[<prev] [next>] [thread-next>] [day] [month] [year] [list]
Message-ID: <20250829115250.2395585-1-ryan.roberts@arm.com>
Date: Fri, 29 Aug 2025 12:52:41 +0100
From: Ryan Roberts <ryan.roberts@....com>
To: Catalin Marinas <catalin.marinas@....com>,
Will Deacon <will@...nel.org>,
Andrew Morton <akpm@...ux-foundation.org>,
David Hildenbrand <david@...hat.com>,
Lorenzo Stoakes <lorenzo.stoakes@...cle.com>,
Yang Shi <yang@...amperecomputing.com>,
Ard Biesheuvel <ardb@...nel.org>,
Dev Jain <dev.jain@....com>,
scott@...amperecomputing.com,
cl@...two.org
Cc: Ryan Roberts <ryan.roberts@....com>,
linux-arm-kernel@...ts.infradead.org,
linux-kernel@...r.kernel.org,
linux-mm@...ck.org
Subject: [PATCH v7 0/6] arm64: support FEAT_BBM level 2 and large block mapping when rodata=full
Hi All,
This is a new version following on from the v6 RFC at [1] which itself is based
on Yang Shi's work. On systems with BBML2_NOABORT support, it causes the linear
map to be mapped with large blocks, even when rodata=full, and leads to some
nice performance improvements.
I've tested this on an AmpereOne system (a VM with 12G RAM) in all 3 possible
modes by hacking the BBML2 feature detection code:
- mode 1: All CPUs support BBML2 so the linear map uses large mappings
- mode 2: Boot CPU does not support BBML2 so linear map uses pte mappings
- mode 3: Boot CPU supports BBML2 but secondaries do not so linear map
initially uses large mappings but is then repainted to use pte mappings
In all cases, mm selftests run and no regressions are observed. In all cases,
ptdump of linear map is as expected:
Mode 1:
=======
---[ Linear Mapping start ]---
0xffff000000000000-0xffff000000200000 2M PMD RW NX SHD AF BLK UXN MEM/NORMAL-TAGGED
0xffff000000200000-0xffff000000210000 64K PTE RW NX SHD AF CON UXN MEM/NORMAL-TAGGED
0xffff000000210000-0xffff000000400000 1984K PTE ro NX SHD AF UXN MEM/NORMAL
0xffff000000400000-0xffff000002400000 32M PMD ro NX SHD AF BLK UXN MEM/NORMAL
0xffff000002400000-0xffff000002550000 1344K PTE ro NX SHD AF UXN MEM/NORMAL
0xffff000002550000-0xffff000002600000 704K PTE RW NX SHD AF CON UXN MEM/NORMAL-TAGGED
0xffff000002600000-0xffff000004000000 26M PMD RW NX SHD AF BLK UXN MEM/NORMAL-TAGGED
0xffff000004000000-0xffff000040000000 960M PMD RW NX SHD AF CON BLK UXN MEM/NORMAL-TAGGED
0xffff000040000000-0xffff000140000000 4G PUD RW NX SHD AF BLK UXN MEM/NORMAL-TAGGED
0xffff000140000000-0xffff000142000000 32M PMD RW NX SHD AF CON BLK UXN MEM/NORMAL-TAGGED
0xffff000142000000-0xffff000142120000 1152K PTE RW NX SHD AF CON UXN MEM/NORMAL-TAGGED
0xffff000142120000-0xffff000142128000 32K PTE RW NX SHD AF UXN MEM/NORMAL-TAGGED
0xffff000142128000-0xffff000142159000 196K PTE ro NX SHD AF UXN MEM/NORMAL-TAGGED
0xffff000142159000-0xffff000142160000 28K PTE RW NX SHD AF UXN MEM/NORMAL-TAGGED
0xffff000142160000-0xffff000142240000 896K PTE RW NX SHD AF CON UXN MEM/NORMAL-TAGGED
0xffff000142240000-0xffff00014224e000 56K PTE RW NX SHD AF UXN MEM/NORMAL-TAGGED
0xffff00014224e000-0xffff000142250000 8K PTE ro NX SHD AF UXN MEM/NORMAL-TAGGED
0xffff000142250000-0xffff000142260000 64K PTE RW NX SHD AF UXN MEM/NORMAL-TAGGED
0xffff000142260000-0xffff000142280000 128K PTE RW NX SHD AF CON UXN MEM/NORMAL-TAGGED
