[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <20250922230639-GYA1303776@gentoo.org>
Date: Tue, 23 Sep 2025 07:06:39 +0800
From: Yixun Lan <dlan@...too.org>
To: Alex Elder <elder@...cstar.com>
Cc: broonie@...nel.org, robh@...nel.org, krzk+dt@...nel.org,
conor+dt@...nel.org, ziyao@...root.org, linux-spi@...r.kernel.org,
devicetree@...r.kernel.org, paul.walmsley@...ive.com,
palmer@...belt.com, aou@...s.berkeley.edu, alex@...ti.fr,
p.zabel@...gutronix.de, spacemit@...ts.linux.dev,
linux-riscv@...ts.infradead.org, linux-kernel@...r.kernel.org
Subject: Re: [PATCH v3 2/3] spi: spacemit: introduce SpacemiT K1 SPI
controller driver
Hi Alex,
On 11:17 Mon 22 Sep , Alex Elder wrote:
> This patch introduces the driver for the SPI controller found in the
> SpacemiT K1 SoC. Currently the driver supports master mode only.
> The SPI hardware implements RX and TX FIFOs, 32 entries each, and
> supports both PIO and DMA mode transfers.
>
> Signed-off-by: Alex Elder <elder@...cstar.com>
> ---
> v3: - Added imply_PDMA to the SPI_SPACEMIT_K1 Kconfig option
> - Fixed a bug pointed out by Vivian (and Troy) in word-sized reads
> - Added a comment stating we use 1, 2, or 4 bytes per word
> - Cleaned up DMA channels properly in case of failure setting up
> - No longer use devm_*() for allocating DMA channels or buffer
>
> drivers/spi/Kconfig | 9 +
> drivers/spi/Makefile | 1 +
> drivers/spi/spi-spacemit-k1.c | 965 ++++++++++++++++++++++++++++++++++
> 3 files changed, 975 insertions(+)
> create mode 100644 drivers/spi/spi-spacemit-k1.c
>
> diff --git a/drivers/spi/Kconfig b/drivers/spi/Kconfig
> index 82fa5eb3b8684..87b815295913d 100644
> --- a/drivers/spi/Kconfig
> +++ b/drivers/spi/Kconfig
> @@ -1071,6 +1071,15 @@ config SPI_SG2044_NOR
> also supporting 3Byte address devices and 4Byte address
> devices.
>
> +config SPI_SPACEMIT_K1
> + tristate "K1 SPI Controller"
> + depends on ARCH_SPACEMIT || COMPILE_TEST
> + depends on OF
> + imply MMP_PDMA if ARCH_SPACEMIT
> + default ARCH_SPACEMIT
> + help
> + Enable support for the SpacemiT K1 SPI controller.
> +
> config SPI_SPRD
> tristate "Spreadtrum SPI controller"
> depends on ARCH_SPRD || COMPILE_TEST
> diff --git a/drivers/spi/Makefile b/drivers/spi/Makefile
> index eefaeca097456..637d750ead996 100644
> --- a/drivers/spi/Makefile
> +++ b/drivers/spi/Makefile
> @@ -140,6 +140,7 @@ obj-$(CONFIG_SPI_SIFIVE) += spi-sifive.o
> obj-$(CONFIG_SPI_SLAVE_MT27XX) += spi-slave-mt27xx.o
> obj-$(CONFIG_SPI_SN_F_OSPI) += spi-sn-f-ospi.o
> obj-$(CONFIG_SPI_SG2044_NOR) += spi-sg2044-nor.o
> +obj-$(CONFIG_SPI_SPACEMIT_K1) += spi-spacemit-k1.o
> obj-$(CONFIG_SPI_SPRD) += spi-sprd.o
> obj-$(CONFIG_SPI_SPRD_ADI) += spi-sprd-adi.o
> obj-$(CONFIG_SPI_STM32) += spi-stm32.o
> diff --git a/drivers/spi/spi-spacemit-k1.c b/drivers/spi/spi-spacemit-k1.c
> new file mode 100644
> index 0000000000000..2b932d80cc510
> --- /dev/null
> +++ b/drivers/spi/spi-spacemit-k1.c
> @@ -0,0 +1,965 @@
> +// SPDX-License-Identifier: GPL-2.0
> +/*
> + * Support for SpacemiT K1 SPI controller
> + *
> + * Copyright (C) 2025 by RISCstar Solutions Corporation. All rights reserved.
> + * Copyright (c) 2023, spacemit Corporation.
