[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Message-Id: <DFUD2VQGF43V.3AGDOE8K4ANNX@garyguo.net>
Date: Wed, 21 Jan 2026 15:10:25 +0000
From: "Gary Guo" <gary@...yguo.net>
To: "Zhi Wang" <zhiw@...dia.com>, <rust-for-linux@...r.kernel.org>,
<linux-pci@...r.kernel.org>, <linux-kernel@...r.kernel.org>
Cc: <dakr@...nel.org>, <aliceryhl@...gle.com>, <bhelgaas@...gle.com>,
<kwilczynski@...nel.org>, <ojeda@...nel.org>, <alex.gaynor@...il.com>,
<boqun.feng@...il.com>, <gary@...yguo.net>, <bjorn3_gh@...tonmail.com>,
<lossin@...nel.org>, <a.hindborg@...nel.org>, <tmgross@...ch.edu>,
<markus.probst@...teo.de>, <helgaas@...nel.org>, <cjia@...dia.com>,
<smitra@...dia.com>, <ankita@...dia.com>, <aniketa@...dia.com>,
<kwankhede@...dia.com>, <targupta@...dia.com>, <acourbot@...dia.com>,
<joelagnelf@...dia.com>, <jhubbard@...dia.com>, <zhiwang@...nel.org>,
<daniel.almeida@...labora.com>
Subject: Re: [PATCH v11 2/5] rust: io: separate generic I/O helpers from
MMIO implementation
On Wed Jan 21, 2026 at 2:23 PM GMT, Zhi Wang wrote:
> The previous Io<SIZE> type combined both the generic I/O access helpers
> and MMIO implementation details in a single struct. This coupling prevented
> reusing the I/O helpers for other backends, such as PCI configuration
> space.
>
> Establish a clean separation between the I/O interface and concrete backends
> by separating generic I/O helpers from MMIO implementation.
>
> Introduce a new trait hierarchy to handle different access capabilities:
>
> - IoCapable<T>: A marker trait indicating that a backend supports I/O
> operations of a certain type (u8, u16, u32, or u64).
>
> - Io trait: Defines fallible I/O methods (try_read8, try_write8, etc.) with
> runtime bounds checking.
>
> - IoKnownSize trait: Extends Io to define infallible I/O methods (read8,
> write8, etc.) with compile-time bounds checking for regions where the
> size is known at compile time.
>
> Move the MMIO-specific logic into a dedicated Mmio<SIZE> type that
> implements the Io and IoKnownSize traits. Rename IoRaw to MmioRaw and
> update consumers to use the new types.
>
Hi Zhi, thanks for doing the work. It looks much nicer now :)
Still, some comments below.
Best,
Gary
> Cc: Alexandre Courbot <acourbot@...dia.com>
> Cc: Alice Ryhl <aliceryhl@...gle.com>
> Cc: Bjorn Helgaas <helgaas@...nel.org>
> Cc: Gary Guo <gary@...yguo.net>
> Cc: Danilo Krummrich <dakr@...nel.org>
> Cc: John Hubbard <jhubbard@...dia.com>
> Signed-off-by: Zhi Wang <zhiw@...dia.com>
> ---
> drivers/gpu/drm/tyr/regs.rs | 1 +
> drivers/gpu/nova-core/gsp/sequencer.rs | 5 +-
> drivers/gpu/nova-core/regs/macros.rs | 90 +++---
> drivers/gpu/nova-core/vbios.rs | 1 +
> drivers/pwm/pwm_th1520.rs | 5 +-
> rust/kernel/devres.rs | 19 +-
> rust/kernel/io.rs | 415 +++++++++++++++++++++----
> rust/kernel/io/mem.rs | 16 +-
> rust/kernel/io/poll.rs | 16 +-
> rust/kernel/pci/io.rs | 12 +-
> samples/rust/rust_driver_pci.rs | 4 +
> 11 files changed, 453 insertions(+), 131 deletions(-)
>
> diff --git a/rust/kernel/io.rs b/rust/kernel/io.rs
> index a97eb44a9a87..152afdcbaf78 100644
> --- a/rust/kernel/io.rs
> +++ b/rust/kernel/io.rs
> @@ -32,16 +32,16 @@
> /// By itself, the existence of an instance of this structure does not provide any guarantees that
> /// the represented MMIO region does exist or is properly mapped.
