[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <20250915160819.140019-3-ebiggers@kernel.org>
Date: Mon, 15 Sep 2025 11:08:15 -0500
From: Eric Biggers <ebiggers@...nel.org>
To: linux-crypto@...r.kernel.org,
fsverity@...ts.linux.dev
Cc: linux-kernel@...r.kernel.org,
Ard Biesheuvel <ardb@...nel.org>,
"Jason A . Donenfeld" <Jason@...c4.com>,
x86@...nel.org,
Sami Tolvanen <samitolvanen@...gle.com>,
Mikulas Patocka <mpatocka@...hat.com>,
linux-arm-kernel@...ts.infradead.org,
Eric Biggers <ebiggers@...nel.org>
Subject: [PATCH v2 2/6] lib/crypto: arm64/sha256: Add support for 2-way interleaved hashing
Add an implementation of sha256_finup_2x_arch() for arm64. It
interleaves the computation of two SHA-256 hashes using the ARMv8
SHA-256 instructions. dm-verity and fs-verity will take advantage of
this for greatly improved performance on capable CPUs.
This increases the throughput of SHA-256 hashing 4096-byte messages by
the following amounts on the following CPUs:
ARM Cortex-X1: 70%
ARM Cortex-X3: 68%
ARM Cortex-A76: 65%
ARM Cortex-A715: 43%
ARM Cortex-A510: 25%
ARM Cortex-A55: 8%
Signed-off-by: Eric Biggers <ebiggers@...nel.org>
---
lib/crypto/arm64/sha256-ce.S | 284 ++++++++++++++++++++++++++++++++++-
lib/crypto/arm64/sha256.h | 37 +++++
2 files changed, 315 insertions(+), 6 deletions(-)
diff --git a/lib/crypto/arm64/sha256-ce.S b/lib/crypto/arm64/sha256-ce.S
index b99d9589c4217..410174ba52373 100644
--- a/lib/crypto/arm64/sha256-ce.S
+++ b/lib/crypto/arm64/sha256-ce.S
@@ -68,22 +68,26 @@
.word 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5
.word 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3
.word 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208
.word 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
+ .macro load_round_constants tmp
+ adr_l \tmp, .Lsha2_rcon
+ ld1 { v0.4s- v3.4s}, [\tmp], #64
+ ld1 { v4.4s- v7.4s}, [\tmp], #64
+ ld1 { v8.4s-v11.4s}, [\tmp], #64
+ ld1 {v12.4s-v15.4s}, [\tmp]
+ .endm
+
/*
* size_t __sha256_ce_transform(struct sha256_block_state *state,
* const u8 *data, size_t nblocks);
*/
.text
SYM_FUNC_START(__sha256_ce_transform)
- /* load round constants */
- adr_l x8, .Lsha2_rcon
- ld1 { v0.4s- v3.4s}, [x8], #64
- ld1 { v4.4s- v7.4s}, [x8], #64
- ld1 { v8.4s-v11.4s}, [x8], #64
- ld1 {v12.4s-v15.4s}, [x8]
+
+ load_round_constants x8
/* load state */
ld1 {dgav.4s, dgbv.4s}, [x0]
/* load input */
@@ -132,5 +136,273 @@ CPU_LE( rev32 v19.16b, v19.16b )
/* store new state */
1: st1 {dgav.4s, dgbv.4s}, [x0]
mov x0, x2
ret
SYM_FUNC_END(__sha256_ce_transform)
+
+ .unreq dga
+ .unreq dgav
+ .unreq dgb
+ .unreq dgbv
+ .unreq t0
+ .unreq t1
+ .unreq dg0q
+ .unreq dg0v
+ .unreq dg1q
+ .unreq dg1v
+ .unreq dg2q
+ .unreq dg2v
+
+ // parameters for sha256_ce_finup2x()
+ ctx .req x0
+ data1 .req x1
+ data2 .req x2
+ len .req w3
+ out1 .req x4
+ out2 .req x5
+
+ // other scalar variables
+ count .req x6
+ final_step .req w7
+
+ // x8-x9 are used as temporaries.
+
+ // v0-v15 are used to cache the SHA-256 round constants.
+ // v16-v19 are used for the message schedule for the first message.
+ // v20-v23 are used for the message schedule for the second message.
+ // v24-v31 are used for the state and temporaries as given below.
+ // *_a are for the first message and *_b for the second.
