[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <40461105-a344-444f-834b-9559b6644710@suse.cz>
Date: Thu, 18 Sep 2025 10:09:34 +0200
From: Vlastimil Babka <vbabka@...e.cz>
To: Harry Yoo <harry.yoo@...cle.com>
Cc: Suren Baghdasaryan <surenb@...gle.com>,
"Liam R. Howlett" <Liam.Howlett@...cle.com>,
Christoph Lameter <cl@...two.org>, David Rientjes <rientjes@...gle.com>,
Roman Gushchin <roman.gushchin@...ux.dev>,
Uladzislau Rezki <urezki@...il.com>,
Sidhartha Kumar <sidhartha.kumar@...cle.com>, linux-mm@...ck.org,
linux-kernel@...r.kernel.org, rcu@...r.kernel.org,
maple-tree@...ts.infradead.org, "Paul E . McKenney" <paulmck@...nel.org>
Subject: Re: [PATCH v8 04/23] slab: add sheaf support for batching kfree_rcu()
operations
On 9/17/25 16:14, Vlastimil Babka wrote:
> On 9/17/25 15:34, Harry Yoo wrote:
>> On Wed, Sep 17, 2025 at 03:21:31PM +0200, Vlastimil Babka wrote:
>>> On 9/17/25 15:07, Harry Yoo wrote:
>>> > On Wed, Sep 17, 2025 at 02:05:49PM +0200, Vlastimil Babka wrote:
>>> >> On 9/17/25 13:32, Harry Yoo wrote:
>>> >> > On Wed, Sep 17, 2025 at 11:55:10AM +0200, Vlastimil Babka wrote:
>>> >> >> On 9/17/25 10:30, Harry Yoo wrote:
>>> >> >> > On Wed, Sep 10, 2025 at 10:01:06AM +0200, Vlastimil Babka wrote:
>>> >> >> >> + sfw->skip = true;
>>> >> >> >> + continue;
>>> >> >> >> + }
>>> >> >> >>
>>> >> >> >> + INIT_WORK(&sfw->work, flush_rcu_sheaf);
>>> >> >> >> + sfw->skip = false;
>>> >> >> >> + sfw->s = s;
>>> >> >> >> + queue_work_on(cpu, flushwq, &sfw->work);
>>> >> >> >> + flushed = true;
>>> >> >> >> + }
>>> >> >> >> +
>>> >> >> >> + for_each_online_cpu(cpu) {
>>> >> >> >> + sfw = &per_cpu(slub_flush, cpu);
>>> >> >> >> + if (sfw->skip)
>>> >> >> >> + continue;
>>> >> >> >> + flush_work(&sfw->work);
>>> >> >> >> + }
>>> >> >> >> +
>>> >> >> >> + mutex_unlock(&flush_lock);
>>> >> >> >> + }
>>> >> >> >> +
>>> >> >> >> + mutex_unlock(&slab_mutex);
>>> >> >> >> + cpus_read_unlock();
>>> >> >> >> +
>>> >> >> >> + if (flushed)
>>> >> >> >> + rcu_barrier();
>>> >> >> >
>>> >> >> > I think we need to call rcu_barrier() even if flushed == false?
>>> >> >> >
>>> >> >> > Maybe a kvfree_rcu()'d object was already waiting for the rcu callback to
>>> >> >> > be processed before flush_all_rcu_sheaves() is called, and
>>> >> >> > in flush_all_rcu_sheaves() we skipped all (cache, cpu) pairs,
>>> >> >> > so flushed == false but the rcu callback isn't processed yet
>>> >> >> > by the end of the function?
>>> >> >> >
>>> >> >> > That sounds like a very unlikely to happen in a realistic scenario,
>>> >> >> > but still possible...
>>> >> >>
>>> >> >> Yes also good point, will flush unconditionally.
>>> >> >>
>>> >> >> Maybe in __kfree_rcu_sheaf() I should also move the call_rcu(...) before
>>> >> >> local_unlock().