> ///
> -/// Instead, the bus specific MMIO implementation must convert this raw representation into an `Io`
> -/// instance providing the actual memory accessors. Only by the conversion into an `Io` structure
> -/// any guarantees are given.
> -pub struct IoRaw<const SIZE: usize = 0> {
> +/// Instead, the bus specific MMIO implementation must convert this raw representation into an
> +/// `Mmio` instance providing the actual memory accessors. Only by the conversion into an `Mmio`
> +/// structure any guarantees are given.
> +pub struct MmioRaw<const SIZE: usize = 0> {
> addr: usize,
> maxsize: usize,
> }
>
> -impl<const SIZE: usize> IoRaw<SIZE> {
> - /// Returns a new `IoRaw` instance on success, an error otherwise.
> +impl<const SIZE: usize> MmioRaw<SIZE> {
> + /// Returns a new `MmioRaw` instance on success, an error otherwise.
> pub fn new(addr: usize, maxsize: usize) -> Result<Self> {
> if maxsize < SIZE {
> return Err(EINVAL);
> @@ -81,14 +81,16 @@ pub fn maxsize(&self) -> usize {
> /// ffi::c_void,
> /// io::{
> /// Io,
> -/// IoRaw,
> +/// IoKnownSize,
> +/// Mmio,
> +/// MmioRaw,
> /// PhysAddr,
> /// },
> /// };
> /// use core::ops::Deref;
> ///
> /// // See also `pci::Bar` for a real example.
> -/// struct IoMem<const SIZE: usize>(IoRaw<SIZE>);
> +/// struct IoMem<const SIZE: usize>(MmioRaw<SIZE>);
> ///
> /// impl<const SIZE: usize> IoMem<SIZE> {
> /// /// # Safety
> @@ -103,7 +105,7 @@ pub fn maxsize(&self) -> usize {
> /// return Err(ENOMEM);
> /// }
> ///
> -/// Ok(IoMem(IoRaw::new(addr as usize, SIZE)?))
> +/// Ok(IoMem(MmioRaw::new(addr as usize, SIZE)?))
> /// }
> /// }
> ///
> @@ -115,11 +117,11 @@ pub fn maxsize(&self) -> usize {
> /// }
> ///
> /// impl<const SIZE: usize> Deref for IoMem<SIZE> {
> -/// type Target = Io<SIZE>;
> +/// type Target = Mmio<SIZE>;
> ///
> /// fn deref(&self) -> &Self::Target {
> /// // SAFETY: The memory range stored in `self` has been properly mapped in `Self::new`.
> -/// unsafe { Io::from_raw(&self.0) }
> +/// unsafe { Mmio::from_raw(&self.0) }
> /// }
> /// }
> ///
> @@ -133,29 +135,31 @@ pub fn maxsize(&self) -> usize {
> /// # }
> /// ```
> #[repr(transparent)]
> -pub struct Io<const SIZE: usize = 0>(IoRaw<SIZE>);
> +pub struct Mmio<const SIZE: usize = 0>(MmioRaw<SIZE>);
>
> macro_rules! define_read {
> - ($(#[$attr:meta])* $name:ident, $try_name:ident, $c_fn:ident -> $type_name:ty) => {
> + (infallible, $(#[$attr:meta])* $vis:vis $name:ident, $c_fn:ident -> $type_name:ty) => {
> /// Read IO data from a given offset known at compile time.
> ///
> /// Bound checks are performed on compile time, hence if the offset is not known at compile
> /// time, the build will fail.
> $(#[$attr])*
> #[inline]
> - pub fn $name(&self, offset: usize) -> $type_name {
> + $vis fn $name(&self, offset: usize) -> $type_name {
> let addr = self.io_addr_assert::<$type_name>(offset);
>
> // SAFETY: By the type invariant `addr` is a valid address for MMIO operations.
> unsafe { bindings::$c_fn(addr as *const c_void) }
> }
> + };
>
> + (fallible, $(#[$attr:meta])* $vis:vis $try_name:ident, $c_fn:ident -> $type_name:ty) => {
> /// Read IO data from a given offset.
