request_irq(dev, "dready", ade9000_dready_thread, indio_dev);
> +	if (ret)
> +		return ret;
> +
> +	ret = devm_mutex_init(dev, &st->lock);
> +	if (ret)
> +		return ret;
> +
> +	/* External CMOS clock input (optional - crystal can be used instead) */
> +	st->clkin = devm_clk_get_optional_enabled(dev, "clkin");
> +	if (IS_ERR(st->clkin))
> +		return dev_err_probe(dev, PTR_ERR(st->clkin), "Failed to get and enable clkin");
> +
> +	ret = ade9000_setup_clkout(dev, st);
> +	if (ret)
> +		return ret;
> +
> +	indio_dev->name = "ade9000";
> +	indio_dev->info = &ade9000_info;
> +	indio_dev->modes = INDIO_DIRECT_MODE | INDIO_BUFFER_SOFTWARE;

devm_iio_kfifo_buffer_setup() sets the INDIO_BUFFER_SOFTWARE flag, so
we don't need to set it here.

> +	indio_dev->setup_ops = &ade9000_buffer_ops;
> +
> +	ret = devm_regulator_get_enable(&spi->dev, "vdd");
> +	if (ret)
> +		return dev_err_probe(&spi->dev, ret,
> +				     "Failed to get and enable vdd regulator\n");
> +
> +	ret = devm_regulator_get_enable_optional(dev, "vref");
> +	if (ret < 0 && ret != -ENODEV)
> +		return dev_err_probe(dev, ret,
> +				     "Failed to get and enable vref regulator\n");
> +
> +	/* Configure reference selection based on vref regulator availability */
> +	if (ret != -ENODEV) {
> +		ret = regmap_set_bits(st->regmap, ADE9000_REG_CONFIG1,
> +				      ADE9000_EXT_REF_MASK);
> +		if (ret)
> +			return ret;
> +	}
> +
> +	indio_dev->channels = ade9000_channels;
> +	indio_dev->num_channels = ARRAY_SIZE(ade9000_channels);
> +
> +	ret = devm_iio_kfifo_buffer_setup(dev, indio_dev,
> +					  &ade9000_buffer_ops);
> +	if (ret)
> +		return dev_err_probe(dev, ret, "Failed to setup IIO buffer");
> +
> +	ret = ade9000_reset(st);

Won't this reset the EXT_REF bit that just got set in the CONFIG1
register?

> +	if (ret)
> +		return ret;
> +
> +	ret = ade9000_setup(st);
> +	if (ret)
> +		return ret;
> +
> +	return devm_iio_device_register(dev, indio_dev);
> +};
> +
> +static const struct spi_device_id ade9000_id[] = {
> +	{ "ade9000", 0 },
> +	{ }
> +};
> +MODULE_DEVICE_TABLE(spi, ade9000_id);
> +
> +static const struct of_device_id ade9000_of_match[] = {
> +	{ .compatible = "adi,ade9000" },
> +	{ }
> +};
> +MODULE_DEVICE_TABLE(of, ade9000_of_match);
> +
> +static struct spi_driver ade9000_driver = {
> +	.driver = {
> +		.name = "ade9000",
> +		.of_match_table = ade9000_of_match,
> +	},
> +	.probe = ade9000_probe,
> +	.id_table = ade9000_id,
> +};
> +module_spi_driver(ade9000_driver);
> +
> +MODULE_AUTHOR("Antoniu Miclaus <antoniu.miclaus@...log.com>");
> +MODULE_DESCRIPTION("Analog Devices ADE9000");
> +MODULE_LICENSE("GPL");


Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