> + */
> +
> +#include <linux/bitfield.h>
> +#include <linux/clk.h>
> +#include <linux/device.h>
> +#include <linux/dma-mapping.h>
> +#include <linux/dmaengine.h>
> +#include <linux/interrupt.h>
> +#include <linux/kernel.h>
> +#include <linux/of.h>
> +#include <linux/platform_device.h>
> +#include <linux/reset.h>
> +#include <linux/scatterlist.h>
> +#include <linux/sizes.h>
> +#include <linux/spi/spi.h>
> +#include <linux/units.h>
> +
> +#include "internals.h"
> +
> +/* This is the range of transfer rates supported by the K1 SoC */
> +#define K1_SPI_MIN_SPEED_HZ 6250
> +#define K1_SPI_MAX_SPEED_HZ 51200000
> +
> +/* Default speed used if spi-max-frequency is invalid or not present */
> +#define K1_SPI_DEFAULT_MAX_SPEED_HZ 25600000
> +
> +/* DMA constraints */
> +#define K1_SPI_DMA_ALIGNMENT 64
> +#define K1_SPI_MAX_DMA_LEN SZ_512K
> +
> +/* SpacemiT K1 SPI Registers */
> +
> +/* SSP Top Control Register */
> +#define SSP_TOP_CTRL 0x00
> +#define TOP_SSE BIT(0) /* Enable port */
> +#define TOP_FRF_MASK GENMASK(2, 1) /* Frame format */
> +#define TOP_FRF_MOTOROLA 0 /* Motorola SPI */
> +#define TOP_DSS_MASK GENMASK(9, 5) /* Data size (1-32) */
> +#define TOP_SPO BIT(10) /* Polarity: 0=low */
> +#define TOP_SPH BIT(11) /* Half-cycle phase */
> +#define TOP_LBM BIT(12) /* Loopback mode */
> +#define TOP_TRAIL BIT(13) /* Trailing bytes */
> +#define TOP_HOLD_FRAME_LOW BIT(14) /* Master mode */
> +
> +/* SSP FIFO Control Register */
> +#define SSP_FIFO_CTRL 0x04
> +#define FIFO_TFT_MASK GENMASK(4, 0) /* TX FIFO threshold */
> +#define FIFO_RFT_MASK GENMASK(9, 5) /* RX FIFO threshold */
> +#define FIFO_TSRE BIT(10) /* TX service request */
> +#define FIFO_RSRE BIT(11) /* RX service request */
> +
> +/* SSP Interrupt Enable Register */
> +#define SSP_INT_EN 0x08
> +#define SSP_INT_EN_TINTE BIT(1) /* RX timeout */
> +#define SSP_INT_EN_RIE BIT(2) /* RX FIFO */
> +#define SSP_INT_EN_TIE BIT(3) /* TX FIFO */
> +#define SSP_INT_EN_RIM BIT(4) /* RX FIFO overrun */
> +#define SSP_INT_EN_TIM BIT(5) /* TX FIFO underrun */
> +
> +/* SSP Time Out Register */
> +#define SSP_TIMEOUT 0x0c
> +#define SSP_TIMEOUT_MASK GENMASK(23, 0)
> +
> +/* SSP Data Register */
> +#define SSP_DATAR 0x10
> +
> +/* SSP Status Register */
> +#define SSP_STATUS 0x14
> +#define SSP_STATUS_BSY BIT(0) /* SPI/I2S busy */
> +#define SSP_STATUS_TNF BIT(6) /* TX FIFO not full */
> +#define SSP_STATUS_TFL GENMASK(11, 7) /* TX FIFO level */
> +#define SSP_STATUS_TUR BIT(12) /* TX FIFO underrun */
> +#define SSP_STATUS_RNE BIT(14) /* RX FIFO not empty */
> +#define SSP_STATUS_RFL GENMASK(19, 15) /* RX FIFO level */
> +#define SSP_STATUS_ROR BIT(20) /* RX FIFO overrun */
> +
> +/* The FIFO sizes and thresholds are the same for RX and TX */
> +#define K1_SPI_FIFO_SIZE 32
> +#define K1_SPI_THRESH (K1_SPI_FIFO_SIZE / 2)
> +
> +struct k1_spi_io {
> + enum dma_data_direction dir;
> + struct dma_chan *chan;
> + void *buf;
> + unsigned int resid;
> + u32 nents;
> + struct sg_table sgt;
> +};
> +
> +struct k1_spi_driver_data {
> + struct spi_controller *controller;
> + struct device *dev;
> + void __iomem *base;
> + unsigned long bus_rate;
> + struct clk *clk;
> + unsigned long rate;
> + u32 rx_timeout;
> + int irq;
> +
> + struct k1_spi_io rx;
> + struct k1_spi_io tx;
> +
> + void *dummy; /* DMA disabled if NULL */
> + u32 base_addr; /* DMA address corresponding to base */
> +
> + struct spi_message *message; /* Current message */
> +
> + /* Current transfer information; not valid if message is null */
> + unsigned int len;
> + u32 bytes; /* Bytes used for bits_per_word */
> + bool dma_mapped;
> + struct completion completion; /* Transfer completion */
> +};
> +
> +static bool k1_spi_dma_enabled(struct k1_spi_driver_data *drv_data)
> +{
> + return !!drv_data->dummy;
> +}
> +
> +static bool k1_spi_map_dma_buffer(struct k1_spi_io *io, size_t len, void *dummy)
> +{
> + struct device *dmadev = io->chan->device->dev;
> + unsigned int nents = DIV_ROUND_UP(len, SZ_2K);
> + struct sg_table *sgt = &io->sgt;
> + void *bufp = io->buf ? : dummy;
> + struct scatterlist *sg;
> + unsigned int i;
> +
> + if (nents != sgt->nents) {
> + sg_free_table(sgt);
> + if (sg_alloc_table(sgt, nents, GFP_KERNEL))
> + return false;
> + }
> +
> + for_each_sg(sgt->sgl, sg, nents, i) {
> + size_t bytes = min_t(size_t, len, SZ_2K);
> +
> + sg_set_buf(sg, bufp, bytes);
> + if (bufp != dummy)
> + bufp += bytes;
> + len -= bytes;