>>> >> >>
>>> >> >> So we don't end up seeing a NULL pcs->rcu_free in
>>> >> >> flush_all_rcu_sheaves() because __kfree_rcu_sheaf() already set it to NULL,
>>> >> >> but didn't yet do the call_rcu() as it got preempted after local_unlock().
>>> >> >
>>> >> > Makes sense to me.
>>> >
>>> > Wait, I'm confused.
>>> >
>>> > I think the caller of kvfree_rcu_barrier() should make sure that it's invoked
>>> > only after a kvfree_rcu(X, rhs) call has returned, if the caller expects
>>> > the object X to be freed before kvfree_rcu_barrier() returns?
>>>
>>> Hmm, the caller of kvfree_rcu(X, rhs) might have returned without filling up
>>> the rcu_sheaf fully and thus without submitting it to call_rcu(), then
>>> migrated to another cpu. Then it calls kvfree_rcu_barrier() while another
>>> unrelated kvfree_rcu(X, rhs) call on the previous cpu is for the same
>>> kmem_cache (kvfree_rcu_barrier() is not only for cache destruction), fills
>>> up the rcu_sheaf fully and is about to call_rcu() on it. And since that
>>> sheaf also contains the object X, we should make sure that is flushed.
>>
>> I was going to say "but we queue and wait for the flushing work to
>> complete, so the sheaf containing object X should be flushed?"
>>
>> But nah, that's true only if we see pcs->rcu_free != NULL in
>> flush_all_rcu_sheaves().
>>
>> You are right...
>>
>> Hmm, maybe it's simpler to fix this by never skipping queueing the work
>> even when pcs->rcu_sheaf == NULL?
>
> I guess it's simpler, yeah.
So what about this? The unconditional queueing should cover all races with
__kfree_rcu_sheaf() so there's just unconditional rcu_barrier() in the end.
>From 0722b29fa1625b31c05d659d1d988ec882247b38 Mon Sep 17 00:00:00 2001
From: Vlastimil Babka <vbabka@...e.cz>
Date: Wed, 3 Sep 2025 14:59:46 +0200
Subject: [PATCH] slab: add sheaf support for batching kfree_rcu() operations
Extend the sheaf infrastructure for more efficient kfree_rcu() handling.
For caches with sheaves, on each cpu maintain a rcu_free sheaf in
addition to main and spare sheaves.
kfree_rcu() operations will try to put objects on this sheaf. Once full,
the sheaf is detached and submitted to call_rcu() with a handler that
will try to put it in the barn, or flush to slab pages using bulk free,
when the barn is full. Then a new empty sheaf must be obtained to put
more objects there.
It's possible that no free sheaves are available to use for a new
rcu_free sheaf, and the allocation in kfree_rcu() context can only use
GFP_NOWAIT and thus may fail. In that case, fall back to the existing
kfree_rcu() implementation.
Expected advantages:
- batching the kfree_rcu() operations, that could eventually replace the
existing batching
- sheaves can be reused for allocations via barn instead of being
flushed to slabs, which is more efficient
- this includes cases where only some cpus are allowed to process rcu
callbacks (Android)
Possible disadvantage:
- objects might be waiting for more than their grace period (it is
determined by the last object freed into the sheaf), increasing memory
usage - but the existing batching does that too.
Only implement this for CONFIG_KVFREE_RCU_BATCHED as the tiny
implementation favors smaller memory footprint over performance.
Also for now skip the usage of rcu sheaf for CONFIG_PREEMPT_RT as the
contexts where kfree_rcu() is called might not be compatible with taking
a barn spinlock or a GFP_NOWAIT allocation of a new sheaf taking a
spinlock - the current kfree_rcu() implementation avoids doing that.
Teach kvfree_rcu_barrier() to flush all rcu_free sheaves from all caches
that have them. This is not a cheap operation, but the barrier usage is
rare - currently kmem_cache_destroy() or on module unload.
Add CONFIG_SLUB_STATS counters free_rcu_sheaf and free_rcu_sheaf_fail to
count how many kfree_rcu() used the rcu_free sheaf successfully and how
many had to fall back to the existing implementation.