0xffff000142280000-0xffff000142288000 32K PTE RW NX SHD AF UXN MEM/NORMAL-TAGGED
0xffff000142288000-0xffff000142290000 32K PTE ro NX SHD AF UXN MEM/NORMAL-TAGGED
0xffff000142290000-0xffff0001422a0000 64K PTE RW NX SHD AF UXN MEM/NORMAL-TAGGED
0xffff0001422a0000-0xffff000142465000 1812K PTE ro NX SHD AF UXN MEM/NORMAL-TAGGED
0xffff000142465000-0xffff000142470000 44K PTE RW NX SHD AF UXN MEM/NORMAL-TAGGED
0xffff000142470000-0xffff000142600000 1600K PTE RW NX SHD AF CON UXN MEM/NORMAL-TAGGED
0xffff000142600000-0xffff000144000000 26M PMD RW NX SHD AF BLK UXN MEM/NORMAL-TAGGED
0xffff000144000000-0xffff000180000000 960M PMD RW NX SHD AF CON BLK UXN MEM/NORMAL-TAGGED
0xffff000180000000-0xffff000181a00000 26M PMD RW NX SHD AF BLK UXN MEM/NORMAL-TAGGED
0xffff000181a00000-0xffff000181b90000 1600K PTE RW NX SHD AF CON UXN MEM/NORMAL-TAGGED
0xffff000181b90000-0xffff000181b9d000 52K PTE RW NX SHD AF UXN MEM/NORMAL-TAGGED
0xffff000181b9d000-0xffff000181c80000 908K PTE ro NX SHD AF UXN MEM/NORMAL-TAGGED
0xffff000181c80000-0xffff000181c90000 64K PTE RW NX SHD AF UXN MEM/NORMAL-TAGGED
0xffff000181c90000-0xffff000181ca0000 64K PTE RW NX SHD AF CON UXN MEM/NORMAL-TAGGED
0xffff000181ca0000-0xffff000181dbd000 1140K PTE ro NX SHD AF UXN MEM/NORMAL-TAGGED
0xffff000181dbd000-0xffff000181dc0000 12K PTE RW NX SHD AF UXN MEM/NORMAL-TAGGED
0xffff000181dc0000-0xffff000181e00000 256K PTE RW NX SHD AF CON UXN MEM/NORMAL-TAGGED
0xffff000181e00000-0xffff000182000000 2M PMD RW NX SHD AF BLK UXN MEM/NORMAL-TAGGED
0xffff000182000000-0xffff0001c0000000 992M PMD RW NX SHD AF CON BLK UXN MEM/NORMAL-TAGGED
0xffff0001c0000000-0xffff000300000000 5G PUD RW NX SHD AF BLK UXN MEM/NORMAL-TAGGED
0xffff000300000000-0xffff008000000000 500G PUD
0xffff008000000000-0xffff800000000000 130560G PGD
---[ Linear Mapping end ]---
Mode 3:
=======
---[ Linear Mapping start ]---
0xffff000000000000-0xffff000000210000 2112K PTE RW NX SHD AF UXN MEM/NORMAL-TAGGED
0xffff000000210000-0xffff000000400000 1984K PTE ro NX SHD AF UXN MEM/NORMAL
0xffff000000400000-0xffff000002400000 32M PMD ro NX SHD AF BLK UXN MEM/NORMAL
0xffff000002400000-0xffff000002550000 1344K PTE ro NX SHD AF UXN MEM/NORMAL
0xffff000002550000-0xffff000143a61000 5264452K PTE RW NX SHD AF UXN MEM/NORMAL-TAGGED
0xffff000143a61000-0xffff000143c61000 2M PTE ro NX SHD AF UXN MEM/NORMAL-TAGGED
0xffff000143c61000-0xffff000181b9a000 1015012K PTE RW NX SHD AF UXN MEM/NORMAL-TAGGED
0xffff000181b9a000-0xffff000181d9a000 2M PTE ro NX SHD AF UXN MEM/NORMAL-TAGGED
0xffff000181d9a000-0xffff000300000000 6261144K PTE RW NX SHD AF UXN MEM/NORMAL-TAGGED
0xffff000300000000-0xffff008000000000 500G PUD
0xffff008000000000-0xffff800000000000 130560G PGD
---[ Linear Mapping end ]---
Performance Testing
===================
Yang Shi has gathered some compelling results which are detailed in the commit
log for patch #3. Additionally I have run this through a random selection of
benchmarks on AmpereOne. None show any regressions, and various benchmarks show
statistically significant improvement. I'm just showing those improvements here:
+----------------------+----------------------------------------------------------+-------------------------+
| Benchmark | Result Class | Improvement vs 6.17-rc1 |