> ///
> /// Bound checks are performed on runtime, it fails if the offset (plus the type size) is
> /// out of bounds.
> $(#[$attr])*
> - pub fn $try_name(&self, offset: usize) -> Result<$type_name> {
> + $vis fn $try_name(&self, offset: usize) -> Result<$type_name> {
> let addr = self.io_addr::<$type_name>(offset)?;
>
> // SAFETY: By the type invariant `addr` is a valid address for MMIO operations.
> @@ -163,74 +167,95 @@ pub fn $try_name(&self, offset: usize) -> Result<$type_name> {
> }
> };
> }
> +pub(crate) use define_read;
>
> macro_rules! define_write {
> - ($(#[$attr:meta])* $name:ident, $try_name:ident, $c_fn:ident <- $type_name:ty) => {
> + (infallible, $(#[$attr:meta])* $vis:vis $name:ident, $c_fn:ident <- $type_name:ty) => {
> /// Write IO data from a given offset known at compile time.
> ///
> /// Bound checks are performed on compile time, hence if the offset is not known at compile
> /// time, the build will fail.
> $(#[$attr])*
> #[inline]
> - pub fn $name(&self, value: $type_name, offset: usize) {
> + $vis fn $name(&self, value: $type_name, offset: usize) {
> let addr = self.io_addr_assert::<$type_name>(offset);
>
> // SAFETY: By the type invariant `addr` is a valid address for MMIO operations.
> unsafe { bindings::$c_fn(value, addr as *mut c_void) }
> }
> + };
>
> + (fallible, $(#[$attr:meta])* $vis:vis $try_name:ident, $c_fn:ident <- $type_name:ty) => {
> /// Write IO data from a given offset.
> ///
> /// Bound checks are performed on runtime, it fails if the offset (plus the type size) is
> /// out of bounds.
> $(#[$attr])*
> - pub fn $try_name(&self, value: $type_name, offset: usize) -> Result {
> + $vis fn $try_name(&self, value: $type_name, offset: usize) -> Result {
> let addr = self.io_addr::<$type_name>(offset)?;
>
> // SAFETY: By the type invariant `addr` is a valid address for MMIO operations.
> - unsafe { bindings::$c_fn(value, addr as *mut c_void) }
> + unsafe { bindings::$c_fn(value, addr as *mut c_void) };
> Ok(())
> }
> };
> }
> -
> -impl<const SIZE: usize> Io<SIZE> {
> - /// Converts an `IoRaw` into an `Io` instance, providing the accessors to the MMIO mapping.
> - ///
> - /// # Safety
> - ///
> - /// Callers must ensure that `addr` is the start of a valid I/O mapped memory region of size
> - /// `maxsize`.
> - pub unsafe fn from_raw(raw: &IoRaw<SIZE>) -> &Self {
> - // SAFETY: `Io` is a transparent wrapper around `IoRaw`.
> - unsafe { &*core::ptr::from_ref(raw).cast() }
> +pub(crate) use define_write;
> +
> +/// Checks whether an access of type `U` at the given `offset`
> +/// is valid within this region.
> +#[inline]
> +const fn offset_valid<U>(offset: usize, size: usize) -> bool {
> + let type_size = core::mem::size_of::<U>();
> + if let Some(end) = offset.checked_add(type_size) {
> + end <= size && offset % type_size == 0
> + } else {
> + false
> }
> +}
> +
> +/// Marker trait indicating that an I/O backend supports operations of a certain type.
> +///
> +/// Different I/O backends can implement this trait to expose only the operations they support.
> +///
> +/// For example, a PCI configuration space may implement `IoCapable<u8>`, `IoCapable<u16>`,
> +/// and `IoCapable<u32>`, but not `IoCapable<u64>`, while an MMIO region on a 64-bit
> +/// system might implement all four.
> +pub trait IoCapable<T> {}
> +
> +/// Types implementing this trait (e.g. MMIO BARs or PCI config regions)
> +/// can perform I/O operations on regions of memory.
> +///
> +/// This is an abstract representation to be implemented by arbitrary I/O
> +/// backends (e.g. MMIO, PCI config space, etc.).