> + }
> + io->nents = dma_map_sg(dmadev, sgt->sgl, nents, io->dir);
> +
> + return !!io->nents;
> +}
> +
> +static void k1_spi_unmap_dma_buffer(struct k1_spi_io *io)
> +{
> + struct sg_table *sgt = &io->sgt;
> +
> + dma_unmap_sg(io->chan->device->dev, sgt->sgl, io->nents, io->dir);
> + io->nents = 0;
> +}
> +
> +static bool k1_spi_map_dma_buffers(struct k1_spi_driver_data *drv_data)
> +{
> + u32 dma_burst_size;
> + void *dummy;
> +
> + if (!k1_spi_dma_enabled(drv_data))
> + return false;
> +
> + dma_burst_size = K1_SPI_THRESH * drv_data->bytes;
> +
> + /* Don't bother with DMA if we can't do even a single burst */
> + if (drv_data->len < dma_burst_size)
> + return false;
> +
> + /* We won't use DMA if the transfer is too big, either */
> + if (drv_data->len > K1_SPI_MAX_DMA_LEN)
> + return false;
> +
> + /* Map both directions for DMA; if either fails, we'll use PIO */
> + dummy = drv_data->dummy;
> + if (!k1_spi_map_dma_buffer(&drv_data->rx, drv_data->len, dummy))
> + return false;
> +
> + if (k1_spi_map_dma_buffer(&drv_data->tx, drv_data->len, dummy))
> + return true; /* Success! */
> +
> + /* Failed to map the RX buffer; undo the TX mapping */
> + k1_spi_unmap_dma_buffer(&drv_data->rx);
> +
> + return false;
> +}
> +
> +static struct dma_async_tx_descriptor *
> +k1_spi_prepare_dma_io(struct k1_spi_driver_data *drv_data, struct k1_spi_io *io)
> +{
> + u32 addr = drv_data->base_addr + SSP_DATAR;
> + struct dma_slave_config cfg = { };
> + enum dma_transfer_direction dir;
> + enum dma_slave_buswidth width;
> + u32 dma_burst_size;
> + int ret;
> +
> + dir = io->dir == DMA_TO_DEVICE ? DMA_MEM_TO_DEV
> + : DMA_DEV_TO_MEM;
> +
> + width = drv_data->bytes == 1 ? DMA_SLAVE_BUSWIDTH_1_BYTE :
> + drv_data->bytes == 2 ? DMA_SLAVE_BUSWIDTH_2_BYTES
> + /* bytes == 4 */ : DMA_SLAVE_BUSWIDTH_4_BYTES;
> +
> + dma_burst_size = K1_SPI_THRESH * drv_data->bytes;
> +
> + cfg.direction = dir;
> + if (dir == DMA_MEM_TO_DEV) {
> + cfg.dst_addr = addr;
> + cfg.dst_addr_width = width;
> + cfg.dst_maxburst = dma_burst_size;
> + } else {
> + cfg.src_addr = addr;
> + cfg.src_addr_width = width;
> + cfg.src_maxburst = dma_burst_size;
> + }
> +
> + ret = dmaengine_slave_config(io->chan, &cfg);
> + if (ret)
> + return NULL;
> +
> + return dmaengine_prep_slave_sg(io->chan, io->sgt.sgl, io->nents, dir,
> + DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
> +}
> +
> +/* DMA completion callback */
> +static void k1_spi_callback(void *data)
> +{
> + complete(data);
> +}
> +
> +static bool k1_spi_transfer_start_dma(struct k1_spi_driver_data *drv_data)
> +{
> + struct dma_async_tx_descriptor *rx_desc;
> + struct dma_async_tx_descriptor *tx_desc;
> + struct device *dev = drv_data->dev;
> + u32 val;
> +
> + rx_desc = k1_spi_prepare_dma_io(drv_data, &drv_data->rx);
> + if (!rx_desc) {
> + dev_err(dev, "failed to get DMA RX descriptor\n");
> + return false;
> + }
> +
> + tx_desc = k1_spi_prepare_dma_io(drv_data, &drv_data->tx);
> + if (!tx_desc) {
> + dev_err(dev, "failed to get DMA TX descriptor\n");
> + return false;
> + }
> +
> + val = readl(drv_data->base + SSP_TOP_CTRL);
> + val |= TOP_TRAIL; /* Trailing bytes handled by DMA */
> + writel(val, drv_data->base + SSP_TOP_CTRL);
> +
> + val = readl(drv_data->base + SSP_FIFO_CTRL);
> + val |= FIFO_TSRE | FIFO_RSRE;
> + writel(val, drv_data->base + SSP_FIFO_CTRL);
> +
> + /* When RX is complete we also know TX has completed */
> + rx_desc->callback = k1_spi_callback;
> + rx_desc->callback_param = &drv_data->completion;
> +
> + dmaengine_submit(rx_desc);
> + dmaengine_submit(tx_desc);
> +
> + dma_async_issue_pending(drv_data->rx.chan);
> + dma_async_issue_pending(drv_data->tx.chan);
> +
> + return true;
> +}
> +
> +static void k1_spi_transfer_end_dma(struct k1_spi_driver_data *drv_data)
> +{
> + u32 val;
> +
> + val = readl(drv_data->base + SSP_FIFO_CTRL);
> + val &= ~(FIFO_TSRE | FIFO_RSRE);
> + writel(val, drv_data->base + SSP_FIFO_CTRL);
> +
> + val = readl(drv_data->base + SSP_TOP_CTRL);
> + val &= ~TOP_TRAIL; /* Trailing bytes handled by the CPU */
> + writel(val, drv_data->base + SSP_TOP_CTRL);
> +
> + /* Signal an error if an RX overflow or TX underflow occurred */
> + val = readl(drv_data->base + SSP_STATUS);
> + if (val & (SSP_STATUS_TUR | SSP_STATUS_ROR))
> + drv_data->message->status = -EIO;
> +}
> +
> +/* Discard any data in the RX FIFO */
> +static void k1_spi_flush(struct k1_spi_driver_data *drv_data)
> +{
