lists.openwall.net   lists  /  announce  owl-users  owl-dev  john-users  john-dev  passwdqc-users  yescrypt  popa3d-users  /  oss-security  kernel-hardening  musl  sabotage  tlsify  passwords  /  crypt-dev  xvendor  /  Bugtraq  Full-Disclosure  linux-kernel  linux-netdev  linux-ext4  linux-hardening  linux-cve-announce  PHC 
Open Source and information security mailing list archives
 
Hash Suite: Windows password security audit tool. GUI, reports in PDF.
[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-ID: <aP8dWDNiHVpAe7ak@hyeyoo>
Date: Mon, 27 Oct 2025 16:20:56 +0900
From: Harry Yoo <harry.yoo@...cle.com>
To: Vlastimil Babka <vbabka@...e.cz>
Cc: Andrew Morton <akpm@...ux-foundation.org>,
        Christoph Lameter <cl@...two.org>,
        David Rientjes <rientjes@...gle.com>,
        Roman Gushchin <roman.gushchin@...ux.dev>,
        Uladzislau Rezki <urezki@...il.com>,
        "Liam R. Howlett" <Liam.Howlett@...cle.com>,
        Suren Baghdasaryan <surenb@...gle.com>,
        Sebastian Andrzej Siewior <bigeasy@...utronix.de>,
        Alexei Starovoitov <ast@...nel.org>, linux-mm@...ck.org,
        linux-kernel@...r.kernel.org, linux-rt-devel@...ts.linux.dev,
        bpf@...r.kernel.org, kasan-dev@...glegroups.com
Subject: Re: [PATCH RFC 09/19] slab: add optimized sheaf refill from partial
 list

On Thu, Oct 23, 2025 at 03:52:31PM +0200, Vlastimil Babka wrote:
> At this point we have sheaves enabled for all caches, but their refill
> is done via __kmem_cache_alloc_bulk() which relies on cpu (partial)
> slabs - now a redundant caching layer that we are about to remove.
> 
> The refill will thus be done from slabs on the node partial list.
> Introduce new functions that can do that in an optimized way as it's
> easier than modifying the __kmem_cache_alloc_bulk() call chain.
> 
> Extend struct partial_context so it can return a list of slabs from the
> partial list with the sum of free objects in them within the requested
> min and max.
> 
> Introduce get_partial_node_bulk() that removes the slabs from freelist
> and returns them in the list.
> 
> Introduce get_freelist_nofreeze() which grabs the freelist without
> freezing the slab.
> 
> Introduce __refill_objects() that uses the functions above to fill an
> array of objects. It has to handle the possibility that the slabs will
> contain more objects that were requested, due to concurrent freeing of
> objects to those slabs. When no more slabs on partial lists are
> available, it will allocate new slabs.
> 
> Finally, switch refill_sheaf() to use __refill_objects().
> 
> Signed-off-by: Vlastimil Babka <vbabka@...e.cz>
> ---
>  mm/slub.c | 235 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++--
>  1 file changed, 230 insertions(+), 5 deletions(-)
> 
> diff --git a/mm/slub.c b/mm/slub.c
> index a84027fbca78..e2b052657d11 100644
> --- a/mm/slub.c
> +++ b/mm/slub.c
> @@ -3508,6 +3511,69 @@ static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
>  #endif
>  static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
>  
> +static bool get_partial_node_bulk(struct kmem_cache *s,
> +				  struct kmem_cache_node *n,
> +				  struct partial_context *pc)
> +{
> +	struct slab *slab, *slab2;
> +	unsigned int total_free = 0;
> +	unsigned long flags;
> +
> +	/*
> +	 * Racy check. If we mistakenly see no partial slabs then we
> +	 * just allocate an empty slab. If we mistakenly try to get a
> +	 * partial slab and there is none available then get_partial()
> +	 * will return NULL.
> +	 */
> +	if (!n || !n->nr_partial)
> +		return false;
> +
> +	INIT_LIST_HEAD(&pc->slabs);
> +
> +	if (gfpflags_allow_spinning(pc->flags))
> +		spin_lock_irqsave(&n->list_lock, flags);
> +	else if (!spin_trylock_irqsave(&n->list_lock, flags))
> +		return false;
> +
> +	list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
> +		struct slab slab_counters;
> +		unsigned int slab_free;
> +
> +		if (!pfmemalloc_match(slab, pc->flags))
> +			continue;
> +
> +		/*
> +		 * due to atomic updates done by a racing free we should not
> +		 * read garbage here, but do a sanity check anyway
> +		 *
> +		 * slab_free is a lower bound due to subsequent concurrent
> +		 * freeing, the caller might get more objects than requested and
> +		 * must deal with it
> +		 */
> +		slab_counters.counters = data_race(READ_ONCE(slab->counters));
> +		slab_free = slab_counters.objects - slab_counters.inuse;
> +
> +		if (unlikely(slab_free > oo_objects(s->oo)))
> +			continue;
> +
> +		/* we have already min and this would get us over the max */
> +		if (total_free >= pc->min_objects
> +		    && total_free + slab_free > pc->max_objects)
> +			continue;
> +
> +		remove_partial(n, slab);
> +
> +		list_add(&slab->slab_list, &pc->slabs);
> +
> +		total_free += slab_free;
> +		if (total_free >= pc->max_objects)
> +			break;

It may end up iterating over all slabs in the n->partial list
when the sum of free objects isn't exactly equal to pc->max_objects?