> +///
> +/// The [`Io`] trait provides:
> +/// - Base address and size information
> +/// - Helper methods for offset validation and address calculation
> +/// - Fallible (runtime checked) accessors for different data widths
> +///
> +/// Which I/O methods are available depends on which [`IoCapable<T>`] traits
> +/// are implemented for the type.
> +///
> +/// # Examples
> +///
> +/// For MMIO regions, all widths (u8, u16, u32, and u64 on 64-bit systems) are typically
> +/// supported. For PCI configuration space, u8, u16, and u32 are supported but u64 is not.
> +pub trait Io {
> + /// Minimum usable size of this region.
> + const MIN_SIZE: usize;
>
> /// Returns the base address of this mapping.
> - #[inline]
> - pub fn addr(&self) -> usize {
> - self.0.addr()
> - }
> + fn addr(&self) -> usize;
>
> /// Returns the maximum size of this mapping.
> - #[inline]
> - pub fn maxsize(&self) -> usize {
> - self.0.maxsize()
> - }
> -
> - #[inline]
> - const fn offset_valid<U>(offset: usize, size: usize) -> bool {
> - let type_size = core::mem::size_of::<U>();
> - if let Some(end) = offset.checked_add(type_size) {
> - end <= size && offset % type_size == 0
> - } else {
> - false
> - }
> - }
> + fn maxsize(&self) -> usize;
>
> + /// Returns the absolute I/O address for a given `offset`,
> + /// performing runtime bound checks.
> #[inline]
> fn io_addr<U>(&self, offset: usize) -> Result<usize> {
> - if !Self::offset_valid::<U>(offset, self.maxsize()) {
> + if !offset_valid::<U>(offset, self.maxsize()) {
> return Err(EINVAL);
> }
>
> @@ -239,50 +264,302 @@ fn io_addr<U>(&self, offset: usize) -> Result<usize> {
> self.addr().checked_add(offset).ok_or(EINVAL)
> }
>
> + /// Returns the absolute I/O address for a given `offset`,
> + /// performing compile-time bound checks.
> #[inline]
> fn io_addr_assert<U>(&self, offset: usize) -> usize {
> - build_assert!(Self::offset_valid::<U>(offset, SIZE));
> + build_assert!(offset_valid::<U>(offset, Self::MIN_SIZE));
>
> self.addr() + offset
> }
>
> - define_read!(read8, try_read8, readb -> u8);
> - define_read!(read16, try_read16, readw -> u16);
> - define_read!(read32, try_read32, readl -> u32);
> + /// Fallible 8-bit read with runtime bounds check.
> + #[inline(always)]
> + fn try_read8(&self, _offset: usize) -> Result<u8>
> + where
> + Self: IoCapable<u8>,
> + {
> + const { assert!(false, "Backend does not support fallible 8-bit read") };
> + unreachable!()
I think this is actually where `build_error!()` make sense. Similar to how we
use it for vtable methods that are not defined (and hence will be `None`).
This would eliminate `unreachable!()`.
> + }
> +
> + /// Fallible 16-bit read with runtime bounds check.
> + #[inline(always)]
> + fn try_read16(&self, _offset: usize) -> Result<u16>
> + where
> + Self: IoCapable<u16>,
> + {
> + const { assert!(false, "Backend does not support fallible 16-bit read") };
> + unreachable!()
> + }
> +
> + /// Fallible 32-bit read with runtime bounds check.
> + #[inline(always)]
> + fn try_read32(&self, _offset: usize) -> Result<u32>
> + where
> + Self: IoCapable<u32>,
> + {
> + const { assert!(false, "Backend does not support fallible 32-bit read") };
> + unreachable!()
> + }
> +
> + /// Fallible 64-bit read with runtime bounds check.
> + #[cfg(CONFIG_64BIT)]
> + #[inline(always)]
> + fn try_read64(&self, _offset: usize) -> Result<u64>
> + where
> + Self: IoCapable<u64>,
> + {
> + const { assert!(false, "Backend does not support fallible 64-bit read") };
> + unreachable!()
> + }
> +
> + /// Fallible 8-bit write with runtime bounds check.