+======================+==========================================================+=========================+
| micromm/vmalloc | full_fit_alloc_test: p:1, h:0, l:500000 (usec) | (I) -9.00% |
| | kvfree_rcu_1_arg_vmalloc_test: p:1, h:0, l:500000 (usec) | (I) -6.93% |
| | kvfree_rcu_2_arg_vmalloc_test: p:1, h:0, l:500000 (usec) | (I) -6.77% |
| | pcpu_alloc_test: p:1, h:0, l:500000 (usec) | (I) -4.63% |
+----------------------+----------------------------------------------------------+-------------------------+
| mmtests/hackbench | process-sockets-30 (seconds) | (I) -2.96% |
+----------------------+----------------------------------------------------------+-------------------------+
| mmtests/kernbench | syst-192 (seconds) | (I) -12.77% |
+----------------------+----------------------------------------------------------+-------------------------+
| pts/perl-benchmark | Test: Interpreter (Seconds) | (I) -4.86% |
+----------------------+----------------------------------------------------------+-------------------------+
| pts/pgbench | Scale: 1 Clients: 1 Read Write (TPS) | (I) 5.07% |
| | Scale: 1 Clients: 1 Read Write - Latency (ms) | (I) -4.72% |
| | Scale: 100 Clients: 1000 Read Write (TPS) | (I) 2.58% |
| | Scale: 100 Clients: 1000 Read Write - Latency (ms) | (I) -2.52% |
+----------------------+----------------------------------------------------------+-------------------------+
| pts/sqlite-speedtest | Timed Time - Size 1,000 (Seconds) | (I) -2.68% |
+----------------------+----------------------------------------------------------+-------------------------+
Changes since v6 [1]
====================
- Patch 1: Minor refactor to implement walk_kernel_page_table_range() in terms
of walk_kernel_page_table_range_lockless(). Also lead to adding *pmd argument
to the lockless variant for consistency (per Catalin).
- Misc function/variable renames to improve clarity and consistency.
- Share same syncrhonization flag between idmap_kpti_install_ng_mappings and
wait_linear_map_split_to_ptes, which allows removal of bbml2_ptes[] to save
~20K from kernel image.
- Only take pgtable_split_lock and enter lazy mmu mode once for both splits.
- Only walk the pgtable once for the common "split single page" case.
- Bypass split to contpmd and contpte when spllitting linear map to ptes.
Applies on v6.17-rc3.
[1] https://lore.kernel.org/linux-arm-kernel/20250805081350.3854670-1-ryan.roberts@arm.com/
Thanks,
Ryan
Dev Jain (1):
arm64: Enable permission change on arm64 kernel block mappings
Ryan Roberts (3):
arm64: mm: Optimize split_kernel_leaf_mapping()
arm64: mm: split linear mapping if BBML2 unsupported on secondary CPUs
arm64: mm: Optimize linear_map_split_to_ptes()
Yang Shi (2):
arm64: cpufeature: add AmpereOne to BBML2 allow list
arm64: mm: support large block mapping when rodata=full
arch/arm64/include/asm/cpufeature.h | 2 +
arch/arm64/include/asm/mmu.h | 3 +
arch/arm64/include/asm/pgtable.h | 5 +
arch/arm64/kernel/cpufeature.c | 12 +-
arch/arm64/mm/mmu.c | 418 +++++++++++++++++++++++++++-
arch/arm64/mm/pageattr.c | 157 ++++++++---
arch/arm64/mm/proc.S | 27 +-
include/linux/pagewalk.h | 3 +
mm/pagewalk.c | 36 ++-
9 files changed, 599 insertions(+), 64 deletions(-)
--
2.43.0
Powered by blists - more mailing lists