Signed-off-by: Vlastimil Babka <vbabka@...e.cz>
---
mm/slab.h | 3 +
mm/slab_common.c | 26 +++++
mm/slub.c | 267 ++++++++++++++++++++++++++++++++++++++++++++++-
3 files changed, 294 insertions(+), 2 deletions(-)
diff --git a/mm/slab.h b/mm/slab.h
index 206987ce44a4..e82e51c44bd0 100644
--- a/mm/slab.h
+++ b/mm/slab.h
@@ -435,6 +435,9 @@ static inline bool is_kmalloc_normal(struct kmem_cache *s)
return !(s->flags & (SLAB_CACHE_DMA|SLAB_ACCOUNT|SLAB_RECLAIM_ACCOUNT));
}
+bool __kfree_rcu_sheaf(struct kmem_cache *s, void *obj);
+void flush_all_rcu_sheaves(void);
+
#define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \
SLAB_CACHE_DMA32 | SLAB_PANIC | \
SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS | \
diff --git a/mm/slab_common.c b/mm/slab_common.c
index e2b197e47866..005a4319c06a 100644
--- a/mm/slab_common.c
+++ b/mm/slab_common.c
@@ -1608,6 +1608,27 @@ static void kfree_rcu_work(struct work_struct *work)
kvfree_rcu_list(head);
}
+static bool kfree_rcu_sheaf(void *obj)
+{
+ struct kmem_cache *s;
+ struct folio *folio;
+ struct slab *slab;
+
+ if (is_vmalloc_addr(obj))
+ return false;
+
+ folio = virt_to_folio(obj);
+ if (unlikely(!folio_test_slab(folio)))
+ return false;
+
+ slab = folio_slab(folio);
+ s = slab->slab_cache;
+ if (s->cpu_sheaves)
+ return __kfree_rcu_sheaf(s, obj);
+
+ return false;
+}
+
static bool
need_offload_krc(struct kfree_rcu_cpu *krcp)
{
@@ -1952,6 +1973,9 @@ void kvfree_call_rcu(struct rcu_head *head, void *ptr)
if (!head)
might_sleep();
+ if (!IS_ENABLED(CONFIG_PREEMPT_RT) && kfree_rcu_sheaf(ptr))
+ return;
+
// Queue the object but don't yet schedule the batch.
if (debug_rcu_head_queue(ptr)) {
// Probable double kfree_rcu(), just leak.
@@ -2026,6 +2050,8 @@ void kvfree_rcu_barrier(void)
bool queued;
int i, cpu;
+ flush_all_rcu_sheaves();
+
/*
* Firstly we detach objects and queue them over an RCU-batch
* for all CPUs. Finally queued works are flushed for each CPU.
diff --git a/mm/slub.c b/mm/slub.c
index cba188b7e04d..171273f90efd 100644
--- a/mm/slub.c
+++ b/mm/slub.c
@@ -367,6 +367,8 @@ enum stat_item {
ALLOC_FASTPATH, /* Allocation from cpu slab */
ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
FREE_PCS, /* Free to percpu sheaf */
+ FREE_RCU_SHEAF, /* Free to rcu_free sheaf */
+ FREE_RCU_SHEAF_FAIL, /* Failed to free to a rcu_free sheaf */
FREE_FASTPATH, /* Free to cpu slab */
FREE_SLOWPATH, /* Freeing not to cpu slab */
FREE_FROZEN, /* Freeing to frozen slab */
@@ -461,6 +463,7 @@ struct slab_sheaf {
struct rcu_head rcu_head;
struct list_head barn_list;
};
+ struct kmem_cache *cache;
unsigned int size;
void *objects[];
};
@@ -469,6 +472,7 @@ struct slub_percpu_sheaves {
local_trylock_t lock;
struct slab_sheaf *main; /* never NULL when unlocked */