> + #[inline(always)]
> + fn try_write8(&self, _value: u8, _offset: usize) -> Result
> + where
> + Self: IoCapable<u8>,
> + {
> + const { assert!(false, "Backend does not support fallible 8-bit write") };
> + unreachable!()
> + }
> +
> + /// Fallible 16-bit write with runtime bounds check.
> + #[inline(always)]
> + fn try_write16(&self, _value: u16, _offset: usize) -> Result
> + where
> + Self: IoCapable<u16>,
> + {
> + const { assert!(false, "Backend does not support fallible 16-bit write") };
> + unreachable!()
> + }
> +
> + /// Fallible 32-bit write with runtime bounds check.
> + #[inline(always)]
> + fn try_write32(&self, _value: u32, _offset: usize) -> Result
> + where
> + Self: IoCapable<u32>,
> + {
> + const { assert!(false, "Backend does not support fallible 32-bit write") };
> + unreachable!()
> + }
> +
> + /// Fallible 64-bit write with runtime bounds check.
> + #[cfg(CONFIG_64BIT)]
As Alice mentioned previously, the CONFIG_64BIT shouldn't need to exist on the trait.
The cfg on the impl is sufficient (there might be `Io` that provides 64-bit
access on 32-bit systems anyway).
> + #[inline(always)]
> + fn try_write64(&self, _value: u64, _offset: usize) -> Result
> + where
> + Self: IoCapable<u64>,
> + {
> + const { assert!(false, "Backend does not support fallible 64-bit write") };
> + unreachable!()
> + }
> +}
> +
> +/// Types with a known size at compile time can provide infallible I/O accessors.
> +///
> +/// This trait extends [`Io`] to provide compile-time bounds-checked I/O operations
> +/// for regions where the size is known at compile time (e.g., `Mmio<SIZE>`).
> +pub trait IoKnownSize: Io {
> + /// Infallible 8-bit read with compile-time bounds check.
> + #[inline(always)]
> + fn read8(&self, _offset: usize) -> u8
> + where
> + Self: IoCapable<u8>,
I think these *can* be also on `Io` with `Self: IoKnownSize` bound, although in
practice I don't think it would matter.
> + {
> + const { assert!(false, "Backend does not support infallible 8-bit read") };
> + unreachable!()
> + }
> +
> + /// Infallible 16-bit read with compile-time bounds check.
> + #[inline(always)]
> + fn read16(&self, _offset: usize) -> u16
> + where
> + Self: IoCapable<u16>,
> + {
> + const { assert!(false, "Backend does not support infallible 16-bit read") };
> + unreachable!()
> + }
> +
> + /// Infallible 32-bit read with compile-time bounds check.
> + #[inline(always)]
> + fn read32(&self, _offset: usize) -> u32
> + where
> + Self: IoCapable<u32>,
> + {
> + const { assert!(false, "Backend does not support infallible 32-bit read") };
> + unreachable!()
> + }
> +
> + /// Infallible 64-bit read with compile-time bounds check.
> + #[cfg(CONFIG_64BIT)]
> + #[inline(always)]
> + fn read64(&self, _offset: usize) -> u64
> + where
> + Self: IoCapable<u64>,
> + {
> + const { assert!(false, "Backend does not support infallible 64-bit read") };
> + unreachable!()
> + }
> +
> + /// Infallible 8-bit write with compile-time bounds check.
> + #[inline(always)]
> + fn write8(&self, _value: u8, _offset: usize)
> + where
> + Self: IoCapable<u8>,
> + {
> + const { assert!(false, "Backend does not support infallible 8-bit write") };
> + unreachable!()
> + }
> +
> + /// Infallible 16-bit write with compile-time bounds check.
> + #[inline(always)]
> + fn write16(&self, _value: u16, _offset: usize)
> + where
> + Self: IoCapable<u16>,
> + {
> + const { assert!(false, "Backend does not support infallible 16-bit write") };
> + unreachable!()
> + }
> +
> + /// Infallible 32-bit write with compile-time bounds check.
> + #[inline(always)]
> + fn write32(&self, _value: u32, _offset: usize)
> + where
> + Self: IoCapable<u32>,
> + {
> + const { assert!(false, "Backend does not support infallible 32-bit write") };
> + unreachable!()
> + }
> +
> + /// Infallible 64-bit write with compile-time bounds check.