> + u32 val = readl(drv_data->base + SSP_STATUS);
> + u32 count;
> +
> + /* If there's nothing in the FIFO, we're done */
> + if (!(val & SSP_STATUS_RNE))
> + return;
> +
> + /* Read and discard what's there (one more than what the field says) */
> + count = FIELD_GET(SSP_STATUS_RFL, val) + 1;
> + do
> + (void)readl(drv_data->base + SSP_DATAR);
> + while (--count);
> +}
> +
> +/* Set the transfer speed; the SPI core code ensures it is supported */
> +static bool k1_spi_set_speed(struct k1_spi_driver_data *drv_data, u32 rate)
> +{
> + struct clk *clk = drv_data->clk;
> + u64 nsec_per_word;
> + u64 bus_ticks;
> +
> + if (clk_set_rate(clk, rate))
> + return false;
> +
> + drv_data->rate = clk_get_rate(clk);
> +
> + /*
> + * Compute the RX FIFO inactivity timeout value that should be used.
> + * The inactivity timer restarts with each word that lands in the
> + * FIFO. If two or more "word transfer times" pass without any new
> + * data in the RX FIFO, we might as well read what's there.
> + *
> + * The rate at which words land in the FIFO is determined by the
> + * word size and the transfer rate. One bit is transferred per
> + * clock tick, and 8 (or 16 or 32) bits are transferred per word.
> + *
> + * So we can get word transfer time (in nanoseconds) from:
> + * nsec_per_tick = NANOHZ_PER_HZ / drv_data->rate;
> + * ticks_per_word = BITS_PER_BYTE * drv_data->bytes;
> + * We do the divide last for better accuracy.
> + */
> + nsec_per_word = NANOHZ_PER_HZ * BITS_PER_BYTE * drv_data->bytes;
> + nsec_per_word = DIV_ROUND_UP(nsec_per_word, drv_data->rate);
> +
> + /*
> + * The timeout (which we'll set to three word transfer times) is
> + * expressed as a number of APB clock ticks.
> + * bus_ticks = 3 * nsec * (drv_data->bus_rate / NANOHZ_PER_HZ)
> + */
> + bus_ticks = 3 * nsec_per_word * drv_data->bus_rate;
> + drv_data->rx_timeout = DIV_ROUND_UP(bus_ticks, NANOHZ_PER_HZ);
> +
> + return true;
> +}
> +
> +static void k1_spi_read_word(struct k1_spi_driver_data *drv_data)
> +{
> + struct k1_spi_io *rx = &drv_data->rx;
> + u32 bytes = drv_data->bytes;
> + u32 val;
> +
> + val = readl(drv_data->base + SSP_DATAR);
> + rx->resid -= bytes;
> +
> + if (!rx->buf)
> + return; /* Null reader: discard the data */
> +
> + if (bytes == 1)
> + *(u8 *)rx->buf = val;
> + else if (bytes == 2)
> + *(u16 *)rx->buf = val;
> + else /* bytes == 4 */
> + *(u32 *)rx->buf = val;
> +
> + rx->buf += bytes;
> +}
> +
> +static bool k1_spi_read(struct k1_spi_driver_data *drv_data)
> +{
> + struct k1_spi_io *rx = &drv_data->rx;
> + unsigned int count;
> + u32 val;
> +
> + if (!rx->resid)
> + return true; /* Nothing more to receive */
> +
> + /* We'll read as many slots in the FIFO as there are available */
> + val = readl(drv_data->base + SSP_STATUS);
> + /* The number of open slots is one more than what's in the field */
> + count = FIELD_GET(SSP_STATUS_RFL, val) + 1;
> +
> + /* A full FIFO count means the FIFO is either full or empty */
> +
> + if (count == K1_SPI_FIFO_SIZE)
> + if (!(val & SSP_STATUS_RNE))
> + return false; /* Nothing available to read */
> +
> + count = min(count, rx->resid);
> + while (count--)
> + k1_spi_read_word(drv_data);
> +
> + return !rx->resid;
> +}
> +
> +static void k1_spi_write_word(struct k1_spi_driver_data *drv_data)
> +{
> + struct k1_spi_io *tx = &drv_data->tx;
> + u32 val = 0;
> + u32 bytes;
> +
> + bytes = drv_data->bytes;
> + if (tx->buf) {
> + if (bytes == 1)
> + val = *(u8 *)tx->buf;
> + else if (bytes == 2)
> + val = *(u16 *)tx->buf;
> + else /* bytes == 4 */
> + val = *(u32 *)tx->buf;
> + tx->buf += bytes;
> + } /* Otherwise null writer; write 1, 2, or 4 zero bytes */
> +
> + tx->resid -= bytes;
> + writel(val, drv_data->base + SSP_DATAR);
> +}
> +
> +static bool k1_spi_write(struct k1_spi_driver_data *drv_data)
> +{
> + struct k1_spi_io *tx = &drv_data->tx;
> + unsigned int count;
> + u32 val;
> +
> + if (!tx->resid)
> + return true; /* Nothing more to send */
> +
> + /* See how many slots in the TX FIFO are available */
> + val = readl(drv_data->base + SSP_STATUS);
> + count = FIELD_GET(SSP_STATUS_TFL, val);
> +
> + /* A zero count means the FIFO is either full or empty */
> + if (!count) {
> + if (val & SSP_STATUS_TNF)
> + count = K1_SPI_FIFO_SIZE;
> + else
> + return false; /* No room in the FIFO */
> + }
> +
> + /*
> + * Limit how much we try to send at a time, to reduce the
> + * chance the other side can overrun our RX FIFO.