struct slab_sheaf *spare; /* empty or full, may be NULL */
+ struct slab_sheaf *rcu_free; /* for batching kfree_rcu() */
};
/*
@@ -2531,6 +2535,8 @@ static struct slab_sheaf *alloc_empty_sheaf(struct kmem_cache *s, gfp_t gfp)
if (unlikely(!sheaf))
return NULL;
+ sheaf->cache = s;
+
stat(s, SHEAF_ALLOC);
return sheaf;
@@ -2655,6 +2661,43 @@ static void sheaf_flush_unused(struct kmem_cache *s, struct slab_sheaf *sheaf)
sheaf->size = 0;
}
+static void __rcu_free_sheaf_prepare(struct kmem_cache *s,
+ struct slab_sheaf *sheaf)
+{
+ bool init = slab_want_init_on_free(s);
+ void **p = &sheaf->objects[0];
+ unsigned int i = 0;
+
+ while (i < sheaf->size) {
+ struct slab *slab = virt_to_slab(p[i]);
+
+ memcg_slab_free_hook(s, slab, p + i, 1);
+ alloc_tagging_slab_free_hook(s, slab, p + i, 1);
+
+ if (unlikely(!slab_free_hook(s, p[i], init, true))) {
+ p[i] = p[--sheaf->size];
+ continue;
+ }
+
+ i++;
+ }
+}
+
+static void rcu_free_sheaf_nobarn(struct rcu_head *head)
+{
+ struct slab_sheaf *sheaf;
+ struct kmem_cache *s;
+
+ sheaf = container_of(head, struct slab_sheaf, rcu_head);
+ s = sheaf->cache;
+
+ __rcu_free_sheaf_prepare(s, sheaf);
+
+ sheaf_flush_unused(s, sheaf);
+
+ free_empty_sheaf(s, sheaf);
+}
+
/*
* Caller needs to make sure migration is disabled in order to fully flush
* single cpu's sheaves
@@ -2667,7 +2710,7 @@ static void sheaf_flush_unused(struct kmem_cache *s, struct slab_sheaf *sheaf)
static void pcs_flush_all(struct kmem_cache *s)
{
struct slub_percpu_sheaves *pcs;
- struct slab_sheaf *spare;
+ struct slab_sheaf *spare, *rcu_free;
local_lock(&s->cpu_sheaves->lock);
pcs = this_cpu_ptr(s->cpu_sheaves);
@@ -2675,6 +2718,9 @@ static void pcs_flush_all(struct kmem_cache *s)
spare = pcs->spare;
pcs->spare = NULL;
+ rcu_free = pcs->rcu_free;
+ pcs->rcu_free = NULL;
+
local_unlock(&s->cpu_sheaves->lock);
if (spare) {
@@ -2682,6 +2728,9 @@ static void pcs_flush_all(struct kmem_cache *s)
free_empty_sheaf(s, spare);
}
+ if (rcu_free)
+ call_rcu(&rcu_free->rcu_head, rcu_free_sheaf_nobarn);
+
sheaf_flush_main(s);
}
@@ -2698,6 +2747,11 @@ static void __pcs_flush_all_cpu(struct kmem_cache *s, unsigned int cpu)
free_empty_sheaf(s, pcs->spare);
pcs->spare = NULL;
}
+
+ if (pcs->rcu_free) {
+ call_rcu(&pcs->rcu_free->rcu_head, rcu_free_sheaf_nobarn);
+ pcs->rcu_free = NULL;
+ }
}
static void pcs_destroy(struct kmem_cache *s)
@@ -2723,6 +2777,7 @@ static void pcs_destroy(struct kmem_cache *s)
*/
WARN_ON(pcs->spare);
+ WARN_ON(pcs->rcu_free);
if (!WARN_ON(pcs->main->size)) {
free_empty_sheaf(s, pcs->main);
@@ -3780,7 +3835,7 @@ static bool has_pcs_used(int cpu, struct kmem_cache *s)
pcs = per_cpu_ptr(s->cpu_sheaves, cpu);
- return (pcs->spare || pcs->main->size);
+ return (pcs->spare || pcs->rcu_free || pcs->main->size);