> + #[cfg(CONFIG_64BIT)]
> + #[inline(always)]
> + fn write64(&self, _value: u64, _offset: usize)
> + where
> + Self: IoCapable<u64>,
> + {
> + const { assert!(false, "Backend does not support infallible 64-bit write") };
> + unreachable!()
> + }
> +}
> +
> +// MMIO regions support 8, 16, and 32-bit accesses.
> +impl<const SIZE: usize> IoCapable<u8> for Mmio<SIZE> {}
> +impl<const SIZE: usize> IoCapable<u16> for Mmio<SIZE> {}
> +impl<const SIZE: usize> IoCapable<u32> for Mmio<SIZE> {}
> +
> +// MMIO regions on 64-bit systems also support 64-bit accesses.
> +#[cfg(CONFIG_64BIT)]
> +impl<const SIZE: usize> IoCapable<u64> for Mmio<SIZE> {}
> +
> +impl<const SIZE: usize> Io for Mmio<SIZE> {
> + const MIN_SIZE: usize = SIZE;
> +
> + /// Returns the base address of this mapping.
> + #[inline]
> + fn addr(&self) -> usize {
> + self.0.addr()
> + }
> +
> + /// Returns the maximum size of this mapping.
> + #[inline]
> + fn maxsize(&self) -> usize {
> + self.0.maxsize()
> + }
> +
> + define_read!(fallible, try_read8, readb -> u8);
> + define_read!(fallible, try_read16, readw -> u16);
> + define_read!(fallible, try_read32, readl -> u32);
> define_read!(
> + fallible,
> #[cfg(CONFIG_64BIT)]
> - read64,
> try_read64,
> readq -> u64
> );
>
> - define_read!(read8_relaxed, try_read8_relaxed, readb_relaxed -> u8);
> - define_read!(read16_relaxed, try_read16_relaxed, readw_relaxed -> u16);
> - define_read!(read32_relaxed, try_read32_relaxed, readl_relaxed -> u32);
> + define_write!(fallible, try_write8, writeb <- u8);
> + define_write!(fallible, try_write16, writew <- u16);
> + define_write!(fallible, try_write32, writel <- u32);
> + define_write!(
> + fallible,
> + #[cfg(CONFIG_64BIT)]
> + try_write64,
> + writeq <- u64
> + );
> +}
> +
> +impl<const SIZE: usize> IoKnownSize for Mmio<SIZE> {
> + define_read!(infallible, read8, readb -> u8);
> + define_read!(infallible, read16, readw -> u16);
> + define_read!(infallible, read32, readl -> u32);
> define_read!(
> + infallible,
> #[cfg(CONFIG_64BIT)]
> - read64_relaxed,
> - try_read64_relaxed,
> - readq_relaxed -> u64
> + read64,
> + readq -> u64
> );
>
> - define_write!(write8, try_write8, writeb <- u8);
> - define_write!(write16, try_write16, writew <- u16);
> - define_write!(write32, try_write32, writel <- u32);
> + define_write!(infallible, write8, writeb <- u8);
> + define_write!(infallible, write16, writew <- u16);
> + define_write!(infallible, write32, writel <- u32);
> define_write!(
> + infallible,
> #[cfg(CONFIG_64BIT)]
> write64,
> - try_write64,
> writeq <- u64
> );
> +}
> +
> +impl<const SIZE: usize> Mmio<SIZE> {
> + /// Converts an `MmioRaw` into an `Mmio` instance, providing the accessors to the MMIO mapping.
> + ///
> + /// # Safety
> + ///
> + /// Callers must ensure that `addr` is the start of a valid I/O mapped memory region of size
> + /// `maxsize`.
> + pub unsafe fn from_raw(raw: &MmioRaw<SIZE>) -> &Self {
> + // SAFETY: `Mmio` is a transparent wrapper around `MmioRaw`.