+ state0_a_q .req q24
+ state0_a .req v24
+ state1_a_q .req q25
+ state1_a .req v25
+ state0_b_q .req q26
+ state0_b .req v26
+ state1_b_q .req q27
+ state1_b .req v27
+ t0_a .req v28
+ t0_b .req v29
+ t1_a_q .req q30
+ t1_a .req v30
+ t1_b_q .req q31
+ t1_b .req v31
+
+#define OFFSETOF_BYTECOUNT 32 // offsetof(struct __sha256_ctx, bytecount)
+#define OFFSETOF_BUF 40 // offsetof(struct __sha256_ctx, buf)
+// offsetof(struct __sha256_ctx, state) is assumed to be 0.
+
+ // Do 4 rounds of SHA-256 for each of two messages (interleaved). m0_a
+ // and m0_b contain the current 4 message schedule words for the first
+ // and second message respectively.
+ //
+ // If not all the message schedule words have been computed yet, then
+ // this also computes 4 more message schedule words for each message.
+ // m1_a-m3_a contain the next 3 groups of 4 message schedule words for
+ // the first message, and likewise m1_b-m3_b for the second. After
+ // consuming the current value of m0_a, this macro computes the group
+ // after m3_a and writes it to m0_a, and likewise for *_b. This means
+ // that the next (m0_a, m1_a, m2_a, m3_a) is the current (m1_a, m2_a,
+ // m3_a, m0_a), and likewise for *_b, so the caller must cycle through
+ // the registers accordingly.
+ .macro do_4rounds_2x i, k, m0_a, m1_a, m2_a, m3_a, \
+ m0_b, m1_b, m2_b, m3_b
+ add t0_a\().4s, \m0_a\().4s, \k\().4s
+ add t0_b\().4s, \m0_b\().4s, \k\().4s
+ .if \i < 48
+ sha256su0 \m0_a\().4s, \m1_a\().4s
+ sha256su0 \m0_b\().4s, \m1_b\().4s
+ sha256su1 \m0_a\().4s, \m2_a\().4s, \m3_a\().4s
+ sha256su1 \m0_b\().4s, \m2_b\().4s, \m3_b\().4s
+ .endif
+ mov t1_a.16b, state0_a.16b
+ mov t1_b.16b, state0_b.16b
+ sha256h state0_a_q, state1_a_q, t0_a\().4s
+ sha256h state0_b_q, state1_b_q, t0_b\().4s
+ sha256h2 state1_a_q, t1_a_q, t0_a\().4s
+ sha256h2 state1_b_q, t1_b_q, t0_b\().4s
+ .endm
+
+ .macro do_16rounds_2x i, k0, k1, k2, k3
+ do_4rounds_2x \i + 0, \k0, v16, v17, v18, v19, v20, v21, v22, v23
+ do_4rounds_2x \i + 4, \k1, v17, v18, v19, v16, v21, v22, v23, v20
+ do_4rounds_2x \i + 8, \k2, v18, v19, v16, v17, v22, v23, v20, v21
+ do_4rounds_2x \i + 12, \k3, v19, v16, v17, v18, v23, v20, v21, v22
+ .endm
+
+//
+// void sha256_ce_finup2x(const struct __sha256_ctx *ctx,
+// const u8 *data1, const u8 *data2, int len,
+// u8 out1[SHA256_DIGEST_SIZE],
+// u8 out2[SHA256_DIGEST_SIZE]);
+//
+// This function computes the SHA-256 digests of two messages |data1| and
+// |data2| that are both |len| bytes long, starting from the initial context
+// |ctx|. |len| must be at least SHA256_BLOCK_SIZE.
+//
+// The instructions for the two SHA-256 operations are interleaved. On many
+// CPUs, this is almost twice as fast as hashing each message individually due
+// to taking better advantage of the CPU's SHA-256 and SIMD throughput.
+//
+SYM_FUNC_START(sha256_ce_finup2x)
+ sub sp, sp, #128
+ mov final_step, #0
+ load_round_constants x8
+
+ // Load the initial state from ctx->state.
+ ld1 {state0_a.4s-state1_a.4s}, [ctx]
+
+ // Load ctx->bytecount. Take the mod 64 of it to get the number of
+ // bytes that are buffered in ctx->buf. Also save it in a register with
+ // len added to it.
+ ldr x8, [ctx, #OFFSETOF_BYTECOUNT]
+ add count, x8, len, sxtw
+ and x8, x8, #63
+ cbz x8, .Lfinup2x_enter_loop // No bytes buffered?
+
+ // x8 bytes (1 to 63) are currently buffered in ctx->buf. Load them
+ // followed by the first 64 - x8 bytes of data. Since len >= 64, we
+ // just load 64 bytes from each of ctx->buf, data1, and data2
+ // unconditionally and rearrange the data as needed.