> + */
> + count = min3(count, K1_SPI_THRESH, tx->resid);
> + while (count--)
> + k1_spi_write_word(drv_data);
> +
> + return !tx->resid;
> +}
> +
> +static bool k1_spi_transfer_start(struct k1_spi_driver_data *drv_data,
> + struct spi_transfer *transfer)
> +{
> + u32 val;
> +
> + /* Bits per word can change on a per-transfer basis */
> + drv_data->bytes = spi_bpw_to_bytes(transfer->bits_per_word);
> +
> + /* Each transfer can also specify a different rate */
> + if (!k1_spi_set_speed(drv_data, transfer->speed_hz)) {
> + dev_err(drv_data->dev, "failed to set transfer speed\n");
> + return false;
> + }
> +
> + k1_spi_flush(drv_data);
> +
> + /* Record the current transfer information */
> + drv_data->rx.buf = transfer->rx_buf;
> + drv_data->rx.resid = transfer->len;
> + drv_data->tx.buf = (void *)transfer->tx_buf;
> + drv_data->tx.resid = transfer->len;
> + drv_data->len = transfer->len;
> +
> + drv_data->dma_mapped = k1_spi_map_dma_buffers(drv_data);
> +
> + /* Set the RX timeout period (required for both DMA and PIO) */
> + val = FIELD_PREP(SSP_TIMEOUT_MASK, drv_data->rx_timeout);
> + writel(val, drv_data->base + SSP_TIMEOUT);
> +
> + /* Clear any existing interrupt conditions */
> + val = readl(drv_data->base + SSP_STATUS);
> + writel(val, drv_data->base + SSP_STATUS);
> +
> + /* Set the data size and enable the hardware */
> + val = readl(drv_data->base + SSP_TOP_CTRL);
> + val |= FIELD_PREP(TOP_DSS_MASK, transfer->bits_per_word - 1);
> + val |= TOP_SSE;
> + writel(val, drv_data->base + SSP_TOP_CTRL);
> +
> + /* DMA transfers are programmmed, then initiated */
> + if (drv_data->dma_mapped)
> + return k1_spi_transfer_start_dma(drv_data);
> +
> + /*
> + * For PIO transfers, interrupts will cause words to get
> + * transferred. The interrupts will get disabled as the
> + * transfer completes. We'll write what we can to get
> + * things started.
> + */
> + (void)k1_spi_write(drv_data);
> +
> + val = SSP_INT_EN_RIM | SSP_INT_EN_TIM;
> + val |= SSP_INT_EN_TINTE | SSP_INT_EN_RIE | SSP_INT_EN_TIE;
> + writel(val, drv_data->base + SSP_INT_EN);
> +
> + return true;
> +}
> +
> +static void k1_spi_transfer_end(struct k1_spi_driver_data *drv_data,
> + struct spi_transfer *transfer)
> +{
> + struct spi_message *message = drv_data->message;
> + u32 val;
> +
> + if (drv_data->dma_mapped)
> + k1_spi_transfer_end_dma(drv_data);
> +
> + val = readl(drv_data->base + SSP_TOP_CTRL);
> + val &= ~TOP_SSE;
> + val &= ~TOP_DSS_MASK;
> + writel(val, drv_data->base + SSP_TOP_CTRL);
> +
> + writel(0, drv_data->base + SSP_TIMEOUT);
> +
> + if (drv_data->dma_mapped) {
> + k1_spi_unmap_dma_buffer(&drv_data->tx);
> + k1_spi_unmap_dma_buffer(&drv_data->rx);
> + }
> +
> + spi_transfer_delay_exec(transfer);
> +
> + if (!message->status)
> + message->actual_length += drv_data->len;
> +}
> +
> +static void k1_spi_transfer_wait(struct k1_spi_driver_data *drv_data)
> +{
> + struct completion *completion = &drv_data->completion;
> + struct spi_message *message = drv_data->message;
> + unsigned long timeout;
> + int ret;
> +
> + /* Length in bits to be transferred */
> + timeout = BITS_PER_BYTE * drv_data->bytes * drv_data->len;
> + /* Time (usec) to transfer that many bits at the current bit rate */
> + timeout = DIV_ROUND_UP(timeout * MICROHZ_PER_HZ, drv_data->rate);
> + /* Convert that (+ 25%) to jiffies for the wait call */
> + timeout = usecs_to_jiffies(5 * timeout / 4);
> +
> + ret = wait_for_completion_interruptible_timeout(completion, timeout);
> + if (ret > 0)
> + return;
> +
> + message->status = -EIO;
> + if (ret && drv_data->dma_mapped) {
> + dmaengine_terminate_sync(drv_data->tx.chan);