> + unsafe { &*core::ptr::from_ref(raw).cast() }
> + }
> +
> + define_read!(infallible, pub read8_relaxed, readb_relaxed -> u8);
> + define_read!(infallible, pub read16_relaxed, readw_relaxed -> u16);
> + define_read!(infallible, pub read32_relaxed, readl_relaxed -> u32);
> + define_read!(
> + infallible,
> + #[cfg(CONFIG_64BIT)]
> + pub read64_relaxed,
> + readq_relaxed -> u64
> + );
> +
> + define_read!(fallible, pub try_read8_relaxed, readb_relaxed -> u8);
> + define_read!(fallible, pub try_read16_relaxed, readw_relaxed -> u16);
> + define_read!(fallible, pub try_read32_relaxed, readl_relaxed -> u32);
> + define_read!(
> + fallible,
> + #[cfg(CONFIG_64BIT)]
> + pub try_read64_relaxed,
> + readq_relaxed -> u64
> + );
> +
> + define_write!(infallible, pub write8_relaxed, writeb_relaxed <- u8);
> + define_write!(infallible, pub write16_relaxed, writew_relaxed <- u16);
> + define_write!(infallible, pub write32_relaxed, writel_relaxed <- u32);
> + define_write!(
> + infallible,
> + #[cfg(CONFIG_64BIT)]
> + pub write64_relaxed,
> + writeq_relaxed <- u64
> + );
>
> - define_write!(write8_relaxed, try_write8_relaxed, writeb_relaxed <- u8);
> - define_write!(write16_relaxed, try_write16_relaxed, writew_relaxed <- u16);
> - define_write!(write32_relaxed, try_write32_relaxed, writel_relaxed <- u32);
> + define_write!(fallible, pub try_write8_relaxed, writeb_relaxed <- u8);
> + define_write!(fallible, pub try_write16_relaxed, writew_relaxed <- u16);
> + define_write!(fallible, pub try_write32_relaxed, writel_relaxed <- u32);
> define_write!(
> + fallible,
> #[cfg(CONFIG_64BIT)]
> - write64_relaxed,
> - try_write64_relaxed,
> + pub try_write64_relaxed,
> writeq_relaxed <- u64
> );
> }
> diff --git a/rust/kernel/io/mem.rs b/rust/kernel/io/mem.rs
> index e4878c131c6d..620022cff401 100644
> --- a/rust/kernel/io/mem.rs
> +++ b/rust/kernel/io/mem.rs
> @@ -16,8 +16,8 @@
> Region,
> Resource, //
> },
> - Io,
> - IoRaw, //
> + Mmio,
> + MmioRaw, //
> },
> prelude::*,
> };
> @@ -212,7 +212,7 @@ pub fn new<'a>(io_request: IoRequest<'a>) -> impl PinInit<Devres<Self>, Error> +
> }
>
> impl<const SIZE: usize> Deref for ExclusiveIoMem<SIZE> {
> - type Target = Io<SIZE>;
> + type Target = Mmio<SIZE>;
>
> fn deref(&self) -> &Self::Target {
> &self.iomem
> @@ -226,10 +226,10 @@ fn deref(&self) -> &Self::Target {
> ///
> /// # Invariants
> ///
> -/// [`IoMem`] always holds an [`IoRaw`] instance that holds a valid pointer to the
> +/// [`IoMem`] always holds an [`MmioRaw`] instance that holds a valid pointer to the
> /// start of the I/O memory mapped region.
> pub struct IoMem<const SIZE: usize = 0> {
> - io: IoRaw<SIZE>,
> + io: MmioRaw<SIZE>,
> }
>
> impl<const SIZE: usize> IoMem<SIZE> {
> @@ -264,7 +264,7 @@ fn ioremap(resource: &Resource) -> Result<Self> {
> return Err(ENOMEM);
> }
>
> - let io = IoRaw::new(addr as usize, size)?;
> + let io = MmioRaw::new(addr as usize, size)?;
> let io = IoMem { io };
>
> Ok(io)
> @@ -287,10 +287,10 @@ fn drop(&mut self) {
> }
>
> impl<const SIZE: usize> Deref for IoMem<SIZE> {
> - type Target = Io<SIZE>;
> + type Target = Mmio<SIZE>;
>
> fn deref(&self) -> &Self::Target {
> // SAFETY: Safe as by the invariant of `IoMem`.