+ add x9, ctx, #OFFSETOF_BUF
+ ld1 {v16.16b-v19.16b}, [x9]
+ st1 {v16.16b-v19.16b}, [sp]
+
+ ld1 {v16.16b-v19.16b}, [data1], #64
+ add x9, sp, x8
+ st1 {v16.16b-v19.16b}, [x9]
+ ld1 {v16.4s-v19.4s}, [sp]
+
+ ld1 {v20.16b-v23.16b}, [data2], #64
+ st1 {v20.16b-v23.16b}, [x9]
+ ld1 {v20.4s-v23.4s}, [sp]
+
+ sub len, len, #64
+ sub data1, data1, x8
+ sub data2, data2, x8
+ add len, len, w8
+ mov state0_b.16b, state0_a.16b
+ mov state1_b.16b, state1_a.16b
+ b .Lfinup2x_loop_have_data
+
+.Lfinup2x_enter_loop:
+ sub len, len, #64
+ mov state0_b.16b, state0_a.16b
+ mov state1_b.16b, state1_a.16b
+.Lfinup2x_loop:
+ // Load the next two data blocks.
+ ld1 {v16.4s-v19.4s}, [data1], #64
+ ld1 {v20.4s-v23.4s}, [data2], #64
+.Lfinup2x_loop_have_data:
+ // Convert the words of the data blocks from big endian.
+CPU_LE( rev32 v16.16b, v16.16b )
+CPU_LE( rev32 v17.16b, v17.16b )
+CPU_LE( rev32 v18.16b, v18.16b )
+CPU_LE( rev32 v19.16b, v19.16b )
+CPU_LE( rev32 v20.16b, v20.16b )
+CPU_LE( rev32 v21.16b, v21.16b )
+CPU_LE( rev32 v22.16b, v22.16b )
+CPU_LE( rev32 v23.16b, v23.16b )
+.Lfinup2x_loop_have_bswapped_data:
+
+ // Save the original state for each block.
+ st1 {state0_a.4s-state1_b.4s}, [sp]
+
+ // Do the SHA-256 rounds on each block.
+ do_16rounds_2x 0, v0, v1, v2, v3
+ do_16rounds_2x 16, v4, v5, v6, v7
+ do_16rounds_2x 32, v8, v9, v10, v11
+ do_16rounds_2x 48, v12, v13, v14, v15
+
+ // Add the original state for each block.
+ ld1 {v16.4s-v19.4s}, [sp]
+ add state0_a.4s, state0_a.4s, v16.4s
+ add state1_a.4s, state1_a.4s, v17.4s
+ add state0_b.4s, state0_b.4s, v18.4s
+ add state1_b.4s, state1_b.4s, v19.4s
+
+ // Update len and loop back if more blocks remain.
+ sub len, len, #64
+ tbz len, #31, .Lfinup2x_loop // len >= 0?
+
+ // Check if any final blocks need to be handled.
+ // final_step = 2: all done
+ // final_step = 1: need to do count-only padding block
+ // final_step = 0: need to do the block with 0x80 padding byte
+ tbnz final_step, #1, .Lfinup2x_done
+ tbnz final_step, #0, .Lfinup2x_finalize_countonly
+ add len, len, #64
+ cbz len, .Lfinup2x_finalize_blockaligned
+
+ // Not block-aligned; 1 <= len <= 63 data bytes remain. Pad the block.
+ // To do this, write the padding starting with the 0x80 byte to
+ // &sp[64]. Then for each message, copy the last 64 data bytes to sp
+ // and load from &sp[64 - len] to get the needed padding block. This
+ // code relies on the data buffers being >= 64 bytes in length.
+ sub w8, len, #64 // w8 = len - 64
+ add data1, data1, w8, sxtw // data1 += len - 64
+ add data2, data2, w8, sxtw // data2 += len - 64
+CPU_LE( mov x9, #0x80 )
+CPU_LE( fmov d16, x9 )
+CPU_BE( movi v16.16b, #0 )
+CPU_BE( mov x9, #0x8000000000000000 )
+CPU_BE( mov v16.d[1], x9 )
+ movi v17.16b, #0
+ stp q16, q17, [sp, #64]
+ stp q17, q17, [sp, #96]
+ sub x9, sp, w8, sxtw // x9 = &sp[64 - len]
+ cmp len, #56
+ b.ge 1f // will count spill into its own block?