> + dmaengine_terminate_sync(drv_data->rx.chan);
> + }
> +}
> +
> +static int k1_spi_transfer_one_message(struct spi_controller *host,
> + struct spi_message *message)
> +{
> + struct k1_spi_driver_data *drv_data = spi_controller_get_devdata(host);
> + struct completion *completion = &drv_data->completion;
> + struct spi_transfer *transfer;
> + u32 val;
> +
> + drv_data->message = message;
> +
> + /* Message status starts out successful; set to -EIO on error */
> + message->status = 0;
> +
> + /* Hold frame low to avoid losing transferred data */
> + val = readl(drv_data->base + SSP_TOP_CTRL);
> + val |= TOP_HOLD_FRAME_LOW;
> + writel(val, drv_data->base + SSP_TOP_CTRL);
> +
> + list_for_each_entry(transfer, &message->transfers, transfer_list) {
> + reinit_completion(completion);
> +
> + /* Issue the next transfer */
> + if (!k1_spi_transfer_start(drv_data, transfer)) {
> + message->status = -EIO;
> + break;
> + }
> +
> + k1_spi_transfer_wait(drv_data);
> +
> + k1_spi_transfer_end(drv_data, transfer);
> +
> + /* If an error has occurred, we're done */
> + if (message->status)
> + break;
> + }
> +
> + drv_data->message = NULL;
> +
> + spi_finalize_current_message(drv_data->controller);
> +
> + val = readl(drv_data->base + SSP_TOP_CTRL);
> + val &= ~TOP_HOLD_FRAME_LOW;
> + writel(val, drv_data->base + SSP_TOP_CTRL);
> +
> + return 0;
> +}
> +
> +/*
> + * The client can call the setup function multiple times, and each call
> + * can specify a different SPI mode (and transfer speed). Each transfer
> + * can specify its own speed though, and the core code ensures each
> + * transfer's speed is set to something nonzero and supported by both
> + * the controller and the device). We just set the speed for each
> + * transfer.
> + */
> +static int k1_spi_setup(struct spi_device *spi)
> +{
> + struct k1_spi_driver_data *drv_data;
> + u32 val;
> +
> + drv_data = spi_controller_get_devdata(spi->controller);
> +
> + /*
> + * Configure the message format for this device. We only
> + * support Motorola SPI format in master mode.
> + */
> + val = FIELD_PREP(TOP_FRF_MASK, TOP_FRF_MOTOROLA);
> + val |= TOP_HOLD_FRAME_LOW; /* Master mode */
> +
> + /* Translate the mode into the value used to program the hardware. */
> + if (spi->mode & SPI_CPHA)
> + val |= TOP_SPH; /* 1/2 cycle */
> + if (spi->mode & SPI_CPOL)
> + val |= TOP_SPO; /* active low */
> + if (spi->mode & SPI_LOOP)
> + val |= TOP_LBM; /* enable loopback */
> + writel(val, drv_data->base + SSP_TOP_CTRL);
> +
> + return 0;
> +}
> +
> +static void k1_spi_cleanup(struct spi_device *spi)
> +{
> + struct k1_spi_driver_data *drv_data;
> +
> + drv_data = spi_controller_get_devdata(spi->controller);
> +
> + writel(0, drv_data->base + SSP_TOP_CTRL);
> +}
> +
> +static int k1_spi_dma_setup_io(struct k1_spi_driver_data *drv_data, bool rx)
> +{
> + struct dma_chan *chan;
> + struct k1_spi_io *io;
> +
> + chan = dma_request_chan(drv_data->dev, rx ? "rx" : "tx");
> + if (IS_ERR(chan))
> + return PTR_ERR(chan);
> +
> + io = rx ? &drv_data->rx : &drv_data->tx;
> + io->dir = rx ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
> + io->chan = chan;
> +
> + return 0;
> +}
> +
> +static void k1_spi_dma_cleanup_io(struct k1_spi_driver_data *drv_data, bool rx)
> +{
> + struct k1_spi_io *io = rx ? &drv_data->rx : &drv_data->tx;
> +
> + dmaengine_terminate_sync(io->chan);
> + sg_free_table(&io->sgt);
> +
> + dma_release_channel(io->chan);
> +}
> +
> +static int k1_spi_dma_setup(struct k1_spi_driver_data *drv_data)
> +{
> + struct device *dev = drv_data->dev;
> + int rx_ret;
> + int tx_ret;
> +
> + /* We must get both DMA channels, or neither of them */
> + rx_ret = k1_spi_dma_setup_io(drv_data, true);
