[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-Id: <20250902080816.3715913-14-ankur.a.arora@oracle.com>
Date: Tue, 2 Sep 2025 01:08:14 -0700
From: Ankur Arora <ankur.a.arora@...cle.com>
To: linux-kernel@...r.kernel.org, linux-mm@...ck.org, x86@...nel.org
Cc: akpm@...ux-foundation.org, david@...hat.com, bp@...en8.de,
dave.hansen@...ux.intel.com, hpa@...or.com, mingo@...hat.com,
mjguzik@...il.com, luto@...nel.org, peterz@...radead.org,
acme@...nel.org, namhyung@...nel.org, tglx@...utronix.de,
willy@...radead.org, raghavendra.kt@....com,
boris.ostrovsky@...cle.com, konrad.wilk@...cle.com,
ankur.a.arora@...cle.com
Subject: [PATCH v6 13/15] mm: memory: support clearing page ranges
Change folio_zero_user() to clear contiguous page ranges instead of
in the current page-at-a-time fashion. This, when exposed to the
processor, allows it to optimize clearing based on the knowledge of
the extent.
However, clearing in large chunks can have two problems:
- cache locality when clearing small folios (< MAX_ORDER_NR_PAGES)
(larger folios don't have any expectation of cache locality).
- preemption latency when clearing large folios.
Handle the first by splitting the clearing in three parts: the
faulting page and its immediate locality, its left and right
regions; with the local neighbourhood cleared last.
The second problem is relevant when running under cooperative
preemption models. Limit the worst case preemption latency by clearing
in architecture specified PAGE_CONTIG_NR units.
Signed-off-by: Ankur Arora <ankur.a.arora@...cle.com>
---
mm/memory.c | 82 +++++++++++++++++++++++++++++++++++++++--------------
1 file changed, 61 insertions(+), 21 deletions(-)
diff --git a/mm/memory.c b/mm/memory.c
index 0ba4f6b71847..0f5b1900b480 100644
--- a/mm/memory.c
+++ b/mm/memory.c
@@ -7021,40 +7021,80 @@ static inline int process_huge_page(
return 0;
}
-static void clear_gigantic_page(struct folio *folio, unsigned long addr_hint,
- unsigned int nr_pages)
+/*
+ * Clear contiguous pages chunking them up when running under
+ * non-preemptible models.
+ */
+static void clear_contig_highpages(struct page *page, unsigned long addr,
+ unsigned int npages)
{
- unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(folio));
- int i;
+ unsigned int i, count, unit;
- might_sleep();
- for (i = 0; i < nr_pages; i++) {
+ unit = preempt_model_preemptible() ? npages : PAGE_CONTIG_NR;
+
+ for (i = 0; i < npages; ) {
+ count = min(unit, npages - i);
+ clear_user_highpages(nth_page(page, i),
+ addr + i * PAGE_SIZE, count);
+ i += count;
cond_resched();
- clear_user_highpage(folio_page(folio, i), addr + i * PAGE_SIZE);
}
}
-static int clear_subpage(unsigned long addr, int idx, void *arg)
-{
- struct folio *folio = arg;
-
- clear_user_highpage(folio_page(folio, idx), addr);
- return 0;
-}
-
/**
* folio_zero_user - Zero a folio which will be mapped to userspace.
* @folio: The folio to zero.
- * @addr_hint: The address will be accessed or the base address if uncelar.
+ * @addr_hint: The address accessed by the user or the base address.
+ *
+ * Uses architectural support for clear_pages() to zero page extents
+ * instead of clearing page-at-a-time.
+ *
+ * Clearing of small folios (< MAX_ORDER_NR_PAGES) is split in three parts:
+ * pages in the immediate locality of the faulting page, and its left, right
+ * regions; the local neighbourhood cleared last in order to keep cache
+ * lines of the target region hot.
+ *
+ * For larger folios we assume that there is no expectation of cache locality
+ * and just do a straight zero.
*/
void folio_zero_user(struct folio *folio, unsigned long addr_hint)
{
- unsigned int nr_pages = folio_nr_pages(folio);
+ unsigned long base_addr = ALIGN_DOWN(addr_hint, folio_size(folio));
+ const long fault_idx = (addr_hint - base_addr) / PAGE_SIZE;
+ const struct range pg = DEFINE_RANGE(0, folio_nr_pages(folio) - 1);
+ const int width = 2; /* number of pages cleared last on either side */
+ struct range r[3];
+ int i;
- if (unlikely(nr_pages > MAX_ORDER_NR_PAGES))
- clear_gigantic_page(folio, addr_hint, nr_pages);
- else
- process_huge_page(addr_hint, nr_pages, clear_subpage, folio);
+ if (folio_nr_pages(folio) > MAX_ORDER_NR_PAGES) {
+ clear_contig_highpages(folio_page(folio, 0),
+ base_addr, folio_nr_pages(folio));
+ return;
+ }
+
+ /*
+ * Faulting page and its immediate neighbourhood. Cleared at the end to
+ * ensure it sticks around in the cache.
+ */
+ r[2] = DEFINE_RANGE(clamp_t(s64, fault_idx - width, pg.start, pg.end),
+ clamp_t(s64, fault_idx + width, pg.start, pg.end));
+
+ /* Region to the left of the fault */
+ r[1] = DEFINE_RANGE(pg.start,
+ clamp_t(s64, r[2].start-1, pg.start-1, r[2].start));
+
+ /* Region to the right of the fault: always valid for the common fault_idx=0 case. */
+ r[0] = DEFINE_RANGE(clamp_t(s64, r[2].end+1, r[2].end, pg.end+1),
+ pg.end);
+
+ for (i = 0; i <= 2; i++) {
+ unsigned int npages = range_len(&r[i]);
+ struct page *page = folio_page(folio, r[i].start);
+ unsigned long addr = base_addr + folio_page_idx(folio, page) * PAGE_SIZE;
+
+ if (npages > 0)
+ clear_contig_highpages(page, addr, npages);
+ }
}
static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
--
2.31.1
Powered by blists - more mailing lists