+ lsl count, count, #3
+CPU_LE( rev count, count )
+ str count, [x9, #56]
+ mov final_step, #2 // won't need count-only block
+ b 2f
+1:
+ mov final_step, #1 // will need count-only block
+2:
+ ld1 {v16.16b-v19.16b}, [data1]
+ st1 {v16.16b-v19.16b}, [sp]
+ ld1 {v16.4s-v19.4s}, [x9]
+ ld1 {v20.16b-v23.16b}, [data2]
+ st1 {v20.16b-v23.16b}, [sp]
+ ld1 {v20.4s-v23.4s}, [x9]
+ b .Lfinup2x_loop_have_data
+
+ // Prepare a padding block, either:
+ //
+ // {0x80, 0, 0, 0, ..., count (as __be64)}
+ // This is for a block aligned message.
+ //
+ // { 0, 0, 0, 0, ..., count (as __be64)}
+ // This is for a message whose length mod 64 is >= 56.
+ //
+ // Pre-swap the endianness of the words.
+.Lfinup2x_finalize_countonly:
+ movi v16.2d, #0
+ b 1f
+.Lfinup2x_finalize_blockaligned:
+ mov x8, #0x80000000
+ fmov d16, x8
+1:
+ movi v17.2d, #0
+ movi v18.2d, #0
+ ror count, count, #29 // ror(lsl(count, 3), 32)
+ mov v19.d[0], xzr
+ mov v19.d[1], count
+ mov v20.16b, v16.16b
+ movi v21.2d, #0
+ movi v22.2d, #0
+ mov v23.16b, v19.16b
+ mov final_step, #2
+ b .Lfinup2x_loop_have_bswapped_data
+
+.Lfinup2x_done:
+ // Write the two digests with all bytes in the correct order.
+CPU_LE( rev32 state0_a.16b, state0_a.16b )
+CPU_LE( rev32 state1_a.16b, state1_a.16b )
+CPU_LE( rev32 state0_b.16b, state0_b.16b )
+CPU_LE( rev32 state1_b.16b, state1_b.16b )
+ st1 {state0_a.4s-state1_a.4s}, [out1]
+ st1 {state0_b.4s-state1_b.4s}, [out2]
+ add sp, sp, #128
+ ret
+SYM_FUNC_END(sha256_ce_finup2x)
diff --git a/lib/crypto/arm64/sha256.h b/lib/crypto/arm64/sha256.h
index be4aeda9d0e6e..80d06df27d3a3 100644
--- a/lib/crypto/arm64/sha256.h
+++ b/lib/crypto/arm64/sha256.h
@@ -42,10 +42,47 @@ static void sha256_blocks(struct sha256_block_state *state,
} else {
sha256_block_data_order(state, data, nblocks);
}
}
+static_assert(offsetof(struct __sha256_ctx, state) == 0);
+static_assert(offsetof(struct __sha256_ctx, bytecount) == 32);
+static_assert(offsetof(struct __sha256_ctx, buf) == 40);
+asmlinkage void sha256_ce_finup2x(const struct __sha256_ctx *ctx,
+ const u8 *data1, const u8 *data2, int len,
+ u8 out1[SHA256_DIGEST_SIZE],
+ u8 out2[SHA256_DIGEST_SIZE]);
+
+#define sha256_finup_2x_arch sha256_finup_2x_arch
+static bool sha256_finup_2x_arch(const struct __sha256_ctx *ctx,
+ const u8 *data1, const u8 *data2, size_t len,
+ u8 out1[SHA256_DIGEST_SIZE],
+ u8 out2[SHA256_DIGEST_SIZE])
+{
+ /*
+ * The assembly requires len >= SHA256_BLOCK_SIZE && len <= INT_MAX.
+ * Further limit len to 65536 to avoid spending too long with preemption
+ * disabled. (Of course, in practice len is nearly always 4096 anyway.)
+ */
+ if (IS_ENABLED(CONFIG_KERNEL_MODE_NEON) &&
+ static_branch_likely(&have_ce) && len >= SHA256_BLOCK_SIZE &&
+ len <= 65536 && likely(may_use_simd())) {
+ kernel_neon_begin();
+ sha256_ce_finup2x(ctx, data1, data2, len, out1, out2);
+ kernel_neon_end();
+ kmsan_unpoison_memory(out1, SHA256_DIGEST_SIZE);
+ kmsan_unpoison_memory(out2, SHA256_DIGEST_SIZE);
+ return true;
+ }
+ return false;
+}
+
+static bool sha256_finup_2x_is_optimized_arch(void)
+{
+ return static_key_enabled(&have_ce);
+}
+
#ifdef CONFIG_KERNEL_MODE_NEON
#define sha256_mod_init_arch sha256_mod_init_arch
static void sha256_mod_init_arch(void)
{
if (cpu_have_named_feature(ASIMD)) {
--
2.51.0
Powered by blists - more mailing lists