> + if (rx_ret == -EPROBE_DEFER)
> + return -EPROBE_DEFER;
> +
> + tx_ret = k1_spi_dma_setup_io(drv_data, false);
> +
> + /* If neither is specified, we don't use DMA (as intended) */
> + if (rx_ret == -ENODEV && tx_ret == -ENODEV)
> + return 0; /* Success! PIO will be used */
> +
> + if (rx_ret || tx_ret)
> + goto err_cleanup;
> +
> + drv_data->dummy = kzalloc(SZ_2K, GFP_KERNEL);
> + if (drv_data->dummy)
> + return 0; /* Success! DMA will be used */
> +
> + dev_warn(dev, "error allocating DMA dummy buffer; DMA disabled\n");
> +err_cleanup:
> + if (!tx_ret)
> + k1_spi_dma_cleanup_io(drv_data, false);
> + else if (tx_ret == -EPROBE_DEFER)
> + return -EPROBE_DEFER;
> +
> + if (rx_ret)
> + dev_err(dev, "error requesting DMA RX DMA channel\n");
> + else
> + k1_spi_dma_cleanup_io(drv_data, true);
> +
> + /* Return success if we don't get the dummy buffer; PIO will be used */
> +
> + return rx_ret ? : tx_ret ? : 0;
> +}
> +
> +static void k1_spi_dma_cleanup(struct device *dev, void *res)
> +{
> + struct k1_spi_driver_data *drv_data = res;
> +
> + if (!k1_spi_dma_enabled(drv_data))
> + return;
> +
> + kfree(drv_data->dummy);
> + k1_spi_dma_cleanup_io(drv_data, false);
> + k1_spi_dma_cleanup_io(drv_data, true);
> +}
> +
> +static int devm_k1_spi_dma_setup(struct k1_spi_driver_data *drv_data)
> +{
> + struct k1_spi_driver_data **ptr;
> + int ret;
> +
> + if (!IS_ENABLED(CONFIG_MMP_PDMA)) {
> + dev_warn(drv_data->dev, "DMA not available; using PIO\n");
> + return 0;
> + }
> +
> + ptr = devres_alloc(k1_spi_dma_cleanup, sizeof(*ptr), GFP_KERNEL);
> + if (!ptr)
> + return -ENOMEM;
> +
> + ret = k1_spi_dma_setup(drv_data);
> + if (ret) {
> + devres_free(ptr);
> + return ret;
> + }
> +
> + *ptr = drv_data;
> + devres_add(drv_data->dev, ptr);
> +
> + return 0;
> +}
> +
> +static const struct of_device_id k1_spi_dt_ids[] = {
> + { .compatible = "spacemit,k1-spi", },
> + {}
> +};
> +MODULE_DEVICE_TABLE(of, k1_spi_dt_ids);
> +
> +static void k1_spi_host_init(struct k1_spi_driver_data *drv_data)
> +{
> + struct device_node *np = dev_of_node(drv_data->dev);
> + struct spi_controller *host = drv_data->controller;
> + struct device *dev = drv_data->dev;
> + u32 max_speed_hz;
> + int ret;
> +
> + host->dev.of_node = np;
> + host->dev.parent = drv_data->dev;
> + host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP;
> + host->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
> + host->num_chipselect = 1;
> +
> + if (k1_spi_dma_enabled(drv_data))
> + host->dma_alignment = K1_SPI_DMA_ALIGNMENT;
> + host->cleanup = k1_spi_cleanup;
> + host->setup = k1_spi_setup;
> + host->transfer_one_message = k1_spi_transfer_one_message;
> +
> + ret = of_property_read_u32(np, "spi-max-frequency", &max_speed_hz);
> + if (!ret) {
> + host->max_speed_hz = clamp(max_speed_hz, K1_SPI_MIN_SPEED_HZ,
> + K1_SPI_MAX_SPEED_HZ);
> + if (host->max_speed_hz != max_speed_hz)
> + dev_warn(dev, "spi-max-frequency %u out of range, using %u\n",
> + max_speed_hz, host->max_speed_hz);
> + } else {
> + if (ret != -EINVAL)
> + dev_warn(dev, "bad spi-max-frequency, using %u\n",
> + K1_SPI_DEFAULT_MAX_SPEED_HZ);
> + host->max_speed_hz = K1_SPI_DEFAULT_MAX_SPEED_HZ;
> + }
> +}
> +
> +/* Set our registers to a known initial state */
> +static void
> +k1_spi_register_reset(struct k1_spi_driver_data *drv_data, bool initial)
> +{
> + u32 val = 0;
> +
> + writel(0, drv_data->base + SSP_TOP_CTRL);
> +
> + if (initial) {
> + /*
> + * The TX and RX FIFO thresholds are the same no matter
> + * what the speed or bits per word, so we can just set
> + * them once. The thresholds are one more than the values
> + * in the register.