}
/*
@@ -3840,6 +3895,77 @@ static void flush_all(struct kmem_cache *s)
cpus_read_unlock();
}
+static void flush_rcu_sheaf(struct work_struct *w)
+{
+ struct slub_percpu_sheaves *pcs;
+ struct slab_sheaf *rcu_free;
+ struct slub_flush_work *sfw;
+ struct kmem_cache *s;
+
+ sfw = container_of(w, struct slub_flush_work, work);
+ s = sfw->s;
+
+ local_lock(&s->cpu_sheaves->lock);
+ pcs = this_cpu_ptr(s->cpu_sheaves);
+
+ rcu_free = pcs->rcu_free;
+ pcs->rcu_free = NULL;
+
+ local_unlock(&s->cpu_sheaves->lock);
+
+ if (rcu_free)
+ call_rcu(&rcu_free->rcu_head, rcu_free_sheaf_nobarn);
+}
+
+
+/* needed for kvfree_rcu_barrier() */
+void flush_all_rcu_sheaves(void)
+{
+ struct slub_flush_work *sfw;
+ struct kmem_cache *s;
+ unsigned int cpu;
+
+ cpus_read_lock();
+ mutex_lock(&slab_mutex);
+
+ list_for_each_entry(s, &slab_caches, list) {
+ if (!s->cpu_sheaves)
+ continue;
+
+ mutex_lock(&flush_lock);
+
+ for_each_online_cpu(cpu) {
+ sfw = &per_cpu(slub_flush, cpu);
+
+ /*
+ * we don't check if rcu_free sheaf exists - racing
+ * __kfree_rcu_sheaf() might have just removed it.
+ * by executing flush_rcu_sheaf() on the cpu we make
+ * sure the __kfree_rcu_sheaf() finished its call_rcu()
+ */
+
+ INIT_WORK(&sfw->work, flush_rcu_sheaf);
+ sfw->skip = false;
+ sfw->s = s;
+ queue_work_on(cpu, flushwq, &sfw->work);
+ }
+
+ for_each_online_cpu(cpu) {
+ sfw = &per_cpu(slub_flush, cpu);
+ if (sfw->skip)
+ continue;
+ flush_work(&sfw->work);
+ }
+
+ mutex_unlock(&flush_lock);
+ }
+
+ mutex_unlock(&slab_mutex);
+ cpus_read_unlock();
+
+ rcu_barrier();
+}
+
/*
* Use the cpu notifier to insure that the cpu slabs are flushed when
* necessary.
@@ -5413,6 +5539,134 @@ bool free_to_pcs(struct kmem_cache *s, void *object)
return true;
}
+static void rcu_free_sheaf(struct rcu_head *head)
+{
+ struct slab_sheaf *sheaf;
+ struct node_barn *barn;
+ struct kmem_cache *s;
+
+ sheaf = container_of(head, struct slab_sheaf, rcu_head);
+
+ s = sheaf->cache;
+
+ /*
+ * This may remove some objects due to slab_free_hook() returning false,
+ * so that the sheaf might no longer be completely full. But it's easier
+ * to handle it as full (unless it became completely empty), as the code
+ * handles it fine. The only downside is that sheaf will serve fewer
+ * allocations when reused. It only happens due to debugging, which is a
+ * performance hit anyway.
+ */
+ __rcu_free_sheaf_prepare(s, sheaf);
+
+ barn = get_node(s, numa_mem_id())->barn;
+
+ /* due to slab_free_hook() */
+ if (unlikely(sheaf->size == 0))
+ goto empty;
+
+ /*
+ * Checking nr_full/nr_empty outside lock avoids contention in case the
+ * barn is at the respective limit. Due to the race we might go over the
+ * limit but that should be rare and harmless.