> - unsafe { Io::from_raw(&self.io) }
> + unsafe { Mmio::from_raw(&self.io) }
> }
> }
> diff --git a/rust/kernel/io/poll.rs b/rust/kernel/io/poll.rs
> index b1a2570364f4..75d1b3e8596c 100644
> --- a/rust/kernel/io/poll.rs
> +++ b/rust/kernel/io/poll.rs
> @@ -45,12 +45,16 @@
> /// # Examples
> ///
> /// ```no_run
> -/// use kernel::io::{Io, poll::read_poll_timeout};
> +/// use kernel::io::{
> +/// Io,
> +/// Mmio,
> +/// poll::read_poll_timeout, //
> +/// };
> /// use kernel::time::Delta;
> ///
> /// const HW_READY: u16 = 0x01;
> ///
> -/// fn wait_for_hardware<const SIZE: usize>(io: &Io<SIZE>) -> Result {
> +/// fn wait_for_hardware<const SIZE: usize>(io: &Mmio<SIZE>) -> Result {
> /// read_poll_timeout(
> /// // The `op` closure reads the value of a specific status register.
> /// || io.try_read16(0x1000),
> @@ -128,12 +132,16 @@ pub fn read_poll_timeout<Op, Cond, T>(
> /// # Examples
> ///
> /// ```no_run
> -/// use kernel::io::{poll::read_poll_timeout_atomic, Io};
> +/// use kernel::io::{
> +/// Io,
> +/// Mmio,
> +/// poll::read_poll_timeout_atomic, //
> +/// };
> /// use kernel::time::Delta;
> ///
> /// const HW_READY: u16 = 0x01;
> ///
> -/// fn wait_for_hardware<const SIZE: usize>(io: &Io<SIZE>) -> Result {
> +/// fn wait_for_hardware<const SIZE: usize>(io: &Mmio<SIZE>) -> Result {
> /// read_poll_timeout_atomic(
> /// // The `op` closure reads the value of a specific status register.
> /// || io.try_read16(0x1000),
> diff --git a/rust/kernel/pci/io.rs b/rust/kernel/pci/io.rs
> index 70e3854e7d8d..e3377397666e 100644
> --- a/rust/kernel/pci/io.rs
> +++ b/rust/kernel/pci/io.rs
> @@ -8,8 +8,8 @@
> device,
> devres::Devres,
> io::{
> - Io,
> - IoRaw, //
> + Mmio,
> + MmioRaw, //
> },
> prelude::*,
> sync::aref::ARef, //
> @@ -27,7 +27,7 @@
> /// memory mapped PCI BAR and its size.
> pub struct Bar<const SIZE: usize = 0> {
> pdev: ARef<Device>,
> - io: IoRaw<SIZE>,
> + io: MmioRaw<SIZE>,
> num: i32,
> }
>
> @@ -63,7 +63,7 @@ pub(super) fn new(pdev: &Device, num: u32, name: &CStr) -> Result<Self> {
> return Err(ENOMEM);
> }
>
> - let io = match IoRaw::new(ioptr, len as usize) {
> + let io = match MmioRaw::new(ioptr, len as usize) {
> Ok(io) => io,
> Err(err) => {
> // SAFETY:
> @@ -117,11 +117,11 @@ fn drop(&mut self) {
> }
>
> impl<const SIZE: usize> Deref for Bar<SIZE> {
> - type Target = Io<SIZE>;
> + type Target = Mmio<SIZE>;
>
> fn deref(&self) -> &Self::Target {
> // SAFETY: By the type invariant of `Self`, the MMIO range in `self.io` is properly mapped.
> - unsafe { Io::from_raw(&self.io) }
> + unsafe { Mmio::from_raw(&self.io) }
> }
> }
>
> diff --git a/samples/rust/rust_driver_pci.rs b/samples/rust/rust_driver_pci.rs
> index ef04c6401e6a..bfb053059667 100644
> --- a/samples/rust/rust_driver_pci.rs
> +++ b/samples/rust/rust_driver_pci.rs
> @@ -7,6 +7,10 @@
> use kernel::{
> device::Core,
> devres::Devres,
> + io::{
> + Io,
> + IoKnownSize, //
> + },
> pci,
> prelude::*,
> sync::aref::ARef, //
Powered by blists - more mailing lists