> + */
> + val = FIELD_PREP(FIFO_RFT_MASK, K1_SPI_THRESH - 1);
> + val |= FIELD_PREP(FIFO_TFT_MASK, K1_SPI_THRESH - 1);
> + }
> + writel(val, drv_data->base + SSP_FIFO_CTRL);
> +
> + writel(0, drv_data->base + SSP_INT_EN);
> + writel(0, drv_data->base + SSP_TIMEOUT);
> +
> + /* Clear any pending interrupt conditions */
> + val = readl(drv_data->base + SSP_STATUS);
> + writel(val, drv_data->base + SSP_STATUS);
> +}
> +
> +static irqreturn_t k1_spi_ssp_isr(int irq, void *dev_id)
> +{
> + struct k1_spi_driver_data *drv_data = dev_id;
> + bool rx_done;
> + bool tx_done;
> + u32 val;
> +
> + /* Get status and clear pending interrupts */
> + val = readl(drv_data->base + SSP_STATUS);
> + writel(val, drv_data->base + SSP_STATUS);
> +
> + if (!drv_data->message)
> + return IRQ_NONE;
> +
> + /* Check for a TX underrun or RX underrun first */
s/RX underrun/RX overrun/
> + if (val & (SSP_STATUS_TUR | SSP_STATUS_ROR)) {
> + /* Disable all interrupts on error */
> + writel(0, drv_data->base + SSP_INT_EN);
should clear status of SSP_STATUS instead of disabling ISR, see commet below
> +
> + drv_data->message->status = -EIO;
> + complete(&drv_data->completion);
> +
> + return IRQ_HANDLED;
> + }
> +
> + /* Drain the RX FIFO first, then transmit what we can */
> + rx_done = k1_spi_read(drv_data);
> + tx_done = k1_spi_write(drv_data);
> +
> + /* Disable interrupts if we're done transferring either direction */
> + if (rx_done || tx_done) {
> + /* If both are done, disable all interrupts */
> + if (rx_done && tx_done) {
> + val = 0;
> + } else {
> + val = readl(drv_data->base + SSP_INT_EN);
> + if (rx_done)
> + val &= ~(SSP_INT_EN_TINTE | SSP_INT_EN_RIE);
> + if (tx_done)
> + val &= ~SSP_INT_EN_TIE;
> + }
> + writel(val, drv_data->base + SSP_INT_EN);
> + }
It occur to me, enabling/disabling interrupt in trasfer_start()/ISR is
unnecessary, which bring extra overhead, why not enable them once
and only handle status clear bit? I mean bits has "R/W1C" in SSP_STATUS
> +
> + if (rx_done && tx_done)
> + complete(&drv_data->completion);
> +
> + return IRQ_HANDLED;
> +}
> +
> +static int k1_spi_probe(struct platform_device *pdev)
> +{
> + struct k1_spi_driver_data *drv_data;
> + struct device *dev = &pdev->dev;
> + struct reset_control *reset;
> + struct spi_controller *host;
> + struct resource *iores;
> + struct clk *clk_bus;
> + int ret;
> +
> + host = devm_spi_alloc_host(dev, sizeof(*drv_data));
> + if (!host)
> + return -ENOMEM;
> + drv_data = spi_controller_get_devdata(host);
> + drv_data->controller = host;
> + platform_set_drvdata(pdev, drv_data);
> + drv_data->dev = dev;
> + init_completion(&drv_data->completion);
> +
> + drv_data->base = devm_platform_get_and_ioremap_resource(pdev, 0,
> + &iores);
> + if (IS_ERR(drv_data->base))
> + return dev_err_probe(dev, PTR_ERR(drv_data->base),
> + "error mapping memory\n");
> + drv_data->base_addr = iores->start;
> +
> + ret = devm_k1_spi_dma_setup(drv_data);
> + if (ret)
> + return dev_err_probe(dev, ret, "error setting up DMA\n");
> +
> + k1_spi_host_init(drv_data);
> +
> + clk_bus = devm_clk_get_enabled(dev, "bus");
> + if (IS_ERR(clk_bus))
> + return dev_err_probe(dev, PTR_ERR(clk_bus),
> + "error getting/enabling bus clock\n");
> + drv_data->bus_rate = clk_get_rate(clk_bus);
> +
> + drv_data->clk = devm_clk_get_enabled(dev, "core");
> + if (IS_ERR(drv_data->clk))
> + return dev_err_probe(dev, PTR_ERR(drv_data->clk),
> + "error getting/enabling core clock\n");
> +
> + reset = devm_reset_control_get_exclusive_deasserted(dev, NULL);
> + if (IS_ERR(reset))
> + return dev_err_probe(dev, PTR_ERR(reset),
> + "error getting/deasserting reset\n");
> +
> + k1_spi_register_reset(drv_data, true);
> +
> + drv_data->irq = platform_get_irq(pdev, 0);
> + if (drv_data->irq < 0)
> + return dev_err_probe(dev, drv_data->irq, "error getting IRQ\n");
> +
> + ret = devm_request_irq(dev, drv_data->irq, k1_spi_ssp_isr,
> + IRQF_SHARED, dev_name(dev), drv_data);
> + if (ret < 0)
> + return dev_err_probe(dev, ret, "error requesting IRQ\n");
> +
> + ret = devm_spi_register_controller(dev, host);
> + if (ret)
> + dev_err(dev, "error registering controller\n");
> +
> + return ret;
> +}
> +
> +static void k1_spi_remove(struct platform_device *pdev)
> +{
> + struct k1_spi_driver_data *drv_data = platform_get_drvdata(pdev);
> +
> + k1_spi_register_reset(drv_data, false);
> +}
> +
> +static struct platform_driver k1_spi_driver = {
> + .driver = {
> + .name = "k1-spi",
> + .of_match_table = k1_spi_dt_ids,
> + },
> + .probe = k1_spi_probe,
> + .remove = k1_spi_remove,
> +};
> +
> +module_platform_driver(k1_spi_driver);
> +
> +MODULE_DESCRIPTION("SpacemiT K1 SPI controller driver");
> +MODULE_LICENSE("GPL");
> --
> 2.48.1
>
--
Yixun Lan (dlan)
Powered by blists - more mailing lists