> +	}
> +
> +	spin_unlock_irqrestore(&n->list_lock, flags);
> +	return total_free > 0;
> +}
> +
>  /*
>   * Try to allocate a partial slab from a specific node.
>   */
> @@ -4436,6 +4502,38 @@ static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
>  	return freelist;
>  }
>  
>  /*
>   * Freeze the partial slab and return the pointer to the freelist.
>   */
> @@ -5373,6 +5471,9 @@ static int __prefill_sheaf_pfmemalloc(struct kmem_cache *s,
>  	return ret;
>  }
>  
> +static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
> +				   size_t size, void **p);
> +
>  /*
>   * returns a sheaf that has at least the requested size
>   * when prefilling is needed, do so with given gfp flags
> @@ -7409,6 +7510,130 @@ void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
>  }
>  EXPORT_SYMBOL(kmem_cache_free_bulk);
>  
> +static unsigned int
> +__refill_objects(struct kmem_cache *s, void **p, gfp_t gfp, unsigned int min,
> +		 unsigned int max)
> +{
> +	struct slab *slab, *slab2;
> +	struct partial_context pc;
> +	unsigned int refilled = 0;
> +	unsigned long flags;
> +	void *object;
> +	int node;
> +
> +	pc.flags = gfp;
> +	pc.min_objects = min;
> +	pc.max_objects = max;
> +
> +	node = numa_mem_id();
> +
> +	/* TODO: consider also other nodes? */
> +	if (!get_partial_node_bulk(s, get_node(s, node), &pc))
> +		goto new_slab;
> +
> +	list_for_each_entry_safe(slab, slab2, &pc.slabs, slab_list) {
> +
> +		list_del(&slab->slab_list);
> +
> +		object = get_freelist_nofreeze(s, slab);
> +
> +		while (object && refilled < max) {
> +			p[refilled] = object;
> +			object = get_freepointer(s, object);
> +			maybe_wipe_obj_freeptr(s, p[refilled]);
> +
> +			refilled++;
> +		}
> +
> +		/*
> +		 * Freelist had more objects than we can accomodate, we need to
> +		 * free them back. We can treat it like a detached freelist, just
> +		 * need to find the tail object.
> +		 */
> +		if (unlikely(object)) {
> +			void *head = object;
> +			void *tail;
> +			int cnt = 0;
> +
> +			do {
> +				tail = object;
> +				cnt++;
> +				object = get_freepointer(s, object);
> +			} while (object);
> +			do_slab_free(s, slab, head, tail, cnt, _RET_IP_);
> +		}

Maybe we don't have to do this if we put slabs into a singly linked list
and use the other word to record the number of objects in the slab.

> +
> +		if (refilled >= max)
> +			break;
> +	}
> +
> +	if (unlikely(!list_empty(&pc.slabs))) {
> +		struct kmem_cache_node *n = get_node(s, node);
> +
> +		spin_lock_irqsave(&n->list_lock, flags);

Do we surely know that trylock will succeed when
we succeeded to acquire it in get_partial_node_bulk()?

I think the answer is yes, but just to double check :)

> +		list_for_each_entry_safe(slab, slab2, &pc.slabs, slab_list) {
> +
> +			if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial))
> +				continue;
> +
> +			list_del(&slab->slab_list);
> +			add_partial(n, slab, DEACTIVATE_TO_HEAD);
> +		}
> +
> +		spin_unlock_irqrestore(&n->list_lock, flags);
> +
> +		/* any slabs left are completely free and for discard */
> +		list_for_each_entry_safe(slab, slab2, &pc.slabs, slab_list) {
> +
> +			list_del(&slab->slab_list);
> +			discard_slab(s, slab);
> +		}
> +	}
> +
> +
> +	if (likely(refilled >= min))
> +		goto out;
> +
> +new_slab:
> +
> +	slab = new_slab(s, pc.flags, node);
> +	if (!slab)
> +		goto out;
> +
> +	stat(s, ALLOC_SLAB);
> +	inc_slabs_node(s, slab_nid(slab), slab->objects);
> +
> +	/*
> +	 * TODO: possible optimization - if we know we will consume the whole
> +	 * slab we might skip creating the freelist?
> +	 */
> +	object = slab->freelist;
> +	while (object && refilled < max) {
> +		p[refilled] = object;
> +		object = get_freepointer(s, object);
> +		maybe_wipe_obj_freeptr(s, p[refilled]);
> +
> +		slab->inuse++;
> +		refilled++;
> +	}
> +	slab->freelist = object;
> +
> +	if (slab->freelist) {
> +		struct kmem_cache_node *n = get_node(s, slab_nid(slab));
> +
> +		spin_lock_irqsave(&n->list_lock, flags);
> +		add_partial(n, slab, DEACTIVATE_TO_HEAD);
> +		spin_unlock_irqrestore(&n->list_lock, flags);

If slab_nid(slab) != node, we should check gfpflags_allow_spinning()
and call defer_deactivate_slab() if it returns false?

> +	}
> +
> +	if (refilled < min)
> +		goto new_slab;
> +out:
> +
> +	return refilled;
> +}
> +
>  static inline
>  int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
>  			    void **p)
> 
> -- 
> 2.51.1
> 

-- 
Cheers,
Harry / Hyeonggon

Powered by blists - more mailing lists

Powered by Openwall GNU/*/Linux Powered by OpenVZ