+ */
+
+ if (data_race(barn->nr_full) < MAX_FULL_SHEAVES) {
+ stat(s, BARN_PUT);
+ barn_put_full_sheaf(barn, sheaf);
+ return;
+ }
+
+ stat(s, BARN_PUT_FAIL);
+ sheaf_flush_unused(s, sheaf);
+
+empty:
+ if (data_race(barn->nr_empty) < MAX_EMPTY_SHEAVES) {
+ barn_put_empty_sheaf(barn, sheaf);
+ return;
+ }
+
+ free_empty_sheaf(s, sheaf);
+}
+
+bool __kfree_rcu_sheaf(struct kmem_cache *s, void *obj)
+{
+ struct slub_percpu_sheaves *pcs;
+ struct slab_sheaf *rcu_sheaf;
+
+ if (!local_trylock(&s->cpu_sheaves->lock))
+ goto fail;
+
+ pcs = this_cpu_ptr(s->cpu_sheaves);
+
+ if (unlikely(!pcs->rcu_free)) {
+
+ struct slab_sheaf *empty;
+ struct node_barn *barn;
+
+ if (pcs->spare && pcs->spare->size == 0) {
+ pcs->rcu_free = pcs->spare;
+ pcs->spare = NULL;
+ goto do_free;
+ }
+
+ barn = get_barn(s);
+
+ empty = barn_get_empty_sheaf(barn);
+
+ if (empty) {
+ pcs->rcu_free = empty;
+ goto do_free;
+ }
+
+ local_unlock(&s->cpu_sheaves->lock);
+
+ empty = alloc_empty_sheaf(s, GFP_NOWAIT);
+
+ if (!empty)
+ goto fail;
+
+ if (!local_trylock(&s->cpu_sheaves->lock)) {
+ barn_put_empty_sheaf(barn, empty);
+ goto fail;
+ }
+
+ pcs = this_cpu_ptr(s->cpu_sheaves);
+
+ if (unlikely(pcs->rcu_free))
+ barn_put_empty_sheaf(barn, empty);
+ else
+ pcs->rcu_free = empty;
+ }
+
+do_free:
+
+ rcu_sheaf = pcs->rcu_free;
+
+ rcu_sheaf->objects[rcu_sheaf->size++] = obj;
+
+ if (likely(rcu_sheaf->size < s->sheaf_capacity))
+ rcu_sheaf = NULL;
+ else
+ pcs->rcu_free = NULL;
+
+ /*
+ * we flush before local_unlock to make sure a racing
+ * flush_all_rcu_sheaves() doesn't miss this sheaf
+ */
+ if (rcu_sheaf)
+ call_rcu(&rcu_sheaf->rcu_head, rcu_free_sheaf);
+
+ local_unlock(&s->cpu_sheaves->lock);
+
+ stat(s, FREE_RCU_SHEAF);
+ return true;
+
+fail:
+ stat(s, FREE_RCU_SHEAF_FAIL);
+ return false;
+}
+
/*
* Bulk free objects to the percpu sheaves.
* Unlike free_to_pcs() this includes the calls to all necessary hooks
@@ -6909,6 +7163,11 @@ int __kmem_cache_shutdown(struct kmem_cache *s)
struct kmem_cache_node *n;
flush_all_cpus_locked(s);
+
+ /* we might have rcu sheaves in flight */
+ if (s->cpu_sheaves)
+ rcu_barrier();
+
/* Attempt to free all objects */
for_each_kmem_cache_node(s, node, n) {
if (n->barn)
@@ -8284,6 +8543,8 @@ STAT_ATTR(ALLOC_PCS, alloc_cpu_sheaf);
STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
STAT_ATTR(FREE_PCS, free_cpu_sheaf);
+STAT_ATTR(FREE_RCU_SHEAF, free_rcu_sheaf);
+STAT_ATTR(FREE_RCU_SHEAF_FAIL, free_rcu_sheaf_fail);
STAT_ATTR(FREE_FASTPATH, free_fastpath);
STAT_ATTR(FREE_SLOWPATH, free_slowpath);
STAT_ATTR(FREE_FROZEN, free_frozen);
@@ -8382,6 +8643,8 @@ static struct attribute *slab_attrs[] = {
&alloc_fastpath_attr.attr,
&alloc_slowpath_attr.attr,
&free_cpu_sheaf_attr.attr,
+ &free_rcu_sheaf_attr.attr,
+ &free_rcu_sheaf_fail_attr.attr,
&free_fastpath_attr.attr,
&free_slowpath_attr.attr,
&free_frozen_attr.attr,
--
2.51.0
Powered by blists - more mailing lists